Figure 1
Autophagy initiates by the de novo synthesis and elongation of phagophores, which engulf cytosolic materials (autophagic cargo) to form autophagosomes. Autophagosomes predominantly fuse with the late endosomes to form amphisomes and subsequently with the lysosomes to form autolysosomes where the autophagic cargo is degraded by the lysosomal hydrolases. Autophagy can be stimulated by chemical inducers acting via the mTOR-dependent and mTOR-independent pathways regulating autophagy. Defects in autophagic flux at the autophagosome formation and maturation stages are indicated.
Schematic representation of the autophagy pathway

Autophagy initiates by the de novo synthesis and elongation of phagophores, which engulf cytosolic materials (autophagic cargo) to form autophagosomes. Autophagosomes predominantly fuse with the late endosomes to form amphisomes and subsequently with the lysosomes to form autolysosomes where the autophagic cargo is degraded by the lysosomal hydrolases. Autophagy can be stimulated by chemical inducers acting via the mTOR-dependent and mTOR-independent pathways regulating autophagy. Defects in autophagic flux at the autophagosome formation and maturation stages are indicated.

Close Modal

or Create an Account

Close Modal
Close Modal