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The thalamus plays a pivotal role in the integration and processing of sensory, motor, and
cognitive information. It is therefore important to understand how the thalamus operates
in states of both health and disease. In the present review, we discuss the function of the
Group II metabotropic glutamate (mGlu) receptors within thalamic circuitry, and how they
may represent therapeutic targets in treating disease states associated with thalamic dys-
function.

Introduction
The anatomically central position of the thalamus within the brain (Figure 1A) is functionally appropriate
given its central role in the processing of almost all sensory, motor, and cognitive information: informa-
tion entering the brain is first channelled to the relevant thalamic nuclei for processing and integration
with other inputs prior to its subsequent dispatch to the corresponding cortical area(s). Consequentially,
thalamic processing underpins the multimodal and multilevel functioning of the central nervous system
(CNS) making it critical to understand how the thalamus operates. In recent years, there has been con-
siderable work to understand how the Group II metabotropic glutamate (mGlu) receptors contribute to
thalamic processing. Maintenance of the original spatiotemporal quality of stimuli through inhibition of
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Figure 1. Overview of Thalamic Nuclei

(A) Location of the thalamus within the human brain. (B) Major nuclei comprising the thalamus. The thalamus in (A;

red) has been enlarged in (B) to enable inspection of the major thalamic nuclei. Abbreviations: Ant, anterior; LD, dor-

sal lateral nucleus; LGN, lateral geniculate nucleus; LP, lateral posterior nucleus; MD, mediodorsal nucleus; MGN,

medial geniculate nucleus; Pul, pulvinar; TRN, thalamic reticular nucleus; VA, ventral anterior nucleus; VL, ventral lat-

eral nucleus; VP, ventral posterior nucleus; VPL, ventral posterolateral nucleus; VPM, ventral posteromedial nucleus.

(A) reproduced under Creative Commons License CC BY-SA 2.1 JP.
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top-down modulatory processes in the thalamus appears to be mediated by the Group II mGlu receptors, which have
made them potential targets for therapeutic intervention to treat schizophrenia, pain, and epilepsy. In the present
review, we describe the fundamentals of thalamic circuitry and Group II mGlu receptor pharmacology, how they
interact, and their potential roles in health and disease.

A brief overview of thalamic circuitry
The thalamus comprises over 30 distinct nuclei (Figure 1B) [1], with each nucleus governing the processing and relay
of information to a discrete area of corresponding cerebral cortex. Information across all modalities, with the pos-
sible exception of olfaction, is relayed by thalamic neurons (sensory, motor, cognitive) [2,3]. These thalamic relay
neurons receive information in two forms, namely driver inputs and modulatory inputs, which can be distinguished
by their terminal morphology and synaptic location [3]: driver inputs have characteristic large round terminals that
form synapses proximal to the soma of thalamic relay neurons, whereas modulatory inputs have small round termi-
nals that form synapses distally onto the dendritic trees of thalamic relay neurons [3–6]. The source of information
transmitted by driver inputs determines the classification of the thalamic nuclei they innervate as either first-order
or higher-order nuclei, with first-order nuclei receiving and processing driver inputs from the periphery (e.g., visual,
auditory, somatosensory), and higher-order nuclei receiving and processing driver inputs from cortical layer V [3–6]
(note: some thalamic nuclei receive driver inputs from both the periphery and the cortex – for example, the poste-
rior medial thalamus receives somatosensory driver inputs from both the periphery and cortical driver inputs from
somatosensory, motor, perirhinal, and insular cortices [7–9] – such nuclei are considered mixed nuclei [10]).

A basic neuronal network, common to all thalamic nuclei, governs how driver inputs are relayed to the cortex
[11–16] (Figure 2). Following innervation by a driver input, thalamic relay neurons send out an excitatory thalamo-
cortical projection to layer IV of the cortex, and in return receive a reciprocal excitatory corticothalamic modulatory
projection from cortical layer VI, which modulates how further driver inputs are processed prior to relay [3,5]. These
thalamocortical and corticothalamic afferents also innervate the thalamic reticular nucleus (TRN), which in turn
sends inhibitory modulatory projections back to the thalamic relay neuron from which it received its innervation
(recurrent inhibition) and to surrounding thalamic relay neurons (lateral inhibition) [12,14–16]. The TRN is com-
prised exclusively of inhibitory neurons [17] and surrounds the entire anteroposterior extent of the dorsal thalamus
(Figure 1B).

