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In silico modelling of proteins comprises a diversity of computational tools aimed to ob-
tain structural, electronic, and/or dynamic information about these biomolecules, captur-
ing mechanistic details that are challenging to experimental approaches, such as elu-
sive enzyme-substrate complexes, short-lived intermediates, and reaction transition states
(TS). The present article gives the reader insight on the use of in silico modelling tech-
niques to understand complex catalytic reaction mechanisms of carbohydrate-active en-
zymes (CAZymes), along with the underlying theory and concepts that are important in
this field. We start by introducing the significance of carbohydrates in nature and the en-
zymes that process them, CAZymes, highlighting the conformational flexibility of their car-
bohydrate substrates. Three commonly used in silico methods (classical molecular dy-
namics (MD), hybrid quantum mechanics/molecular mechanics (QM/MM), and enhanced
sampling techniques) are described for nonexpert readers. Finally, we provide three ex-
amples of the application of these methods to unravel the catalytic mechanisms of three
disease-related CAZymes: β-galactocerebrosidase (GALC), responsible for Krabbe disease;
α-mannoside β-1,6-N-acetylglucosaminyltransferase V (MGAT5), involved in cancer; and
O-fucosyltransferase 1 (POFUT1), involved in several human diseases such as leukemia
and the Dowling–Degos disease.

Introduction
Until the end of the 20th century, carbohydrates were mainly related to energy storage and structural
support in living organisms. It was not until a few decades ago that scientists discovered that carbohydrates
are also involved in much more complex biological processes, such as modulation of protein structures,
signalling in multicellular systems, and cell–cell recognition. These processes are relevant for diseases
including bacterial and virus infections, cancer [1–3], Alzheimer’s [4,5], lysosomal storage diseases (LSD)
[6], or disruption in the gut microbiota [7]. Nowadays, carbohydrates (commonly named ‘sugars’) are
used in drug delivery strategies, vaccine development, and disease therapeutics [8–12].

Carbohydrates can exhibit many stereochemistries, configurations, and conformations (Figure 1),
which makes them very complex molecules to study. The vast amount of carbohydrate-based structures in
nature needs a larger number of enzymes responsible for their degradation, synthesis, and modification.
This is the role of carbohydrate-active enzymes (CAZymes), which include glycoside hydrolases (GHs),
glycosyltransferases (GTs), polysaccharide lyases (PLs), and carbohydrate esterases (CEs) [1]. CAZymes
are involved in many and various biological processes and thus they are keystones in human health.
They are not only essential to life but also have important applications in food, detergent, oil, gas, and
biotechnology industries [2,13]. Understanding the function of CAZymes at atomic detail can provide
information on enzyme–substrate interactions that are critical for substrate recognition and catalysis, as
well as the ‘shape’ (conformation) of the substrate along the catalytic reaction. These data can inform
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Figure 1. Diversity of sugar linkages and conformations.

(A) One of the most common β-glucans, a linear carbohydrate formed by glucose units with two types of glycosidic bond link-

ages, found in the cell wall of cereals, bacteria, and fungi. β-glucans can also display glycosidic linkage branching, such as β-1,6

branching in yeast and fungus. (B) The five possible types of conformations (C, H, S, E, and B) of a six-membered sugar ring. One

example of each type is shown. The sugar reference plane is represented in light blue. The exocyclic groups of the sugars are not

shown for clarity ( C). The active sites of CAZymes have evolved to only fit a particular type of sugar conformation. In the example,

β-glucose (left) is not able to fit in the active site of a β-galactosidase, while β-galactose (right) adapts to it. ( D) The Cremer–Pople

puckering sphere of pyranoses. The Earth is depicted as background to emphasise the similarity with an Earth map. (E) Mercator

representation of the Cremer–Pople sphere. Conformations in which an oxocarbenium ion is stable are shown in red. The blue

arrow shows one of the favoured conformational catalytic itineraries of β-glucosidases [ 14].

the design of substrate analogues or inhibitors that can efficiently bind to the active site of the enzyme, being potential
drug candidates.

