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Astrocytes are ubiquitous within the central nervous system (CNS). These cells possess
many individual processes which extend out into the neuropil, where they interact with a
variety of other cell types, including neurons at synapses. Astrocytes are now known to
be active players in all aspects of the synaptic life cycle, including synapse formation and
elimination, synapse maturation, maintenance of synaptic homeostasis and modulation of
synaptic transmission. Traditionally, astrocytes have been studied as a homogeneous group
of cells. However, recent studies have uncovered a surprising degree of heterogeneity in
their development and function, suggesting that astrocytes may be matched to neurons
to support local circuits. Hence, a better understanding of astrocyte heterogeneity and its
implications are needed to understand brain function.

Introduction
Astrocytes comprise the largest class of glial cells in the mammalian brain and are essential for central
nervous system development and function [1]. Differences between astrocytes have been reported. Clas-
sically, astrocytes have been classified based on gross morphology into protoplasmic (gray matter) as-
trocytes and fibrous (white matter) astrocytes. In addition, there is known variability in the expression
of marker proteins, such as glial fibrially acidic protein (GFAP) and excitatory amino acid transporter 1
(EAAT1/GLAST), as well as in astrocyte numbers across brain regions. Finally, various types of specialist
astrocytes have been reported in retina (Müller glia) and cerebellum (Bergmann glia). Despite these ob-
vious differences, however, astrocytes have traditionally been viewed as a largely homogeneous cell type
[2].

Recent advances in tools to specifically label and manipulate astrocytes are beginning to change this
view [3]. It is now widely acknowledged that astrocytes interact with a wide variety of neuronal types
[4,5] and are key players at all stages of the synaptic life cycle, including synapse formation and elimina-
tion, synapse maturation, maintenance of synaptic homeostasis and modulation of synaptic transmission
[6]. This diversity of functions raises the rather obvious question of whether they are performed by all
astrocytes, as presupposed, or whether functional subsets of astrocytes exist.

Evidence is now accumulating that astrocytes show profound differences in developmental origin,
molecular profile, physiology and functional outputs, which combine to produce a previously unsuspected
level of heterogeneity both between and within brain regions. The goal of this mini-review is 3-fold. First,
I aim to discuss recent advances in our understanding of astrocyte heterogeneity: to do this, I will con-
centrate the discussion on protoplasmic astrocytes, principally in mouse cortex, where we arguably have
the most complete picture of the astrocyte life-cycle from birth through to adulthood – although other
examples will be used when instructive. Readers interested in other astrocyte types are, therefore, di-
rected to recent review articles, which cover aspects of their development and function [7,8]. Second, I
aim to discuss the evidence for a central role of neurons in determining local (protoplasmic) astrocyte
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Figure 1. Possible degrees of astrocyte heterogeneity

Different levels of astrocyte heterogeneity have been proposed, including (A) homogeneous astrocytes – astrocytes are essen-

tially identical throughout the brain, (B) astrocytes show heterogeneity between brain regions, (C) astrocytes show heterogeneity

within brain regions, and (D) subcellular specialization – astrocytes show heterogeneity at the level of their individual processes (or

even within an individual process). Mounting evidence now favors heterogeneity at the subcellular level, with peripheral astrocyte

processes, which act as local signaling domains, responding to local neuronal activity. Modified from [112].

identity as a means to ensure optimal local circuit formation and/or function. Finally, as astrocyte processes are in di-
rect with synapses, I advance the idea that subcellular compartmentalization is likely a principal driver of (functional)
heterogeneity (Figure 1).

Given the short-format of this article, readers interested in a comprehensive review of the literature relating to
aspects of protoplasmic astrocyte development, form or function are pointed towards several recent articles, each of
which covers a specific topic in depth [2,9–12].

Development
The production of neurons and astrocytes during development is intimately connected and (arguably) best under-
stood in the mouse cortex. Its basic anatomy is generally defined based on the anatomical arrangement of excitatory
neurons into six horizontal layers and numerous vertical columns, which form the basis of cortical microcircuits [13].
The generation of cortical neurons begins at approximately embryonic (E) day 10–11. Regional patterning events
generate progenitor cells (radial glia) in the ventricular zone. During mid-to-late embryonic development, radial glia
generate the vast majority of cortical excitatory neurons. As radial glia extend long processes which span the cortex,
these cells also acts as guides for migrating neurons, explaining how the cortex is built in an ‘inside-out’ fashion (in
contrast, cortical interneurons are generated outside of the developing cortex in the subpallium and migrate tangen-
tially over long distances into the cortex) [13].