Investigations of first-order nuclei have enabled the characterisation of this circuitry, as it is possible to physiolog-
ically activate sensory driver inputs with exacting fidelity [12,18,19]. This is particularly true for the rodent vibrissal
system, which possesses a precise somatotopy with the arrangement of the whiskers of the snout reflected as dis-
crete somatotopic maps in the brainstem as barrellettes, the ventrobasal thalamic nucleus (VB) as barreloids, and the
somatosensory cortex as barrels (leading to this cortical region being sometimes referred to as barrel cortex) [20]. Fur-
thermore, the rodent VB is devoid of any additional afferent projections or intrinsic inhibitory interneurons, which
can be found in other rodent thalamic nuclei (e.g., the visual lateral geniculate nucleus [LGN]) and most thalamic
nuclei of higher mammals such as primates [1,15,21–24]. This high degree of segregation and simplified organisation
has therefore made the rodent VB a thalamic nucleus of choice for electrophysiologists to test and understand the
basic neuronal network principles underpinning thalamic function.

An introduction to group II mGlu receptor pharmacology
Glutamate is the major excitatory neurotransmitter in the CNS and acts at both ionotropic glutamate and mGlu
receptor types. Ionotropic glutamate receptor activation directly facilitates fast synaptic transmission, whilst the
mGlu receptors provide a mechanism for glutamate to fine-tune synaptic activity [25]. Eight mGlu receptor subtypes
(mGlu1–8) have been characterised, which have been classified into one of three groups (Groups I–III) dependent
upon receptor sequence homology, signal transduction mechanism, and pharmacology [26].

Group II comprises the mGlu2 and mGlu3 receptor subtypes. These Group II mGlu receptors are often found
on presynaptic terminals, which when activated ultimately lead to the inhibition of neurotransmitter release from
the presynaptic terminal via their coupling to the Gi/o intracellular signalling cascade [27]. mGlu receptors native to
physiological systems have been found to form obligatory functional dimers that greatly influence the efficiency with
which these G-protein signalling cascades are activated [28,29]. These functional dimers take the form of homomeric
complexes (i.e., mGlu2–mGlu2 and mGlu3–mGlu3 homodimers), but also heteromeric complexes with each other
(i.e., mGlu2–mGlu3 heterodimers), other mGlu receptor subtypes (e.g., mGlu2–mGlu7 heterodimers) and receptors
from other G-protein-coupled receptor families (e.g., mGlu2-5HT2A heterodimers) [28–34]. It is important to note
however that a number of expression systems have been used to examine mGlu receptor signal transduction and are
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Figure 2. The basic neuronal network common to all thalamic nuclei

Each of the major thalamic nuclei in Figure 1B comprise the same basic circuitry. The source of driver inputs dictates the classifi-

cation of thalamic nuclei as either a first- or higher-order nuclei, with first-order nuclei receiving and processing driver inputs from

the periphery, and higher-order nuclei receiving and processing driver inputs from cortical layer V. Driver input – orange; thalamic

relay neuron – blue; TRN – red; corticothalamic neuron – green. Abbreviation: TRN, thalamic reticular nucleus.

therefore not necessarily translatable to mGlu receptor signal transduction coupling across different cell types (e.g.,
neurons vs glia) [35,36].

The Group II mGlu receptor subtypes de facto have considerable sequence homology and therefore similar phar-
macology [37]. Accordingly, there are a number of commercially available Group II mGlu receptor orthosteric ago-
nists and antagonists, which orthosterically bind to both mGlu2 and mGlu3 receptor subtypes [38], but as of yet few
that can differentiate between mGlu2 and mGlu3 receptors. LY2794193 has recently been developed as a selective
mGlu3 receptor agonist [39], but has thus far had limited use in the scientific literature [40], and LY395756 is a com-
pound with mixed properties that acts as an antagonist at mGlu2 receptors and an agonist at mGlu3 receptors [41].
This is an unusual pharmacology and as such experiments using LY395756 need careful interpretation [42–46] (note:
N-acetylaspartateglutamate [NAAG] has been reported to selectively activate mGlu3 receptors [47], although this
has not been confirmed in other studies [48] and there are questions regarding the purity of commercially available
NAAG preparations [49]). There has been more success in the development of selective compounds, which target al-
losteric sites of the mGlu2 or mGlu3 receptors, namely positive and negative allosteric modulators (PAMs and NAMs)
[50–56]. PAMs act to potentiate the response of a receptor to orthosteric agonists whilst possessing little or no in-
trinsic agonist activity, and NAMs antagonise the activity of agonists in a noncompetitive fashion by binding to a site
distinct from the orthosteric-binding site [25].