In the present review, we focus on the in silico modelling of CAZyme reaction mechanisms, highlighting the im-
portance of sugar conformational changes during catalysis. We will start by describing how sugar conformations are
determined and classified, and then introduce the two most abundant classes of CAZymes, GHs and GTs, along with
their most common reaction mechanisms. Afterwards, we will briefly describe the basis of efficient computational
methods used to uncover CAZyme reaction mechanisms, alongside a few examples of the application of these meth-
ods to unveil mechanisms of disease-related CAZymes. To make this text more understandable for the nonexperts,
we provide standalone boxes to give more inside details of the concepts used in the present review.
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Figure 2. Main catalytic mechanisms of the two most abundant CAZymes, GHs and GTs.

Catalytic mechanisms of inverting GHs (A), retaining GHs (B), inverting GTs (C), retaining GTs operating by a double displacement

reaction (D), and retaining GTs operating via a front-face type of reaction (E).

Diversity of carbohydrate conformations
Carbohydrates can exhibit various types of linkages between their sugar units, as well as several stereochemistries
(Figure 1A), leading to an enormous number of possible structures [1]. Ring conformation adds another level of
complexity (Figure 1B). A six-membered sugar ring, or pyranose, can adopt 38 different ring conformations, which
can be classified as chair (C), half-chair (H), skew-boat (S), envelope (E), or boat (B). These conformations are defined
according to the position of their atoms with respect to a reference ring plane. When one or two atoms are placed
below or above this plane, these atoms are denoted as subscripts or superscripts, respectively (e.g. 4C1, 4H3, etc.).
From a mathematical point of view, all these conformations can be associated to points in the surface of a sphere of
radius Q, the puckering sphere, defined by the sum of the perpendicular distance of all atoms to a reference ring
plane. The 38 canonical conformations can be distinguished by their polar θ and φ coordinates, as introduced by
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Cremer and Pople in 1975 [15]. Usually, the puckering sphere (Figure 1D) is projected in two-dimensions, leading
to the so-called Mercator representation, in a similar way as Earth is represented in maps (Figure 1D,E), although
other representations (e.g. Stoddart reresentation) have also been used. The position and orientations of the sugar
exocyclic groups in each of the 38 Cremer–Pople conformations are essential to understand the binding of sugars in
the active site of CAZymes, as will be discussed below.

CAZymes
CAZymes are classified in families according to sequence similarities, and they are exquisitely curated in the CAZy
database [16], which is steadily growing as genome sequencing projects increase. Complementary information about
structure and catalytic mechanisms of CAZymes can also be found in CAZypedia [17]. The two most abundant types
of CAZymes are GHs and GTs, which are responsible for the hydrolysis (GHs) and synthesis (GTs) of the glycosidic
bond linkages between sugar units in carbohydrates.

GHs
GHs catalyse the cleavage of glycosidic bonds in carbohydrates and glycoconjugates (carbohydrates bound to other
biomolecules such as lipids or protein residues). They can be classified as retaining or inverting, depending on whether
or not the stereochemistry of the anomeric carbon changes during the reaction, by the similarity in their amino
acid sequences (with more than 173 families to date) [16] or by the location of the scissile glycosidic bond within
the carbohydrate chain. Endo-GHs cleave glycosidic bonds at the middle of the chain, whereas exo-GHs cleave the
terminal ends of carbohydrates.

GTs
GTs catalyse the formation of glycosidic bonds in carbohydrates and glycoconjugates. These enzymes use activated
sugars (i.e. sugars with good leaving groups such as phosphate) as glycosyl donors and transfer their glycosyl unit to an
acceptor molecule (carbohydrate, lipid, or protein). Similar to GHs, they can either invert or retain the configuration
of the donor anomeric carbon and are classified in families according to their amino acid sequence similarity, with
116 families to date [16]. GTs can also be classified in two groups depending on whether the donor sugar is activated
by a nucleotide phosphate (Leloir GTs) or by another phosphate-substituted molecule (non-Leloir GTs) [18].