In cortex, radial glia switch to the production of astrocytes (the ‘gliogenic’ switch) around E18. The events under-
lying the gliogenic switch are incompletely understood. However, it appears that neuronal feedback may play a key
role in promoting local astrocyte formation. Both neuron-committed intermediate progenitors and young neurons
express the Notch ligands Jagged 1 and Delta-like 1, which activate Notch signaling in radial glia promoting astroge-
nesis through promoter demethylation, allowing cell type specific gene expression [14]. Cytokine release by neurons
(particularly members of the interleukin 6 family) has also been proposed to stimulate gliogenesis, through stimula-
tion of the JAK-STAT signaling pathway [15]. However, it appears that radial glia have a limited capacity for astrocyte
generation, having generally disappeared by birth, when only a few astrocytes can be found in the cortex [16]. Ex-
pansion of the astrocyte population to populate the entire cortex is thought to arise from extensive local proliferation
in the first few weeks of post-natal life [17] (Figure 2). Although neurons appear during embryonic development,
assembly and functional maturation of synapses is concomitant to this astrocyte proliferation and maturation [13]
(Figure 3).

It appears increasingly likely that this close ontological relationship between radial glia, neurons and astrocytes
has important consequences for the formation of cortical microcircuits. It is now recognized that diversity in the
progenitor pool has an important influence on the final identity of neurons [18,19]. Furthermore, it appears that
clones of related neurons not only form a precise columnar architecture within the cortex but preferentially develop
synapses among themselves [20]. The coincident generation of astrocytes from the same progenitors and their close
association with sibling neurons to form a stable clonal unit [21–23], suggests a process whereby neurons act as
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Figure 2. Coincident generation of neurons and protoplasmic astrocytes from radial glia

(A) Schematic illustrating the relationship between neuro- and gliogenesis in the developing mouse cortex. Progression from the

embryo to adulthood is shown left to right. Early in embryogenesis, neuroepithelial cells divide, generating additional neuroepithelial

cells and potentially some neurons. As the brain develops, neuroepithelial cells elongate and transform into radial glia. Radial glia

cells act as the principal source of neurons in the developing cortex, either through asymmetric division to generate neurons

directly, or via intermediate progenitor cells (nIPC). Note that radial glia extend from the ventricle surface through the developing

cortex, acting as a guide for neuronal migration. In late embryogenesis, most radial glia detach from the ventricle surface and

generate a limited population of astrocytes. This astrocyte population expands by local proliferation, with resulting progeny tiling

the parenchyma in a largely non-overlapping manner. Various aspects of astrocyte identity in the adult cortex appear dependent

on interactions with local neurons (indicated with yellow astrocytes). Solid arrows are supported by experimental evidence; dashed

arrows are hypothetical; MA, mantle; MZ, marginal zone; NE, neuroepithelium; SVZ, subventricular zone; VZ, ventricular zone.

Based on [113] and [25]. (B) Reporter mice, expressing green fluorescent protein (GFP) in a subset of progenitors, develop cortical

columns containing both neurons and astrocytes, derived from a common cell. Astrocytes are marked in blue for clarity; scale bar:

50 μm. Taken from [22].

an ‘instructional’ scaffold which ‘sculpts’ astrocytes to support the formation, maintenance and function of specific
synapses within distinct local microcircuits, which form the basis of information processing in the CNS.

Morphology
Protoplasmic astrocytes have an instantly recognizable morphology, consisting of a central soma, and four to ten
primary branches, which in turn branch off creating many higher order branchlets and terminal leaflets (Figure 4A’)
[24]. (The specialized end-foot structure, which is responsible for astrocyte interactions with blood vessels, will not
be considered in this review). This branching is paralleled by a progressive decrease in size from the μm (soma)
to nm (leaflets) size domain. Astrocyte morphology appears to develop within the first three post-natal weeks [25],
concomitant to synaptogenesis (Figure 3), and appears heavily dependent on a complex interplay between physical
interactions with neurons [26] and the effects of soluble neurotransmitters [27].