The concept of allosteric modulation has received considerable attention in recent years, in part due to the clinical
success of the anxiolytic benzodiazepines, which allosterically enhance the function of the ionotropic GABAA recep-
tor [57], but also due to numerous advantages that this compound class has over exogenous orthosteric compounds.
Firstly, orthosteric agonists activate their corresponding receptors independently of their physiological state, whereas
PAMs act to enhance the action of receptors activated by endogenously released agonist. PAMs therefore increase
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physiological receptor activation with temporal and spatial relevance, and likely possess a lower side effect profile
than orthosteric agonists. For example, the GABAB receptor PAMs CGP7930 and GS39783 [58,59] do not elicit the
hypothermic, sedative, and muscle relaxant effects associated with the orthosteric agonist baclofen [60,61]. Secondly,
PAMs are thought to induce either no or only low levels of receptor desensitisation, negating the consequence of re-
ceptor down-regulation that can occur upon persistent agonist treatment, as has been demonstrated for the GABAB
receptor [62]. Finally, many PAMs are highly selective for a specific receptor, given the lack of necessity for allosteric
binding sites to be conserved during evolution. This is in contrast with the requirement for the orthosteric site to be
conserved for binding of endogenous agonist. However, it is important to consider that this also represents a potential
disadvantage for the use of allosteric modulators in experimental design and interpretation. Indeed, although the low
evolutionary conservation of allosteric sites facilitates subtype selectivity, it is important to consider that this may
result in significant differences across species (e.g., rodents vs humans).

Group II mGlu receptor locations in thalamic circuitry
The mGlu2 receptor has a diffuse protein-staining pattern throughout the thalamus [63] with no significantly in-
creased mRNA signal in any individual thalamic nucleus or the TRN [64]. There is some mGlu2 receptor localisation
in cortical layer IV [64]; however, as there is an absence of mGlu2 (and mGlu3) receptor mRNA in thalamic relay
neurons [64,65], this is unlikely to be due to presence of mGlu2 receptors on thalamocortical projections. This also
indicates a lack of Group II mGlu receptors on thalamocortical projections to the TRN. In contrast, protein staining
and mRNA analysis has revealed a highly localised expression of the mGlu3 receptor within the TRN, although lit-
tle signal in the thalamus itself [64,66,67]. Double-labelling of Group II mGlu receptor protein and the GABAergic
marker glutamic acid decarboxylase in the VB of mGlu2 deficient mice found considerable overlap [67], and as the
VB lacks inhibitory interneurons [1,15,21–23], this indicates that the mGlu3 receptor is likely present at inhibitory
GABAergic TRN terminals. In addition, immunogold particle labelling has also revealed that both mGlu2 and mGlu3
receptors can be found extrasynaptically [64,66,67]. Taken together, these results suggest that mGlu3 receptors are
localised primarily on inhibitory TRN terminals that mGlu2 receptors are primarily on glutamatergic cortical ter-
minals (although not thalamocortical in origin), and that both subtypes may be present on glial processes (Figure
3).

Functions of group II mGlu receptors in thalamic processing
Complementary physiological and pharmacological studies have provided substantial evidence that synaptically acti-
vated Group II mGlu receptors are present and functional at key synapses for information processing in the thalamus.

Synapse 1: the inhibitory modulatory input from the TRN to thalamic relay
neurons
In vivo electrophysiology studies have demonstrated that Group II mGlu receptor activation with locally applied or-
thosteric agonists (e.g., 1S,3R-ACPD, L-CCG-I, 2R,4R-APDC) can reduce recurrent inhibition from the TRN to VB
thalamic relay neurons upon somatosensory driver stimulation [68–71]. A later in vitro study complemented and ex-
tended these findings by showing that this Group II mGlu receptor activation with the orthosteric agonist LY354740
reduces inhibitory postsynaptic potential (IPSP) amplitude without affecting the postsynaptic cell membrane proper-
ties [72]. This indicates a pre- and/or extrasynaptic localisation of these receptors at the TRN-thalamic relay neuron
synapse, which aligns with the findings of the ultrastructural cellular anatomy studies. This inhibitory role has also
been shown in the first-order visual thalamic nucleus, the LGN [73], and the higher-order mediodorsal thalamic
nucleus [74].

Following development of PAMs for the mGlu2 receptors, an mGlu2 component to this Group II mGlu receptor
effect was revealed by local iontophoretic coapplication of the Group II mGlu receptor agonist LY354740 with the
mGlu2 PAM LY487379 in vivo [75]. As ultrastructural studies indicate a lack of neuronal mGlu2 receptor expression
in TRN or thalamic relay neurons, attention turned towards confirming the extrasynaptic localisation of these mGlu2
receptors on surrounding glial processes. In-vitro fluorescent calcium imaging in VB slices showed that increases
in intracellular astrocytic calcium levels – but not intracellular neuronal calcium levels – could be induced upon
application of the Group II mGlu receptor agonist LY354740, which could be further potentiated upon coapplication
of the mGlu2 PAM LY487379 [35]. In vivo, the glial inhibitor fluorocitrate abolished the mGlu2 PAM LY487379 effect,
whilst a considerable neuronal component of the Group II mGlu receptor agonist LY354740 effect was maintained.
These data also support the ultrastructural studies (although an astrocytic mGlu3 receptor component remains to
be confirmed). However, further in vitro and in vivo studies have brought into question the relative contribution
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Figure 3. Locations of Group II mGlu receptors within thalamic nuclei