The chemistry behind CAZymes: GHs
Most GHs share a common mechanism in which two residues with a carboxylic acid side chain (Asp or Glu) assist the
reaction. One of these residues acts initially as an acid (the so-called acid/base residue in retaining GHs, or catalytic
acid in inverting GHs) and another one acts as a general base (inverting GHs) or as a nucleophile (retaining GHs)
[19,20] (see Figure 2).

Most retaining GHs operate via two chemical steps (double displacement mechanism), each one being a SN2-type of
reaction (Figure 2B). In the first step, the general base attacks the anomeric carbon to form a covalent glycosyl-enzyme
intermediate (GEI), while the acid/base residue assists the reaction by protonation of the glycosidic oxygen. The order
of events and the degree of nucleophilic attack and glycosidic oxygen protonation at the TS varies from one GH to
another. In the second step, a water molecule activated by the acid/base residue, which now acts as a base, attacks the
anomeric carbon, leading to the products of the reaction. Inverting GHs (Figure 2A) operate by a single-displacement
mechanism (one chemical step) with the participation of a nucleophilic water molecule that is deprotonated by the
general base (see e.g. [21] and [22]).

Changes on sugar ring conformation along the chemical reaction
A number of structural analyses of GHs in complex with their carbohydrate substrates (Michaelis complexes, MCs)
have shown that the substrate distorts upon binding to the enzyme. In particular, the reactive sugar (i.e. the one
bearing the C–O bond to be hydrolysed by the enzyme) is distorted away from the ground-state 4C1 conformation
[21,23–25]. This change from a ‘ground state’ to a distorted – and typically higher energy – conformation promotes
catalysis. In particular, the distortion orients the glycosidic bond axially and elongates it, making the sugar’s overall
shape resemble that of the transition state (TS) of the reaction, thus preactivating the substrate for catalysis (Figure
2B). The specific distorted conformation that a sugar adopts depends on the particular GH family. However, computer
simulations have shown that the ring conformations adopted by the substrate in the enzyme active site are the ones that
exhibit certain ‘suitable’ structural, energetic, and electronic properties (long and axial C1–O bond, large anomeric
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charge, low energy, etc.) of the free sugars (i.e. in absence of the enzyme) [25]. In other words, GHs have evolved to
use intrinsic properties of their sugar substrates for a most efficient catalysis [26].

The TS of the GHs reaction is characterised by a partial positive charge at the anomeric carbon and a partial double
bond between the anomeric carbon and the ring oxygen [27–30]. These two properties are maximised when the C1,
C2, O, and C5 atoms are on the same plane, i.e. the ring becomes planar around the anomeric carbon (e.g. conforma-
tion 4H3 in Figure 1B). Only eight sugar conformations fulfil this condition in pyranoses, namely, 3E, 3H4, E4, 2,5B,
E3, 4H3, 4E, B2,5 (Figure 1E). Thus, the sugar ring at the TS of glycosylation reactions needs to adopt a conformation
that is close to one of these eight conformations.

The specific conformations that the reactive sugar adopts along the chemical reaction, especially those of the MC,
TS, and product (P) complexes delineate the so-called catalytic conformational itinerary. This itinerary is spe-
cific for each GH family. For instance, members of family GH16, which are mostly β-glucosidases, display a 1S3 →
[4H3]‡ → 4C1 itinerary [14], whereas GH38 enzymes, which are α-mannosidases, display a OS2 → [B2,5]‡ → 1S5
itinerary [31]. Identifying conformational catalytic itineraries of GHs is of great importance when designing selective
inhibitors. Molecules that mimic the properties of the MC or the TS of GHs are often powerful inhibitors [32].

The chemistry behind CAZymes: GTs
GTs catalyse the synthesis of glycosidic bonds with retention or inversion of the anomeric configuration. Inverting
GTs operate through a single-nucleophilic substitution reaction in which a general base assists the reaction by depro-
tonating the nucleophile acceptor (see Figure 2C) [17]. This mechanism is similar to that of inverting GHs (Figure
2A). In Leloir GTs, the nucleophile is a polar group of an acceptor (e.g. a hydroxyl group in the case of a sugar ac-
ceptor) and the leaving group is a phosphate group (Figure 2C). Many GTs have a divalent cation (typically Mg2+ or
Mn2+) that coordinates to the nucleotide phosphates, although metal-independent enzymes have also been described
[33].