Mature astrocytes display a variety of morphologies. A systematic study of mouse hippocampal and striatal as-
trocytes revealed that while these cells have equal somatic volumes, numbers of processes and cell volumes, striatal
astrocytes generally occupy a larger tissue area than hippocampal astrocytes [28]. While striatal astrocyte territories
typically contain many neuronal cells bodies compared with hippocampal astrocytes, the latter contain more exci-
tatory synapses, implying distinct regional differences in how astrocytes interact with local neuronal circuits [28].
Morphological heterogeneity even extends to astrocytes occupying the same brain region. For example, cortical pro-
toplasmic astrocytes were found to display four prominent morphological subtypes, which distribute in differing
proportions through the various cortical layers [29], which may reflect differences in local neuronal activity [30].
Likewise, astrocytes in the dentate gyrus (DG) have also been shown to display morphological heterogeneity linked
to DG layering [31].
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Figure 3. Neural circuit formation depends on the synchronized activities of neurons and astrocytes

Timeline (gray) of key developmental processes in the CNS leading to synapse maturation and stabilization. Neuronal contributions

(red, above) and astrocytic contributions (green, below) are shown. Each independent process is represented as a colored bar, with

the gradient of color intensity marking the beginning, peak and end of the process. Modified from [13].

Astrocyte peripheral processes have received considerable attention as their terminal ends are thought to interact
with neurons – creating a structure widely referred to as the ‘tripartite synapse’. Although the degree of this inter-
action between astrocytes and neurons varies between brain regions (77% of synaptic interfaces in striatum, 86%
in hippocampus, 90% in cortex [28,32]), this structure is obviously remarkably common. An elegant electron mi-
croscopy study has recently reconstructed astrocytes in mouse somatosensory cortex with unprecedented resolution,
revealing an elaborate heterogeneity in process nanostructure [33]. In this study, processes appear as branches of un-
dulating thickness (comprising both expanded and constricted segments), often ending with a constricted tip that
is physically associated with a synapse. However, a number of connections were also apparent within the process
structure, creating en-passant synapses: it is for this reason that the term ‘peripheral process’ is likely to be more
accurate than ’perisynaptic process’, which strongly implies a tripartite structure formed by a terminal process en-
sheathing a synapse [34,35]. Furthermore, synapses around astrocytes tend to organize into clusters of between 4
and 55 structures, with mitochondria positioned closer to larger synaptic clusters, presumably to match the high en-
ergetic demands of synaptic transmission (Figure 4A’’). Interestingly, in this study, astrocyte processes were rarely
seen looping back on themselves [33]. Hence, astrocytes were proposed to possess a structure largely reminiscent of
a ‘thorny bush’, rather than a ‘sponge’. This is in direct contradiction with two other recent studies of astrocyte mor-
phology, one of which also used electron microscopy [36], while the other used super-resolution stimulated emission
depletion (STED) microscopy (albeit on live rather than fixed tissue) [37]. Both these studies reported ‘frequent’
loop type structures – although, crucially, neither study quantified the frequency at which these structures appear. At
present, the most parsimonious explanation for the discrepancy between these studies is the relatively small number
of somatosensory astrocytes reconstructed by Salmon and colleagues [33], combined with potential morphological
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Figure 4. Peripheral astrocyte processes as key players in specialized astrocyte–neuron interactions

Heterogeneity in adult astrocytes exists at many levels, including the morphological, transcriptomic/proteomic, physiological and

functional. A significant proportion of heterogeneity may exist in the peripheral processes – as illustrated using specific examples

discussed in the main text. Based on the hypothesis that astrocyte identity is highly plastic and is shaped by interactions with an

‘instructive neuronal scaffold’, specialization of peripheral processes, which mediate astrocyte–neuron interactions, seems logical

and would allow astrocytes to respond quickly to changes in local synaptic activity. (A) Morphology – (A’) Schematic outlining basic

astrocyte structure, which consists of a central soma and four to ten primary branches, which in turn branch off creating many

higher order branchlets and terminal leaflets: (A’’) At the ultrastructural level, peripheral processes are comprised of both expanded

and constricted segments, and often end with a constricted tip. Classically, astrocyte processes are thought to enwrap synapses at

the process tip, forming a tripartite structure. However, astrocytes and synapses can also interact en passant, usually on so-called

process expansions. Clusters of synapses tend to form at these structures, which are often characterized by the accumulation

of mitochondria. (B) Transcriptome/Proteome – Translation of mRNAs by ribosomes (red structures) in processes will change the

local proteome. Changes in protein distribution may also affect function. Local recycling of the glutamate transporter GLT1 (blue)

will affect cell surface levels: Increased lateral mobility, due to the release of GLT1 from synaptically located protein scaffolds (trig-

gered by calcineurin activity +), will control cell surface distribution. (C) Physiology – Intracellular Ca2+ increases are thought to

occur through a variety of mechanisms: GPCR, G-protein coupled receptor; IP3R2, Type 2 inositol 1,4,5-trisphosphate receptor;