Whilst an astrocytic mGlu2 component has been demonstrated at synapse 1 (35), it remains to be evaluated whether there is an

accompanying mGlu3 component. At synapses 2 and 3, the identity of the presynaptic Group II mGlu receptors mediating the

relevant effects also remains to be delineated. Driver input – orange; thalamic relay neuron – blue; TRN – red; corticothalamic

projection – green; astrocyte – yellow.

that these astrocytic mGlu2 receptors make to the reduction in recurrent inhibition from the TRN to the thalamus.
In vitro experiments in thalamic slices from mGlu3 knockout mice showed a complete ablation of the Group II
mGlu receptor agonist LY354740 effect on IPSP amplitude, and use of the mixed mGlu2 receptor agonist/mGlu3
receptor antagonist compound LY395756 in vivo demonstrated a majority mGlu3 receptor component to the overall
Group II mGlu receptor effect [45]: LY395756 is a more than sevenfold more potent mGlu2 receptor agonist (EC50
0.4 μM) than an mGlu3 receptor antagonist (IC50 2.94 μM) [41], yet the overriding effect of the mixed compound
when applied alone was that of antagonism. Indeed, the mGlu2 receptor PAM LY487379 used to reveal the mGlu2
component in earlier studies is itself very effective as it can potentiate a ∼3% of maximal glutamate response (to 1
μM glutamate) up to ∼75% of maximal glutamate response [50] – a 2500% increase meaning that even low levels
of mGlu2 receptor activation can be revealed. Therefore, the mGlu2 receptor effect revealed by the potent mGlu2
receptor PAM on reducing recurrent inhibition in the thalamus from the TRN may, under normal physiological
conditions, minimally contribute to the overall Group II mGlu receptor effect. Indeed, in vivo experiments conducted
in the higher-order mediodorsal thalamic nucleus showed that whilst the Group II mGlu receptor agonist LY354740
could reduce inhibition from the TRN upon prefrontal cortex and amygdala driver afferent stimulation, there was no
potentiating effect upon coapplication of the mGlu2 receptor PAM LY487379 [74].

In addition to confirming the functional presence of the Group II mGlu receptors at the synapse from the TRN to
thalamic relay neurons, these experiments also raise two important concepts. Firstly, they suggest that these Group
II mGlu receptors are physiologically activated upon sensory stimulation: the mixed mGlu2 receptor agonist/mGlu3
receptor antagonist compound LY395756 was able to reduce thalamic relay neuron responses from baseline levels,
indicating antagonism of endogenous receptor activation [45], and the mGlu2 PAM LY487379 was able to potentiate
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thalamic relay neuron responses in the absence of locally applied Group II mGlu receptor agonist LY354740 [75], also
indicating endogenous receptor activation. The source of this endogenously released glutamate is likely to be from
excitatory afferent terminals relaying either driver or modulatory information. Ultrastructural studies indicate that
there are no axo-axonic contacts onto inhibitory TRN terminals, and corticothalamic modulatory afferent terminals
are not closely associated with TRN terminals in the rat VB [76]. Therefore, transmission from and receptors asso-
ciated with corticothalamic modulatory afferent terminals are unlikely to be involved in this mechanism. However,
ultrastructural studies do indicate that driver afferent terminals are located close to inhibitory TRN afferent terminals
and glial processes on the soma or proximal dendrites of thalamic relay neurons [21,76]. Glutamate may therefore
be ‘spilling over’ from the driver afferent synapse to activate Group II mGlu receptors localised on glial processes
surrounding TRN terminals [77,78] and/or mGlu3 receptors localized on TRN-originating inhibitory axons [67].
This could be leading to a reduction in recurrent inhibition with consequent facilitation of thalamic relay neuron
responses to driver afferent stimulation. Similar ‘glutamate spillover’ has been shown to activate Group II mGlu re-
ceptors in vitro [73,79–82], making it appropriate to suggest that Group II mGlu receptors in the thalamus may be
activated via this mechanism in vivo.

Secondly, as activation of the astrocytic mGlu2 receptors leads to an increase in intracellular calcium (Ca2+) con-
centration, this suggests mGlu2 receptor coupling to the Gq, rather than the more usual Gi/o, G-protein intracellular
signal transduction cascade. It is possible that astrocytic mGlu2 receptors are directly coupled to the Gq intracel-
lular signal transduction pathway as whilst normally associated with coupling to Gi/o G-proteins, there is evidence
that mGlu receptors are able to couple to alternative G-proteins in different cell types [83,84]. It is also possible that
astrocytic mGlu2 receptors are indirectly coupled to the Gq intracellular signal transduction pathway via receptor
dimerisation, either with an mGlu receptor, which is traditionally associated with Gq intracellular signal transduc-
tion (e.g., the Group I mGlu receptors, mGlu1 and mGlu5 [25]), or a different class of G-protein-coupled receptor
traditionally associated with Gq, such as 5HT2A receptors [32–34]. Further research is required to understand the
intracellular signal cascade leading to increased intracellular Ca2+ concentration evoked upon astrocytic mGlu2 re-
ceptor activation.