The detailed mechanism of retaining GTs remains challenging, as two possible mechanisms have been proposed. A
double displacement, Koshland-type mechanism was initially proposed by analogy with retaining GHs (Figure 2D).
In this mechanism, an active site aspartate or glutamate plays the role of a nucleophile, reacting with the anomeric car-
bon of the donor sugar and forming a glycosyl−enzyme covalent intermediate. In a second step, an acceptor molecule
attacks the anomeric carbon, breaking the glycosyl-enzyme covalent bond and forming a new glycosidic bond, with
overall retention of stereochemistry. A similar mechanism has been recently proved by structural and mass spec-
trometry experiments on a GT99 [34]. There is theoretical evidence of a double-displacement mechanism for GT6
enzymes [35,36], although experimental detection of the covalent intermediate remains challenging [37,38].

The second proposed mechanism for retaining GTs involves a SNi-type of reaction, also termed front-face reaction
[39]. In this mechanism, the nucleophile attacks from the same face of the donor sugar in which the phosphate group
departs, without the direct intervention of an enzyme residue [16]. Whether the reaction is concerted or a stepwise
remains controversial [40].

Sugar ring distortion is less relevant for GTs reactivity than for GHs since the phosphate leaving group is typically
axially oriented, facilitating the nucleophilic displacement. However, ring distortions of the donor sugar to satisfy
tight hydrogen-bond interactions have been reported [41]. For more information on GT structures and mechanisms,
we recommend references [42,43].

Dissecting catalytic reaction mechanisms in CAZymes
The modelling of reaction mechanisms on CAZymes relies on the initial determination of the structure of the enzyme
in complex with its substrate/s (MC complex), obtained by e.g. X-ray crystallography. The MC structure can inform
in silico modelling, allowing to ‘visualise’ changes on the structure as the system evolves towards the products of the
reaction at atomic and electronic detail.

Obtaining the structure of the enzyme in complex with its substrate/s
There are several methods to obtain the three-dimensional structure of a protein: NMR [44], cryo-electron mi-
croscopy [45], modelling via artificial intelligence (AlphaFold2 or RoseTTAFold) [46–48], and X-ray crystallography
[49–51]. The latter has been traditionally used for the study of CAZyme mechanisms, as one can obtain a structure
of the enzyme in complex with its substrate that is reliable enough to inform in silico modelling of the mechanism
of action. For more information on obtaining protein structures, we refer to reference [52]. Nearly 200 000 protein
structures determined using the above-mentioned methods (and more) are stored in the Protein Data Bank [53–55],
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but only 2363 CAZymes had at least one 3D structure in the PDB (1688 GHs and 332 GTs) when this manuscript is
being written (January 2023) [16].

Ideally, an in silico study of a catalytic mechanism requires the structure of the complex between the wild-type
enzyme and its natural substrate as input. Such structure is rarely available, as the reaction timescale (≈ms) is smaller
than the time resolution of the experiment. However, structural biologists can use various strategies to slow down
or knock-out the enzymatic reaction, being able to solve the structure of the MC. Among these strategies, the use of
nonreactive analogue substrates, mutation of essential residues, and/or working at nonoptimal pH conditions have
been used. These modifications perturb the system and may result in enzyme configurations that depart from the true
MC (i.e. the complex of the wild-type enzyme with the natural substrate). However, the structure obtained can give
essential clues to uncover the enzyme mechanism [17]. In addition, complementary techniques such as site-directed
mutagenesis, spectroscopic, and in silico modelling can enormously contribute to decipher complex catalytic mech-
anisms [56].