MCU, Mitochondrial Ca2+ uniporter; (m)NCX, (Mitochondrial) Na+/Ca2+ exchanger; mPTP, Mitochondrial permeability transition

pore; PMCA, Plasma membrane Ca2+ ATPase; SERCA, Sarcoplasmic/endoplasmic reticulum Ca2+ ATPase. (D) Function – Het-

erogeneity may underlie differential synapse formation and function through various cell–cell interactions (mediated by membrane

proteins or secreted factors): α2δ-1,Voltage-dependent calcium channel subunit α2δ-1; NLs, Neuroligins; NRCAM, Neuronal cell

adhesion molecule; NRXs, Neurexins; TGF-β1, Transforming growth factor-β1; TSP, Thrombospondin. (A) and (C) are modified from

[11]; (D) is modified from [114].
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variability both within and between brain regions (see above) [28,29,31] – although methodological differences can-
not be completely discounted at this stage. Nevertheless, the general consensus appears to be that astrocyte processes
are much more structurally heterogeneous than previous thought, and this is likely to support specialized interactions
with local neuronal circuits.

At present, the degree to which tripartite synapses can be remodeled (if at all) remains unclear. Historically, there
is extremely strong evidence for extensive structural remodeling of synapses in brain regions exhibiting powerful
biological rhythmicity, such as circadian time setting in the suprachiasmatic nucleus [38], or those involved in modu-
lating responses during extreme physiological conditions, such as the hypothalamus in pregnancy and lactation [39].
However, the situation in other brain regions, under normal physiological conditions, remains unclear. Experiments
using a Förster resonance energy transfer (FRET)-based system to measure the distance between astrocyte peripheral
processes and neurons in acute slices of striatal tissue suggest that interactions between the two cell types are stable
[40]. In contrast, imaging of fluorescently labeled astrocytes and neurons, both in slices and in vivo, suggests that
remodeling of peripheral processes can occur rapidly in response to local neuronal simulation in mouse hippocam-
pus and somatosensory cortex [41,42], with process withdrawal impacting directly on local synaptic transmission
[43]. The reasons for this discrepancy are unclear. It may reflect intrinsic differences in the biology of the striatum
compared to hippocampus and cortex, or it may relate to differences in the methodologies used (or a combination of
both factors).

However, what is clear is that dynamic process remodeling will involve extensive modifications, presumably driven
by the actin cytoskeleton [44], and will result in the redistribution of essential proteins, protein signaling complexes
and mitochondria. Processes with distinct morphologies and signaling machinery may respond differently to synaptic
activity. Hence, many questions remain as to how key machinery is positioned within individual processes during
various states of cell activity – yet this will undoubtedly be a factor in determining functional output and influence
on local circuits.

Transcriptome/proteome
Our understanding of astrocyte heterogeneity has been massively accelerated by sequencing-based approaches.
Droplet-based single cell techniques (allied to relatively shallow sequencing) [45,46] and translating ribosome affinity
purification (TRAP)-based experiments [28,47,48] have been performed to compare astrocyte transcriptomes across
brain regions. The results clearly demonstrate that this cell type is much more molecularly diverse than previously
thought and appears to change with age [48,49]. Although the degree to which transcriptome accurately reflects the
cellular proteome is unclear [28,50], a systematic comparison of hippocampal and striatal astrocytes suggests that
transcriptomic diversity may well be reflected at the protein level [28].

These groundbreaking studies have since been augmented by work clearly indicating regional substructure in cor-
tex. This can have important consequences for local circuit formation and function, as demonstrated by the work of
Miller and colleagues [51]. Using a 8.3 kb fragment of the excitatory amino acid transporter 2 (EAAT2/GLT1) pro-
moter to drive TdTomato expression resulted in a subset of astrocytes in the region of cortical layer 5 being labeled.
Crucially, this subset of astrocytes was found to express and secrete the protein Norrin, which regulates local dendrite
growth and spine formation [51]. Mutations in the Ndp gene encoding Norrin lead to Norrie disease, which is charac-
terized by retinal abnormalities, intellectual disabilities and behavioral abnormalities, consistent with a central role for
the protein in synaptogenesis [52]. This was soon followed by a study which used large-scale single molecule fluores-
cence in situ hybridization (smFISH) [53] to map single cell transcriptome data obtained using a SMART-seq2-based
protocol optimized for use with astrocytes [54]. This approach revealed cortical layering of astrocytes distinct from
traditional neuronal laminae. These astrocytic laminae were defined by specific patterns of gene expression, includ-
ing genes involved in synapse formation and maturation, such as Chrdl1, among others [53]. A similar layering of
molecularly distinct astrocytes in DG [31], and the differential expression of μ-crystallin along the dorsal–ventral
axis in striatal astrocytes, suggests regional substructure may be a more widespread phenomenon and not restricted
to cortex [28].

