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Astrocytes show unique anatomical, morphological, and metabolic features to take up sub-
strates from the blood and metabolize them for local delivery to active synapses to sus-
tain neuron function. In the present review, we specifically focus on key molecular as-
pects of energy and redox metabolism that facilitate this astrocyte-neuronal coupling in
a controlled manner. Basal glycolysis is co-ordinated by the anaphase-promoting com-
plex/cyclosome (APC/C)-Cdh1, a ubiquitin ligase that targets the proglycolytic enzyme
6-phosphofructokinase-2,6-bisphosphastate-3 (PFKFB3) for degradation. APC/C-Cdh1 ac-
tivity is more robust in neurons than in astrocytes, which determine that PFKFB3 abundance
and glycolytic rate are weaker in neurons. The low PFKFB3 activity in neurons facilitates
glucose-6-phosphate oxidation via the pentose-phosphate pathway, which promotes an-
tioxidant protection. Conversely, the high PFKFB3 activity in astrocytes allows the produc-
tion and release of glycolytic lactate, which is taken up by neurons that use it as an oxidizable
substrate. Importantly, the mitochondrial respiratory chain is tighter assembled in neurons
than in astrocytes, thus the bioenergetic efficiency of mitochondria is higher in neurons. Be-
cause of this, the production of reactive oxygen species (mROS) by mitochondrial complex I
is very low in neurons and very high in astrocytes. Such a naturally occurring high abundance
of mROS in astrocytes physiologically determines a specific transcriptional fingerprint that
contributes to sustaining cognitive performance. We conclude that the energy and redox
metabolism of astrocytes must complementarily match that of neurons to regulate brain
function and animal welfare.

Introduction
The high-energy supply required for neuronal activity has been classically related to the use of glucose as
the brain’s main energy substrate [1,2], along with the consumption of almost 20% of inhaled O2 [3]. These
high-energy costs depend closely on metabolic involvement with astrocytes for energy control and redox
homeostasis [4,5], given their role as essential partners for neurotransmission and behavior [6,7]. To do
this, astrocytes form a syncytium by establishing cellular processes to contact blood capillaries with neu-
ronal soma and synapses. Together with abundant gap junctions, such processes account for an abundant
exchange of intermediates that cover the energetic and metabolic demands in the nervous system [2]. This
astrocyte-neuron metabolic coupling is clearly observed during glutamatergic neurotransmission, where
astrocytes efficiently take up neuronal-derived glutamate from the synaptic space through Na+-dependent
active transporters [8]. Therefore, glutamate uptake is energy-costly for astrocytes and occurs at the ex-
pense of ATP, used to restore the Na+ gradient by the Na+/K+ ATPase pump [9,10]. In astrocytes, intra-
cellular glutamate may follow at least two distinct metabolic fates, its conversion to α-ketoglutarate for
oxidation within mitochondria through the tricarboxylic acid cycle (TCA), or its conversion in glutamine
by glutamine synthetase, absent from neurons, to be released and taken up by neighboring neurons, which
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convert it back to glutamate by glutaminase. Importantly, the activation of the Na+/K+ ATPase pump is paralleled by
an increase in glucose uptake [11,12] and coupled with glycolysis in astrocytes [13].

Brain glycolysis is mainly regulated by the E3 ubiquitin ligase anaphase-promoting complex/cyclosome
(APC/C)-Cdh1, which targets the key regulatory glycolytic enzyme 6-phosphofructo-2-kinase/fructose-2,6-bispho
sphastate-3 (PFKFB3) for proteasomal degradation [14,15]. In contrast with neurons, the low APC/C-Cdh1 activity
in astrocytes triggers PFKFB3 stabilization and a high glycolytic activity to provide lactate as a bioenergetic substrate
to neurons [14]. These findings have been confirmed worldwide by many laboratories, both in primary cells and
in vivo, and their importance in health and disease have been established [16–20]. Conversely, the mitochondrial
respiratory chain is tighter assembled in neurons than in astrocytes. Thus, neurons depend mainly on the mitochon-
drial oxidative phosphorylation (OXPHOS) to fulfil their energy demands, while astrocytes mostly rely on glycolysis
for energy production [21–24]. Nevertheless, astrocytic mitochondria are important organelles both for energy and
signaling purposes [25]. Consequently, the redox homeostasis in both neurons and astrocytes is different, although
they are tightly coupled to sustain neurotransmission. Moreover, astrocytes provide antioxidant defence to neurons,
which is essential to prevent neurodegeneration [24]. Thus, the bioenergetics and redox cooperation between neurons
and astrocytes regulate neuronal survival, brain function, and animal welfare, which might provide new therapeutic
targets to fight against neurodegenerative diseases.

