FigureĀ 2.
For each fitness cost parameter (relative to wildtype), a population genetics mathematical model is repeatedly simulated for different introduction frequencies with the first (lowest) frequency giving successful introgression being output to form the threshold lines seen here. For two-locus UD, the dotted portion of the line indicates a maximum fitness cost beyond which introgression cannot be achieved. In the case of haploinsufficient RNAi, it is assumed that fitness costs affect only heterozygotes, i.e. wildtype and homozygotes are of equal fitness. The four mathematical models used here are adapted from those of Marshall and Hay [31] except that for haploinsufficient RNAi which is from Reeves et al. [29].
Comparison of predicted introduction threshold frequencies for Wolbachia, single-locus UD, haploinsufficient RNAi and two-locus UD systems.

For each fitness cost parameter (relative to wildtype), a population genetics mathematical model is repeatedly simulated for different introduction frequencies with the first (lowest) frequency giving successful introgression being output to form the threshold lines seen here. For two-locus UD, the dotted portion of the line indicates a maximum fitness cost beyond which introgression cannot be achieved. In the case of haploinsufficient RNAi, it is assumed that fitness costs affect only heterozygotes, i.e. wildtype and homozygotes are of equal fitness. The four mathematical models used here are adapted from those of Marshall and Hay [31] except that for haploinsufficient RNAi which is from Reeves et al. [29].

Close Modal

or Create an Account

Close Modal
Close Modal