Hence, current work seems to point strongly to subregional specialization of astrocytes to support local circuits.
In this respect, a crucial question is how astrocyte diversity is achieved in the adult brain. Recent work suggests that
the pool of developmental progenitors is limited, with astrocytes passing through various immature developmental
stages after exiting the cell cycle, before becoming fully mature in the adult brain [55]. There is strong evidence that
maturation and diversification of adult astrocytes is strongly dependent on local neuronal activity (Figure 2). Gross
manipulations which invert neuronal layering in the cortex result in aberrant astrocyte layering [29,53]. More subtle
manipulations which influence local signaling have also been shown to have profound effects. Neuronal activity is
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synonymous with neurotransmitter release, and work from multiple groups has shown that cortical glutamate release
regulates astrocyte maturation, including the acquisition of molecular identity [27,56,57]. In addition to glutamate,
other signaling molecules appear capable of regulating astrocyte gene expression. Most prominent among these is
sonic hedgehog (SHH). In a seminal study, Farmer and colleagues demonstrated that neurons control Bergmann glia
diversity through SHH release in the cerebellum, as well as the acquisition of astrocyte identity in hippocampus [58].
Interestingly, SHH is also produced in adult mouse cortex and SHH receptors are expressed on a proportion of cortical
astrocytes [59], an arrangement which appears necessary for the expression of layer-specific astrocyte genes essential
for correct synapse development [60,61]. Of course, this does not preclude a contribution of other signaling pathways,
such as fibroblast growth factor (FGF) signaling [62]. This idea that neurons provide an ‘instructional scaffold’ for
astrocytes is made more attractive by the recent finding that in visual cortex, neuronal identity and function is refined
post-natally, in an activity dependent manner [30]. Thus, it appears that neurons and astrocytes may mature into a
function circuit together.

To date, the issue of molecular identity has generally been discussed at the whole cell level. However, recent work,
combining use of astrocyte-specific TRAP with subcellular fractionation, has allowed the purification of ribosomes
from astrocyte peripheral processes associated with synapses (synaptosomes), strongly suggesting the possibility of
local translation in astrocytes [63]. Furthermore, this local translatome appears to be dynamic and capable of modifi-
cation by neuronal activity [64,65]. In mice, translation of new proteins appears to drive, at least in part, the proteomic
changes that occur in peripheral astrocyte processes following exposure to a fear conditioning paradigm [65], with
the resultant behavioral modifications presumably arising due to changes in astrocyte–neuron interactions which
impact circuit activity. In addition, local protein trafficking appears to play a role in defining the composition of the
astrocyte process, in response to neuronal activity. In mature cells, the glutamate transporter GLT1 is trafficked to the
cell surface and is concentrated at synaptic sites [66], in order to terminate synaptic transmission. As the transport
activity of GLT1 is slow and the number of GLT1 molecules present at the synapse sterically limited, it is thought
that active glutamate uptake needs to be maintained either by the rapid resupply of ‘fresh’ transporters to the plasma
membrane via local recycling [67], or by the lateral exchange of GLT1 transporters from a membrane-resident pool
[66]. Interestingly, astrocytes in primates and humans display increased morphological complexity compared with
rodent astrocytes, with interlaminar astrocytes extending long peripheral processes which span cortical layers [68],
which would further support the concept of local signaling mechanisms as a means of ensuring efficient local function
(Figure 4B).

The underlying message appears to be that astrocytes are plastic and respond to their local environment. Such
changes can even be deleterious, as in human astrocytes associated with tumor margins, which downregulate genes
involved in synaptic function, suggesting the involvement of peritumor astrocytes in tumor-associated neural circuit
dysfunction [69]. At the extreme, it appears that striatal astrocytes may be so plastic that they are able to engage a
latent neurogenic program following injury [70]. Such plasticity does not appear limited to mammalian glia. Model
organisms such as Caenorhabditis elegans, Drosophila and Zebrafish all appear to possess astrocyte-like cells [12].
In the case of Drosophila, astrocytes also appear extremely plastic [71]. The power of the genetic toolbox available
in Drosophila, allowing simultaneous labeling and manipulation of astrocytes and their local neurons, suggests that
such model organisms may provide highly useful insights into the mechanisms driving astrocyte diversity.