In silico modelling of CAZymes reaction mechanisms
In silico approaches such as molecular dynamics (MD), based on molecular mechanics (MM) force fields, are of-
ten used to ensure that the enzyme and/or substrate modifications used in the laboratory to trap the MC have led
to a catalytically competent enzyme–substrate configuration, or to transform the noncompetent crystal structures
into competent ones. Once these modifications (e.g. residue mutations or substrate alterations) are reverted to the
wild-type form, the MC complex is subjected to energy minimisation and thermal equilibration by MD. Afterwards,
the reaction mechanism is modelled using quantum mechanics-molecular mechanics (QM/MM) approaches, which
combine a QM treatment of a certain region (e.g. the enzyme-active site) with a MM treatment of the rest of the sys-
tem (rest of the enzyme and solvent molecules). The basis of these approaches and the specific procedure is provided
below.

Experimental and computational approaches can work in synergy to reach the final objective of deciphering how
CAZymes work and, consequently, understanding how they influence health and disease in living organisms.

Specific procedure
To model CAZyme reaction mechanisms, we first focus on the MC, i.e. the enzyme in complex with the substrate,
which is our ‘reactants complex.’ After building the initial model (see Box 1), we use methods based on MM (so-called
‘classical’ methods) to bring the system to a configuration that corresponds to the ensemble of structures accessible
at the temperature of interest (e.g. 300 K). This procedure, called thermal equilibration, is part of the MD protocol
(see Box 2). By using MD, we can also simulate how the system moves in the ns–μs timescale, capturing important
protein structural rearrangements. Popular programs for performing MD of proteins are Amber [57,58], NAMD [59],
Gromacs [60–62], and OpenMM [63] (Figure 3).

Box 1 Model building

To build a catalytically competent protein–substrate structure, we do the following:

1. Starting from the available experimental structure, add the missing residues and/or loops. Several
programs can be used, we name here just a few ones such as Modeller [64], standalone or as
implemented in Chimera [65], or the web service MolProbity [66].

2. Revert possible mutations of the structure that were needed to determine the MC structure, using
e.g. VMD [67].

3. Add the missing hydrogen atoms of the structure. MolProbity [66], PyMol [68], Chimera [65], VMD
[67], pdb4amber, or tleap [57,58] are a few software examples.

4. Inspect the protonation state of the titratable residues [69]. This can be done by visual inspection
of the amino acid environment and/or using pKa predictor programs such as PropKa [70,71] and
H++ [72].

5. Solvate the protein, placing it into a water box periodically repeated in space. This can also be
done with several tools included in MD packages, such as tleap [57].
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Figure 3. Types of force field parameters used to model a sugar molecule in classical MD (see [73] for the mathematical

expression).

Each parameter describes interactions among pairs of atoms that are separated by one, two, or three covalent bonds (bond, angle,

and dihedral parameters), or atoms that are further away in space (electrostatic and van der Waals interactions).

Box 2 MD

The time propagation of the atoms in MD is obtained from the solution Newton’s equations of motion.

→
Fl (t) = mi

→
al (t) ⇒ −

δV
(→

r
)

δri
= mi

δ2 →
r1 (t)

δt2

These equations can be solved by numerical methods, obtaining the coordinates of the system at small
and consecutive time intervals, typically femtoseconds, but the simulation can be extended up to
microseconds, even milliseconds. The procedure relies on a mathematical expression for the potential
energy, V (r). In the so-called classical MD, the potential energy is approximated with a set of functions
that describe the interactions among atoms and include predefined parameters. The resulting potential
energy expression is called a force field. For an extensive review, see [73]. In the so-called ab initio MD
(AIMD) [74], the potential energy is computed by QM, typically using density functional theory (DFT).