Synapse 2: the excitatory input from corticothalamic projections to the
TRN
In vitro electrophysiology experiments have indicated the presence of Group II mGlu receptors at both the pre- and
postsynaptic sites of the corticothalamic-TRN synapse. Group II mGlu receptor agonists (LY379268, S3-C4HPG)
were able to elicit hyperpolarisations and increase membrane conduction through potassium leak (Kleak) channels
in TRN neurons [79,85]. This is likely mediated via postsynaptically located mGlu3 receptors as the TRN is devoid
of mGlu2 receptor mRNA [64] and the effect persisted in the presence of tetrodotoxin [85]. The Group II mGlu
receptor agonist LY379268 was also able to reduce the amplitude of the corticothalamic excitatory postsynaptic cur-
rent (EPSC), which is likely mediated by presynaptic Group II mGlu receptors as a concurrent enhancement of the
paired pulse facilitation ratio – a hallmark of presynaptic activity [86–88] – was observed [79]. The collective effects
of this presynaptic inhibition of glutamate release and postsynaptic inhibition of TRN activity will be a disinhibition
of thalamic relay neurons as inhibitory input from the TRN will be reduced. Both these pre- and postsynaptic Group
II mGlu receptors are thought to be activated under physiologically relevant conditions by glutamate released from
corticothalamic presynaptic terminals [79,89].

Synapse 3: the excitatory modulatory input from corticothalamic
projections to thalamic relay neurons
The Group II mGlu receptor agonists LY379268 and DCG-IV were able to decrease corticothalamic EPSC amplitude,
which is likely mediated by presynaptic Group II mGlu receptors as high-frequency trains produced a facilitating
response that was reduced by the same Group II mGlu receptor agonists and enhanced by the Group II mGlu receptor
antagonist LY341495 [73]. These presynaptic receptors are also thought to be activated under physiologically relevant
conditions by glutamate released from the corticothalamic presynaptic terminal [73].

It is also worthy to note that Group II mGlu receptors can reduce innervation from inhibitory interneurons in
the LGN [90]. There is, however, potentially contrasting evidence to this, which suggests that mGlu receptors can
activate the dendritic terminals of inhibitory interneurons of the LGN in the absence of action potentials, thereby
inhibiting postsynaptic LGN thalamic relay neurons [91]. However, the mGlu receptor subtypes mediating this ef-
fect have not yet been delineated. In addition, the Group II mGlu receptor agonist LY379268 was unable to perturb
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responses at the sensory driver afferent-thalamic relay neuron synapse in the LGN [73], in accordance with the lack
of immunocytochemical evidence for Group II mGlu receptors at this synapse [64,65].

Collectively, the function of the Group II mGlu receptors at these synaptic locations is to reduce the top-down
modulation of incoming information from driver afferents in a spatially and temporally specific manner: Group II
mGlu receptors at synapses 1 and 2 decrease inhibitory modulation from the TRN, and those at synapse 3 decrease
excitatory modulation from the cortex, with innervation from inhibitory interneurons also reduced by Group II mGlu
receptor activation in thalamic nuclei, which contain these additional neuronal components.

Thalamic mGlu2 and mGlu3 receptors in health and disease
The Group II mGlu receptors likely have physiologically relevant functions in the processing of information in the
thalamus – functions, which when disrupted could lead to the generation of pathophysiological disease. Here, we
discuss the potential roles of thalamic Group II mGlu receptors in states of health and disease.

Attention
The volume of information entering the brain far exceeds its processing power. Attentional mechanisms are therefore
required for the prioritisation of important information. For example, think about the sensory information relayed
to the brain in a crowded room – multiple visual and auditory inputs are entering the brain, but it is able to focus
attention upon the person (and their voice) that you are talking to. This attentional selection is controlled through
both ‘bottom-up’ and ‘top-down’ processes. Bottom-up attentional control is governed by the salience of a stimulus,
and top-down modulation by previous experience and expectations [92]. In the thalamus, the synaptic interaction
between the driver input, the thalamic relay neuron and the TRN terminal is an example of a bottom-up attentional
process to promote sensory detection and discrimination: the firing rate of a thalamic relay neuron receiving a driver
input would be relatively enhanced by the attenuation of recurrent – but not lateral – inhibition from the TRN. This
selective attenuation can be achieved upon activation of Group II mGlu receptors on TRN terminals and surrounding
glial processes (synapse 1) and on pre- and postsynaptic locations at the corticothalamic-TRN synapse (synapse 2).
Such a mechanism would enable important information (such as a telephone ringing) to be discerned from back-
ground activity (such as a noisy crowd). This mechanism of sensory attention may represent an overarching principle
of thalamic function to other first-order and higher-order thalamic nuclei given that mGlu3 receptors mediate the
same attenuation of inhibition from the TRN in the higher-order cognitive thalamic nucleus, the mediodorsal thala-
mus [74].