Physiology
As astrocytes were generally considered to be electrically non-excitable, the early discovery that they elevate their
intracellular free Ca2+ levels in response to stimuli has attracted a lot of attention, as it suggests a means of cellular
communication. Exploration of Ca2+ signaling has benefitted from the development of genetically encoded calcium
indicators (GECIs), which can be targeted to various cellular locations (although live imaging is generally limited by
the diffraction limit of fluorescence microscopy, meaning terminal leaflets are not visible). Use of these indicators
has revealed a rich diversity of Ca2+ signals in cells, ranging from the generation of signaling microdomains [72,73],
through to global waves that encompass entire astrocytes, including their cell bodies [74,75]. Ca2+ responses can
occur spontaneously [73,76], or be evoked by neuronal activity [77,78].

The most frequent events are the formation of so-called ‘Ca2+ microdomains’ in astrocyte peripheral processes,
which most likely occur due to the close physical proximity of processes to neurons and their exposure to neurotrans-
mitters and/or neuromodulators [79]. There are likely to be multiple sources of Ca2+ within astrocyte processes. Ca2+

may enter directly in response to neuronal activity through the opening of ionotropic glutamate receptors, purinergic
P2X receptors or nicotinic receptors. Alternatively, uptake of glutamate and γ-aminobutyric acid (GABA) leads to
Na+ influx, which activates Na+/Ca2+ exchangers triggering Ca2+ transients. Activation of Gq-coupled metabotropic
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receptors leads to phospholipase C (PLC) activation and hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2),
resulting in the production of inositol 1,4,5-trisphosphate (IP3) (as well as diacylglycerol). High concentrations of
cytoplasmic IP3 trigger Ca2+ release through type 2 IP3 receptors (IP3R2) in the endoplasmic reticulum: crucially, a
local ER-derived Ca2+ signal may then propagate into a self-sustaining Ca2+ wave, due to Ca2+-induced Ca2+ release
(CICR). Ca2+ release from mitochondria resident in astrocyte processes (opposite synapses) has also been reported
(summarized in [11] and references therein). Such a complex and interlinked system likely explains why astrocytes
are capable of responding to single action potentials with ‘microdomain’ events [78] and encoding stimuli of increas-
ing intensity as a gradual accumulation and spread of Ca2+ along the process [77], with strong activity leading to
global changes, which appear capable of inducing modifications in gene expression through cAMP response element
binding protein (CREB) activation [27] (Figure 4C).

In hippocampal astrocytes, oscillations in intracellular Ca2+ appear superimposed on a heterogeneous resting Ca2+

landscape within the cell, with a gradient extending from the cell soma to the processes. This gradient is age-dependent
and astrocytes with high and low Ca2+ occupy contiguous space [80]. The basal Ca2+ level is set by many factors,
including Ca2+ leak from internal stores or through plasma membrane channels, the levels and distribution of fixed
and mobile Ca2+ buffers and uptake/extrusion mechanisms [11]. Hence, heterogeneity in the basal Ca2+ reflects the
Ca2+ homeostasis machinery at work in astrocytes (including presumably the peripheral processes), which will ‘sculpt’
the dynamics of evoked Ca2+ increases [81]. Variations in the cellular Ca2+ handling machinery presumably underlie
the differences in spontaneous and evoked Ca2+ activities in hippocampal and striatal astrocytes [28] – and may
go some way to explaining the differences in activation state evoked by Gi-coupled DREADDs (Designer Receptors
Exclusively Activated by Designer Drugs) in these cells [28]. An additional level of complexity arises from the fact
that astrocyte structure is known to be plastic and changes according to activity (see ‘Morphology’), meaning it is
possible that Ca2+ signaling in a given cell may even change according to its previous activity.

Despite (these) major advances in our understanding of Ca2+ signal types, and the mechanisms underlying their
generation, their physiological significance and information content are not well understood – although recent work
suggests that reducing the amplitude and duration of Ca2+ signals in striatal astrocytes leads to excessive self-grooming
in mice [82], while impairing Gi-coupled Ca2+ signaling brain wide leads to impaired spatial memory [83]. The
introduction of next generation signal processing tools [84–86], capable of accurately describing the dynamics of
(subcellular) Ca2+ transients, will undoubtedly help link the appearance of specific astrocytic Ca2+ signals to specific
functional outputs. This will have to be allied to improvements in imaging to capture the true spatial dynamics of the
signal (3D imaging) [87], over extreme time domains extending from milliseconds to seconds [88]. Major hurdles
will still remain, however, to understand the molecular mechanisms linking a specific Ca2+ signal to its function
output, such as control of local translation, local protein trafficking and protein complex formation, triggering of
gliotransmitter release etc.