One limitation of classical MD is that it is unable to account for electronic rearrangements in atoms, thus preventing
its use for modelling reaction mechanisms. To do that, it is necessary to include explicitly the electrons in the MD
formalism, specifically in the calculation of the potential energy. This approach is named as AIMD. There are various
MD methods that can do it, including Ehrenfest MD (EMD), Born-Oppenheimer MD (BOMD), or Car-Parrinello
MD (CPMD) [75], based on the seminal work by Car and Parrinello [74] that enormously influenced the AIMD
field. The potential energy, which is needed to propagate the equation of motion (Box 2), can be computed by wave
function-based methods, such as coupled cluster of Moller–Plesset methods. However, it is still virtually impossible to
do it for large systems, due to the exponentially increasing computational cost [76]. Usually, DFT [77,78], based on the
calculation of the electronic density, is used (see [75] for detailed information). Two very popular computer programs
to run AIMD simulations are CPMD [79] and CP2K [80]. The main drawback of AIMD is that it is restricted to
around a few hundred atoms (see Figure 6), which precludes simulating most proteins. On the contrary, classical MD
allows simulating large systems, but it describes them less accurately and cannot account for bond breaking/formation
processes. Combining both methods, capitalising on the fact that the atoms involved in bond breaking/bond forming
are in a small region of the whole biomolecule, overcomes the size limitation of AIMD. This is the basis of the QM/MM
methodology, for which Karplus, Levitt, and Warshel were awarded the Nobel Prize in 2013, Box 3 (Figure 4).

Box 3 QM/MM

The QM/MM approach is based on dividing the system in two regions. The so-called QM region com-
prises the group of atoms for which large electronic rearrangements are expected to take place (e.g.
active site atoms). Atoms in this region are described by a QM method, e.g. DFT. The so-called MM
region comprises the rest of the system, in which bonds are not expected to break or form. Atoms in
the MM region are described by MM. Within a MD formalism, the method is named QM/MM MD (i.e.
AIMD in the QM region and classical MD in the MM region). As a result, the whole system evolves
under the Newton’s equations of motion and bonds are able to break and form in the QM region. In
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Figure 4. The two regions (QM and MM) involved in QM/MM calculations

The MM region is shown in grey, the QM region is shown in black, and the interface between the two regions is shown in green.

state-of-art QM/MM codes, the interaction between both systems is computed using the additive
scheme:

E = EQM + EMM + EQM/MM

in which EQM is the energy of the QM region, EMM is the energy of the MM region, and EQM/MM is the
interaction energy between the atoms in the QM region and the atoms of the MM region. The former
are represented by an electron density, whereas the later are represented as particles with point
charges and van der Waals radii. Particular care needs to be taken when there are covalent bonds
at the frontier between both regions. In this case, the QM atom does not have the right number of
neighbors (e.g. four for an sp3 carbon atom) to saturate the electron density, as the neighbouring MM
atom is modelled by a point charge, thus it does not have electron density. Several methodologies,
such that the use of dummy link atoms to saturate the border QM atoms, have been developed to
describe the QM-MM boundary. For more information, we refer to the following reviews [81,82].

Even though QM/MM methods can be used to describe larger enzymes with QM accuracy at the active site, chem-
ical reactions cannot be observed in the time scale of QM/MM MD (tenths of picoseconds). This is because a sizable
energy barrier, much higher than the energy available at room temperature, needs to be overcome when moving
from reactants to products. In this scenario, the computational time needed to observe a transition from R to P is
prohibitive [83]. Advanced methods have been developed to enhance the sampling of system configurations until the
desired transition is observed. Some of these methods are based on the definition of a few degrees of freedom of the
system (e.g. crucial distances or angles), named as collective variables (CVs), that describe the motion of interest with
enough flexibility that reaction free energies and mechanisms can be obtained. Among these methods, steered MD,
umbrella sampling, or metadynamics are commonly used [83–85]. Most of them are included in the Plumed software
[86,87], which can be patched with standard MD packages. For more information, we recommend the following
review [88] (Box 4).

Box 4 Enhanced sampling: metadynamics

Metadynamics is a MD-based method based on decreasing the probability that the system visits con-
figurations/conformations (or compatible microstructures) that have already been visited during the
MD simulation. In this way, it is easy for the system to escape from one energy minimum, such as the
reactant state, to another one, such as the product state. This is achieved by adding a bias potential
to the standard potential coming from the atomic/electronic system [89,90]. It can be demonstrated
that in the time limit the total added biasing potential converges to the free energy change corre-
sponding to the process of interest [91] (Figure 5).

Vbias [t → inf] (s, t) ≈ −�G (s)
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Figure 5. Comparison of the system evolution between plain (i.e. standard) MD and metadynamics.