In addition to bottom-up processes, top-down modulation of driver inputs also occurs in thalamic nuclei via inner-
vation from corticothalamic afferents (synapse 3). Corticothalamic afferents are organised to provide feedback from
the cortex that is functionally and spatially aligned with the thalamic relay neurons in order to mirror, and therefore
amplify, their activity [93,94]. Such a mechanism would allow higher cortical areas to enhance the discriminative
properties of thalamic relay neurons in a way that could increase the salience of responses to novel stimuli. At such
synapses, the Group II mGlu receptors would act to preserve the original spatiotemporal quality of the driver input
by reducing the mirroring of the corticothalamic innervation and subsequent amplification of thalamic relay neuron
excitability.

Schizophrenia
Schizophrenia affects approximately 1% of the population and is characterized by three symptom profiles: (i) symp-
toms in addition to normal functioning, termed ‘positive’ symptoms (e.g., hallucinations, delusions); (ii) symptoms
that represent an absence of normal functioning, termed ‘negative’ symptoms (e.g., anhedonia, poverty of speech);
(iii) symptoms that affect cognitive function (e.g., impaired attention and working memory) [25]. Treatments for
schizophrenia have focused on antagonism of the dopamine subtype 2 (D2) receptor [95]. However, it is becoming
increasingly clear that dysfunction within the dopaminergic system is not sufficient to explain the pathophysiology
of the disorder [96]. Indeed, therapies targeting this receptor subtype are often only efficacious in treating the pos-
itive symptoms of the disease (and only for a subgroup of patients), whilst exacerbating the negative and cognitive
symptoms and inducing a plethora of side effects [95].

In recent years, there has been growing preclinical and clinical evidence for thalamic circuitry disruption in
the pathophysiology of schizophrenia, particularly regarding the TRN [97–113]. As the TRN forms neuronal net-
works with thalamocortical and corticothalamic projections across all thalamic nuclei, TRN dysfunction would re-
sult in maladaptations across multiple modalities (e.g., sleep, emotional processing, cognitive performance) that
rely on sensory processing and attention, and have been postulated to underlie the generation of hallucinations
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[100,105,107,114,115]. An emerging correlative theory of the pathophysiology of schizophrenia pertains to main-
taining balance between excitatory and inhibitory signals within neuronal circuitries [116–118]. Disruptions of the
excitatory–inhibitory balance in thalamic nuclei would have profound effects on how incoming information is pro-
cessed and subsequently relayed in the thalamus as the usual firing patterns of thalamic relay neurons would be
impacted: there are two types of firing patterns displayed by thalamic relay neurons – short-latency tonic responses,
which occur at regular rates upon depolarization from resting potential and represent faithful relay of information
through the thalamus, and long-latency burst responses that occur at irregular rates in hyperpolarised neurons and
do not maintain the original spatiotemporal quality of the driver input [119–123]. Increased inhibition leading to hy-
perpolarised thalamic relay neurons and subsequent thalamic hypofunction has been associated with schizophrenia
disease states in both animal models [124–127] and human imaging studies [128–132]. Reducing inhibition within
thalamic nuclei to restore tonic-firing patterns and faithful relay of bottom-up driver inputs may therefore be of ther-
apeutic benefit in the treatment of schizophrenia, such as that which can be achieved by activation of the Group
II mGlu receptors to reduce inhibition from the TRN (synapses 1 and 2). Targeting of the mGlu3 receptor subtype
specifically is likely of therapeutic importance as it is this Group II mGlu receptor subtype, which appears to major-
ity mediate the effect of thalamic disinhibition in first- and higher-order circuitries [45,74]. Indeed, mGlu3 recep-
tors have been implicated in the aetiological, pathophysiological, and pharmacotherapeutic aspects of schizophrenia
[133–135], with polymorphisms in the mGlu3 receptor gene and protein, but not the mGlu2 receptor, detected in
patients with schizophrenia [136–138]. mGlu3 PAMs have been identified as compounds of interest in the treatment
of schizophrenia [135,139] and are proposed to have enhanced efficacy over direct Group II mGlu receptor ago-
nists, which have had limited success [140–143]. However, no mGlu3 receptor PAMs are yet commercially available,
although there are some in development [144].

Absence epilepsy
Absence epilepsy, which majority affects children [145], is characterised by a regular, bisynchronous, symmetrical,
generalised EEG pattern of 2.5–5.5 Hz, which is termed a ‘spike-wave discharge’ [146]. Absence seizures typically
manifest as a period of stillness, with the person appearing to stare blankly into space for a short period of time before
returning to usual levels of alertness [145]. Whilst the origin of absence seizure activity remains to be determined
[147–149], there is strong evidence to suggest thalamic involvement in their generation [150–152], and not just their
maintenance and propagation. Current first-line therapies to treat absence epilepsy are typical anticonvulsants [95],
which lack specificity due to their modulation of the GABAergic signalling [25]. The Group II mGlu receptors, which
have distinct localisations in thalamic circuitry, have therefore been investigated as potential targets for the treatment
of absence epilepsy.