Crucially, a focus on intracellular Ca2+ elevations as activity signals may be unnecessarily constraining our view
of astrocyte physiology, as dopamine appears to both elevate and lower astrocyte Ca2+ in the stratum radiatum [89],
and it will be interesting to assess the functional consequences of such decreases. Beyond Ca2+, the use of genetically
encoded indicators for cAMP [90] and lactate [91] has revealed transient changes in the intracellular concentrations
of these molecules under defined conditions - and these signaling pathways have been reported to have crucial roles
in astrocyte maturation and function [27]. In this respect, it is not surprising that neuronal activity appears to engage
multiple second messenger pathways in a transmitter-specific, context dependent manner, providing yet another layer
of complexity to astrocyte signaling and information processing [92].

Finally, although astrocytes were long assumed to be electrically passive cells, recent experiments with genetically
encoded voltage sensors suggest that neuronal activity induces large, rapid, focal and pathway-specific depolarizations
in astrocyte peripheral processes. These are driven primarily by action-potential mediated K+ efflux and the activity
of electrogenic glutamate transporters [93]. These focal depolarizations inhibit astrocyte-mediated glutamate clear-
ance during neuronal activity, enhancing glutamate receptor-mediated transmission in cortical pyramidal neurons.
These findings further reinforce the view that astrocyte processes represent functionally independent units capable of
influencing local neuronal activity. It is to be expected that local changes in membrane potential will exert powerful
effects on astrocyte functions other than neurotransmitter clearance.

Function
Perhaps the single most important advantage of astrocyte diversity is that it enables the creation of specialized
neuron–glia units, which can drive complex behaviors. Strong evidence exists that specialist populations of spinal
cord astrocytes influence local neural circuits. Astrocytes in the mouse ventral spinal cord express Sema3a, which
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is essential for axon integrity and survival of α-motor neurons during development [94]. Similarly, ventral horn as-
trocytes are also enriched in transcripts for Kcnj10, which encodes the astrocyte K+ channel Kir4.1. Interestingly,
expression of Kir4.1 at sufficient levels was dependent on receiving glutamatergic input from local motor neurons,
with loss of astrocyte Kir4.1 selectively impacting on the size of fast α-motor neurons and their function, implying a
complicated functional feedback loop [95]. Evidence for astrocyte participation across a broad range of key biological
functions has been obtained, including generation of circadian rhythms [96], respiration [97], food intake [98] and
processing [99], and memory acquisition [100]. Recent work suggests that hippocampal astrocytes may even act as
spatial processors, which encode reward location [101], although the encoding mechanism(s) used by the astrocyte
and the consequences for local circuit activity are unknown at the time of writing.

Functional heterogeneity may not only be represented in a region-specific manner. Recent work supports the idea
that astrocytes control cortical information processing: endocannabinoid release from cortical neurons leads to astro-
cyte activation and ATP/adenosine release, which acts to transiently depress synaptic transmission in both a column
and layer-specific manner, consistent with a view of self-contained neuron-astrocyte signaling units in cortex (see
also ‘Development’) [102]. Evidence for a similar degree of discrimination, based on endocannabinoid signaling, has
also been found in the dorsal striatum, which contains intermingled subtypes of medium spiny neurons, that express
either dopamine D1 or dopamine D2 receptors. When stimulated, endocannabinoid release from specific striatal
neurons leads to increases in intracellular Ca2+ in different subsets of striatal astrocytes: crucially, mimicking this ac-
tivation, using Ca2+ uncaging, evokes a synaptic potential only in homotypic pairs of synaptically connected neurons
[103].

As astrocytes occupy unique, non-overlapping spatial positions in the parenchyma, it is likely that an individ-
ual astrocyte will contact 10,000s if not 100,000s of synapses [28,104,105]. Hence, from a pure spatial perspective,
it is likely that astrocytes will contact both excitatory and inhibitory synapses. An interesting idea is that astrocyte
peripheral process heterogeneity underlies differential synapse formation. For example, the expression of proteins
such as neuroligin 2 and thrombospondin 1 may orchestrate excitatory synapse formation in one process [106], with
inhibitory synapse formation relying on the specific expression and trafficking of proteins such as neuronal cell ad-
hesion molecule 1 (NRCAM1) in a different process [107]. Alternatively, both sets of proteins may be expressed in
discrete ‘signaling microdomains’ within the same process (Figure 4D). Furthermore, it is likely that the protein com-
position of astrocyte processes will dynamically change with functional consequences. For example, developmental
upregulation of connexin 30 is essential for closing the critical period in mouse visual cortex [108], which it achieves
by inhibiting expression of the matrix degrading enzyme matrix metallopeptidase 9 (MMP9), leading to stabilization
of perineuronal nets, increased interneuron activity and circuit maturation.