Schematic representation of a fictitious particle in standard MD (A) and metadynamics (B). The system (orange circle) cannot escape

from state R when using standard MD. In metadynamics, it can move through the ‘hills’ (in blue) that build up the bias potential,

Vbias, crossing the energy barrier and sampling state P.

A proper choice of CVs ensures a satisfactory physical description of the process of interest, avoiding
a prohibitively large computational cost to achieve full convergence [92]. In the particular case of
chemical reactions, several studies have shown that appropriate CVs can be taken as combinations
of distances corresponding to the bonds being broken and formed during the reaction.

In summary, following equilibration of the system (enzyme MC complex) using classical MD, QM/MM MD along
with an enhanced sampling technique is used to compute the reaction mechanisms, including the conformational cat-
alytic itineraries of the substrate in GHs and GTs. We should note that these simulations require a significant compu-
tational cost; they cannot be performed in a personal desktop computer and often require access to high-performance
computing (HPC) infrastructures. These centres are equipped with supercomputers (computers with more than
one-hundred thousand processors, memories in the order of terabytes and disk storages in the order of petabytes)
that can be accessed by academic and nonacademic groups according to specific policies from research centres, uni-
versities, governments, and other public bodies.

Examples
In silico modelling has been used to investigate a number of catalytic mechanisms of CAZymes in the last few years.
We refer to past and recent reviews for a list of interesting examples [22,93–96]. Here, we focus on three disease-related
CAZymes that have been recently studied.
β-galactocerebrosidase (GALC) is a retaining GH that is responsible for the cleavage of certain glycosphingolipids,

i.e. sugars attached to lipid molecules. Deficiencies of GALC lead to Krabbe disease, an incurable neurodegenera-
tive disorder caused by the accumulation of the unhydrolysed substrates (mainly β-galactocerebroside, GalCer, and
psychosine) in the nervous system [97].

The structure of GALC in complex with a hydrolysable substrate, reported in [98], enabled the modelling of the
enzyme mechanism of action for the first time. Strikingly, the reactive Gal was found in a relaxed 4C1 conformation
in the crystal structure. This is not a catalytically preactivated sugar conformation, as it displays the leaving group in
an equatorial orientation, thus it was not clear whether the complex with the substrate in 4C1 was representative of a
true ‘snap-shot’ of the enzyme along the catalytic reaction. However, QM/MM metadynamics simulations by Nin-Hill
and Rovira [99] showed that it is the case. Due to the solvent-exposed nature of the leaving group in exo-acting
GHs, such as GALC, the glycosidic bond can be efficiently cleaved when the galactoside substrate adopts either a
4C1 conformation (Figure 7A) or a distorted 1S3 conformation. Therefore, GALC can operate via two alternative
conformational itineraries, either starting from a relaxed conformation (4C1 → [4H3]‡ → 4C1) or a distorted onen
(1S3 → [4H3]‡ → 4C1) [99], with the latter being slightly favoured. These specific conformations, discovered by in
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Figure 6. Schematic representations of the methodologies described in this review.

(A) Timescale vs system size representation of the methods described in this review. The accuracy and computational cost of the

simulation decreases from bottom-left to top-right. Using enhanced sampling techniques such as metadynamics allows describing

processes that would only be observed in long time scales, such as chemical reactions (ms-s time scale). (B) Computational

protocol described in this review, from the static X-ray structure to the results of QM/MM MD and metadynamics simulations.

silico modelling, can be useful for the rational design of substrate analogues that can be used as conformational
chaperones for Krabbe disease therapy.