The role of the Group II mGlu receptors in animal models of absence epilepsy is however highly debated as the
Group II mGlu receptor agonist LY379268 has been found to reduce the duration of spike-wave discharges in a lethar-
gic mouse model [153], but enhance spike-wave discharges in a WAG/Rij rat model [154]. These contrasting findings
in two different rodent models of absence epilepsy are difficult to reconcile. Differential expression ratios of Group II
mGlu receptor homo- and heterodimers [155] in the corticothalamic network underlying spike-wave discharges in
lethargic mice and WAG/Rij rats two models has been cited as a potential explanation [156]. However, recent work
with the selective mGlu3 receptor agonist LY2794193 in the WAG/Rij model suggests efficacy in reducing spike-wave
discharges [40] in agreement with the lethargic mouse model findings but opposing the previous WAG/Rij findings.
Alternatively, or indeed additionally, it is possible that this reflects species differences in Group II mGlu receptor
signalling. Clearly, further work with subtype selective compounds is required to fully understand the role that each
Group II mGlu receptor subtype plays in modulating spike-wave discharges in absence epilepsy, and it is likely that the
effects of a systemically administered mGlu2-selective, mGlu3-selective, or mGlu2/3-pan-selective compound would
reflect the relative differential distributions of mGlu2 and/or mGlu3 receptors within the corticothalamic network.

There is also growing evidence for modulation of epileptiform activity in the thalamus by the mGlu7 receptor
subtype [157,158]. It is possible that heterodimeric mGlu2–mGlu7 receptor complexes are mediating some of these
effects and as such should be considered in future investigations.

Arthritic pain
Arthritis manifests as swelling and inflammation in a joint, which can become painful. Osteoarthritis occurs when
the cartilage lining the ends of bones becomes worn over time, with rheumatoid arthritis a result of an autoimmune
disorder where the lining of joints is degraded [159].
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mGlu3 receptor expression in the rat TRN can become elevated upon induction of arthritis [160]. As mGlu3
receptor activation can disinhibit thalamic relay neurons, mGlu3 receptor antagonism may be of use in the provi-
sion of analgesia in arthritic pain by reducing responsivity to nociceptive driver inputs. Indeed, when applied lo-
cally to the TRN, the Group II mGlu receptor antagonist EGLU had an antinociceptive effect in an arthritis pain
model [161]. This was likely achieved via antagonism of mGlu3 receptors located: (i) pre- and postsynaptically at the
corticothalamic-TRN synapse (synapse 2), which would increase TRN activity and therefore inhibition of somatosen-
sory thalamic relay neurons, and (ii) at the TRN-thalamic relay neuron synapse (synapse 1), which would increase
the inhibitory drive from TRN terminals.

Conclusions
The Group II mGlu receptors are located at key points in thalamic circuitry and likely contribute to the processing
of incoming information prior to relay to the cortex. These roles in thalamic function represent potential targets for
intervention in disease states including schizophrenia, epilepsy, and pain. Careful consideration is needed during the
clinical development of mGlu2 and mGlu3 receptor PAMs to account for heterogeneity between rodent and human
mGlu2 and mGlu3 receptor allosteric-binding sites as efficacy may not be translatable across species and act as a
potential confounder. Furthermore, as compounds that act as orthosteric antagonists or NAMs at Group II mGlu
receptors in other areas of the brain have been identified as potential therapies for other disorders (e.g., depression
[82,162]), clinical developers of Group II mGlu receptor compounds need to be aware of the potential for the induc-
tion of unwanted side effects.
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8 Deschênes, M., Veinante, P. and Zhang, Z.W. (1998) The organization of corticothalamic projections: reciprocity versus parity. Brain Res. Brain Res.

Rev. 28, 286–308, https://doi.org/10.1016/S0165-0173(98)00017-4

© 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons
Attribution License 4.0 (CC BY).