Taken together, these examples provide clear proof that specialized astrocyte subsets impact the function of specific
neural circuits and are likely capable of synapse-specific regulation. Unfortunately, at present our ability to identify
unique astrocyte subtypes, usually by sequencing, has largely outstripped our ability to manipulate them function-
ally: given the complex transcriptional ‘fingerprints’ which increasingly define astrocyte subtypes, it is likely that
intersectional genetic strategies will be needed for labeling [109]. Although new tools, such as adeno-associated virus
(AAV)-based vectors, are simplifying genetic manipulations in mice [3], experiments in classical genetic models ap-
pears a promising parallel strategy (see also ’Transcriptome/Proteome’). For example, the power of genetics to help
dissect the role(s) of glia in the control of circuit function was recently demonstrated in Zebrafish [110]. In response
to failed swim attempts, sustained noradrenergic signaling led to the accumulation of Ca2+ in radial astrocytes, ul-
timately driving activity in GABAergic neurons to inhibit swimming – which presumably reflects an evolutionary
constrained behavior to prevent unnecessary energy expenditure on futile tasks. In Drosophila, neurexin-neuroligin
interactions were recently shown to close a critical period of motor circuit plasticity [111].

Conclusions
Astrocyte heterogeneity is now an established concept. Aspects of development, molecular profile, intrinsic physiol-
ogy and function all combine to produce a unique astrocyte identity in the adult (mouse) brain. Emerging evidence
suggests that astrocytes show a high degree of plasticity, which allows them to adapt to the needs of local neurons
and circuits. This heterogeneity may even exist at the level of individual peripheral processes, and may help fine tune
synaptic transmission at individual synapses. However, a number of key questions remain unanswered. These include,
but are not limited to, how is heterogeneity established and maintained at the level of individual processes, how is it
modified over the complete range of synaptic/circuit activity and what is the potential influence of ageing and/or
disease and injury?
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Summary
• Astrocytes show heterogeneity in developmental origin, mature morphology, molecular profile, intrin-

sic physiology and functional output.

• Heterogeneity occurs not only between brain regions but also within brain regions.

• Heterogeneity likely underpins the formation of specific astrocyte-neuron interactions essential for
the formation of the specialized neural circuits that drive complex behaviors.

• Mounting evidence suggests that heterogeneity extends to the subcellular level, with astrocyte pe-
ripheral processes acting as local signaling domains capable of responding to, and influencing, local
neuronal activity.

• New tools and experimental strategies – such as live super-resolution imaging combined with genetic
methodologies allowing real-time monitoring of mRNA and local protein trafficking, or fluorescent
probes to monitor astrocyte and neuron structure and function – are needed to understand the exact
range of astrocyte heterogeneity and its functional consequences. In this respect, the more extensive
use of genetic model organisms (C. elegans, Drosophila, Zebrafish) offers great potential to drive
advances in the field.
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99 Morquette, P., Verdier, D., Kadala, A., Féthière, J., Philippe, A.G., Robitaille, R. et al. (2015) An astrocyte-dependent mechanism for neuronal
rhythmogenesis. Nat. Neurosci. 18, 844–854, https://doi.org/10.1038/nn.4013

100 Adamsky, A., Kol, A., Kreisel, T., Doron, A., Ozeri-Engelhard, N., Melcer, T. et al. (2018) Astrocytic activation generates de novo neuronal potentiation
and memory enhancement. Cell 174, 59e14–71e14, https://doi.org/10.1016/j.cell.2018.05.002

101 Doron, A., Rubin, A., Benmelech-Chovav, A., Benaim, N., Carmi, T., Refaeli, R. et al. (2022) Hippocampal astrocytes encode reward location. Nature
609, 772–778, https://doi.org/10.1038/s41586-022-05146-6

102 Baraibar, A.M., Belisle, L., Marsicano, G., Matute, C., Mato, S., Araque, A. et al. (2022) Spatial organization of neuron-astrocyte interactions in the
somatosensory cortex. Cereb. Cortex, https://doi.org/10.1093/cercor/bhac357
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