Our second example focuses on α-mannoside β-1,6-N-acetylglucosaminyltransferase V (MGAT5, also GnT-V),
a mammalian inverting GT involved in the formation of complex-type tetra-antennary N-glycans (carbohydrates
linked to the nitrogen atom of asparagine residues in proteins). MGAT5 transfers N-acetylglucosamine (GlcNAc)
from a UDP-GlcNAc glycosyl donor on to the core α-1,6 mannose (Man) of an N-glycan acceptor. The resulting
branched GlcNAc-β-1,6-Man linkage is a precursor for the formation of complex tri- and tetra-antennary N-glycans,
which are elaborated in the trans-Golgi by the addition of Gal-β-1,4-GlcNAc (LacNAc) disaccharides and sialic
acids. Overexpression of MGAT5 strongly drives cancer [100–103], thus reducing the enzyme activity can inhibit
tumour growth. To date, very few effective small-molecule inhibitors of MGAT5 have been developed [104–106] and
understanding of its enzyme−substrate interactions and catalytic mechanisms is limited. The reaction mechanism of
MGAT5 was recently uncovered by a combination of X-ray crystallography and QM/MM metadynamics simulations
[107]. The results highlighted the key assisting role of Glu297 (the putative catalytic base) and revealed a distinct
conformational itinerary for the GlcNAc ring during its transfer from donor to the acceptor (Figure 7B). This work
provided a comprehensive molecular overview of MGAT5 catalysis that will guide inhibitor development efforts. In
particular, it was suggested that pharmacological targeting of the MGAT5 donor subsite, using inhibitors inspired by
conformational analysis, may also be effective for the development of compounds to control the activity of this GT.

Our last example concerns an inverting GT with a mechanism that departs from the classical SN2-type of reaction.
O-fucosyltransferase 1 (POFUT1) is an inverting GT involved in O-glycosylation, a protein modification essential to
life. In particular, POFUT1 attaches L-fucose sugars to threonine or serine residues in certain protein sequences.
POFUT1 is involved in the Notch signalling pathway (NSP), an essential cell–cell communication pathway con-
served in all multicellular animals [108,109]. Malfunction of the NSP can cause several diseases in humans, from
Dowling–Degos disease, to leukemia or colorectal cancer [110–112], thus POFUT1 is a relevant therapeutic target.
Unlike most inverting GTs (e.g. the previous example, MGAT5), the active site of POFUT1 lacks a basic residue that
can act as the catalytic base deprotonating the incoming nucleophile acceptor, thus the mechanism of action of PO-
FUT1 remained puzzling. Using QM/MM metadynamics simulations, Piniello et al. [41] revealed that the reaction
involves proton shuttling through an active site asparagine, conserved among species, which undergoes tautomerisa-
tion, i.e. it changes the side chain from amide to imidic acid form during the reaction. The enzyme retains the SN2
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Figure 7. Three disease-related CAZymes whose catalytic mechanisms have been recently investigated.

(A) Representative structures of the GALC catalytic mechanism, starting with the substrate in either 4C1 or 1S3 conformation.

(B) Representative structures along the MGAT5 catalytic mechanism. The image has been adapted with permission from [107],

Copyright (2011), The American Chemical Society. (C) Representative structures of the POFUT1 catalytic mechanism. The epidermal

growth factor-like domain (EGF-LD) containing the Thr where fucose will be attached to is depicted in cyan. The image has been

adapted with permission from [41]. Copyright (2011), The American Chemical Society. The results shown were obtained by QM/MM

metadynamics simulations in all cases. Hydrogen atoms attached to carbon atoms have been omitted for clarity.
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mechanism of inverting GTs (Figure 1C), but an asparagine residue rather than a basic residue (Glu or Asp) deproto-
nates the hydroxyl group of the acceptor nucleophile. This novel mechanism, recently invoked in a related GT [113],
could be found in other GTs yet to be discovered.

This short review shows that the use of state-of-art in silico approaches, such as QM/MM metadynamics, is pro-
viding unprecedented insight into enzyme catalytic mechanisms of CAZymes. We think that, in the future, this will
facilitate the development of inhibitors and activity-based probes for CAZymes involved in diseases.

Summary
• CAZymes are the enzymes responsible for the processing of carbohydrates in nature. They are

involved in many biological processes and thus they are keystones in human health.

• In silico modelling enables uncovering conformational catalytic itineraries and reaction mecha-
nisms of CAZymes at atomic detail.

• We described three different examples in which in silico modelling was essential for the unravelling
of complex enzymatic mechanisms.
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