9

D
ow

nloaded from
 http://port.silverchair.com

/neuronalsignal/article-pdf/6/4/N
S20210058/939491/ns-2021-0058c.pdf by guest on 18 April 2024

https://doi.org/10.1016/S0896-6273(01)00582-7
https://doi.org/10.1152/jn.00429.2011
https://doi.org/10.1523/JNEUROSCI.3289-14.2014
https://doi.org/10.1016/j.conb.2007.07.003
https://doi.org/10.1523/JNEUROSCI.2815-12.2012
https://doi.org/10.1007/BF00255235
https://doi.org/10.1016/S0165-0173(98)00017-4


Neuronal Signaling (2022) 6 NS20210058
https://doi.org/10.1042/NS20210058

9 Veinante, P., Lavallée, P. and Deschênes, M. (2000) Corticothalamic projections from layer 5 of the vibrissal barrel cortex in the rat. J. Comp. Neurol.
424, 197–204, https://doi.org/10.1002/1096-9861(20000821)424:2%3c197::AID-CNE1%3e3.0.CO;2-6

10 Sherman, S.M. and Guillery, R.W. (2001) Exploring the Thalamus, Academic Press, New York
11 Jones, E.G. (1985) The Thalamus, Raven, New York
12 Salt, T.E. (1989) Gamma-aminobutyric acid and afferent inhibition in the cat and rat ventrobasal thalamus. Neuroscience 28, 17–26,

https://doi.org/10.1016/0306-4522(89)90228-5
13 Shosaku, A., Kayama, Y., Sumitomo, I., Sugitani, M. and Iwama, K. (1989) Analysis of recurrent inhibitory circuit in rat thalamus: neurophysiology of

the thalamic reticular nucleus. Prog. Neurobiol. 32, 77–102, https://doi.org/10.1016/0301-0082(89)90011-7
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66 Lourenço Neto, F., Schadrack, J., Berthele, A., Zieglgänsberger, W., Tölle, T.R. and Castro-Lopes, J.M. (2000) Differential distribution of metabotropic
glutamate receptor subtype mRNAs in the thalamus of the rat. Brain Res. 854, 93–105, https://doi.org/10.1016/S0006-8993(99)02326-4

67 Tamaru, Y., Nomura, S., Mizuno, N. and Shigemoto, R. (2001) Distribution of metabotropic glutamate receptor mGluR3 in the mouse CNS: differential
location relative to pre- and postsynaptic sites. Neuroscience 106, 481–503, https://doi.org/10.1016/S0306-4522(01)00305-0

68 Salt, T.E. and Eaton, S.A. (1995) Modulation of sensory neurone excitatory and inhibitory responses in the ventrobasal thalamus by activation of
metabotropic excitatory amino acid receptors. Neuropharmacology 34, 1043–1051, https://doi.org/10.1016/0028-3908(95)00052-8

69 Salt, T.E. and Eaton, S.A. (1995) Distinct presynaptic metabotropic receptors for L-AP4 and CCG1 on GABAergic terminals: pharmacological evidence
using novel alpha-methyl derivative mGluR antagonists, MAP4 and MCCG, in the rat thalamus in vivo. Neuroscience 65, 5–13,
https://doi.org/10.1016/0306-4522(94)00464-G

70 Salt, T.E. and Eaton, S.A. (1996) Functions of ionotropic and metabotropic glutamate receptors in sensory transmission in the mammalian thalamus.
Prog. Neurobiol. 48, 55–72, https://doi.org/10.1016/0301-0082(95)00047-X

71 Salt, T.E. and Turner, J.P. (1998) Modulation of sensory inhibition in the ventrobasal thalamus via activation of group II metabotropic glutamate
receptors by 2R,4R-aminopyrrolidine-2,4-dicarboxylate. Exp. Brain Res. 121, 181–185, https://doi.org/10.1007/s002210050450

72 Turner, J.P. and Salt, T.E. (2003) Group II and III metabotropic glutamate receptors and the control of the nucleus reticularis thalami input to rat
thalamocortical neurones in vitro. Neuroscience 122, 459–469, https://doi.org/10.1016/j.neuroscience.2003.08.014

73 Alexander, G.M. and Godwin, D.W. (2005) Presynaptic inhibition of corticothalamic feedback by metabotropic glutamate receptors. J. Neurophysiol.
94, 163–175, https://doi.org/10.1152/jn.01198.2004

74 Copeland, C.S., Neale, S.A. and Salt, T.E. (2015) Neuronal activity patterns in the mediodorsal thalamus and related cognitive circuits are modulated
by metabotropic glutamate receptors. Neuropharmacology 92, 16–24, https://doi.org/10.1016/j.neuropharm.2014.12.031

75 Copeland, C.S., Neale, S.A. and Salt, T.E. (2012) Positive allosteric modulation reveals a specific role for mGlu2 receptors in sensory processing in the
thalamus. J. Physiol. 590, 937–951, https://doi.org/10.1113/jphysiol.2011.218065

76 Ohara, P.T. and Lieberman, A.R. (1993) Some aspects of the synaptic circuitry underlying inhibition in the ventrobasal thalamus. J. Neurocytol. 22,
815–825, https://doi.org/10.1007/BF01181326

77 Mineff, E. and Valtschanoff, J. (1999) Metabotropic glutamate receptors 2 and 3 expressed by astrocytes in rat ventrobasal thalamus. Neurosci. Lett.
270, 95–98, https://doi.org/10.1016/S0304-3940(99)00484-X
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