Glycolysis is complementarily regulated in astrocytes and
neurons
Glycolysis is mainly regulated by the enzymatic activities of hexokinase, 6-phosphofructo-1-kinase (PFK1), and pyru-
vate kinase (PK). In astrocytes, PFK1-specific activity is approximately fourfold than found in neurons, and the
levels of PFK1 powerful allosteric activator, fructose-2,6-bisphosphate (F2,6P2) is twofold [14]. F2,6P2 synthesis is
controlled in astrocytes mainly by the isoform 3 of the PFKFB enzyme (PFKFB3) [14]. Interestingly, PFKFB3 has
a high, approximately 700-fold kinase versus bisphosphatase ratio [26]. Hence, PFKFB3 levels are directly propor-
tional to F2,6-P2-synthesizing activity. PFKFB3 knockdown abolishes the ability of astrocytes to up-regulate glycol-
ysis upon mitochondrial inhibition, suggesting that PFKFB3 is important to maintain the glycolytic phenotype of
astrocytes [14]. However, PFKFB3 is virtually absent from neurons, because of the continuous destabilization by the
ubiquitin-proteasome pathway [24,27] (Figure 1). Thus, only the PFKFB3 isoform contains a 142Lys-Glu-Asn (KEN)
box that targets it for ubiquitination by APC/C-Cdh1 [27], which is an E3 ubiquitin ligase known for its role in the
regulation of mitosis, meiosis [28], tumor suppression, and genome stability [29]. APC/C-Cdh1 regulates important
functions in neurons, such as axonal growth [30–32], cortical neurogenesis [33], and survival [34–36]. In cortical
neurons, Cdh1 knockdown leads to PFKFB3 accumulation, which is sufficient to increase glycolysis [27]. This was
the first observation to describe a role for a cell cycle-related protein (APC/C-Cdh1) in metabolism, mimicked by
PFKFB3 full-length cDNA overexpression [27]. In contrast, Cdh1 protein levels and APC/C-Cdh1 ubiquitylating ac-
tivity are very low in astrocytes, which explains their high levels of PFKFB3 and glycolytic activity [27]. In neurons,
the index of glucose that is oxidized in the TCA cycle after having been converted into pyruvate, analyzed as the rate of
[6-14C] glucose incorporated into 14CO2, is negligible when compared with astrocytes [27,37]. In addition, glycolysis,
assessed as the rate of 3H2O formation from [3-3H] glucose and thus accurately reflecting the flux of glucose through
glycolysis [38], is approximately four- to fivefold slower in neurons than in astrocytes [27]. It seems, therefore, that the
neuronal capacity to perform glycolysis is limited. Interestingly, the overactivation of glutamatergic receptors, which
inhibits APC/C-Cdh1 via cyclin-dependent kinase-5 (Cdk5)-p25 [35], stabilizes PFKFB3 and other substrates, as
cyclin B1 and Rock2 [39], causing neuronal metabolic switch and apoptotic death [35,36]. Altogether, these results
suggest that full activation of glycolysis is dangerous for neurons. In contrast, glycolysis flux is strongly up-regulated
in astrocytes, either upon inhibition of mitochondrial respiration by, e.g., nitric oxide or cyanide via 5’-AMP-activated
protein kinase (AMPK)-mediated activation of PFKFB3 [14,23], or upon nitric oxide-dependent hypoxia-inducible
factor-1α (HIF1α) activation, which causes enhanced expression of most glycolytic enzymes including PFKFB3 [40].

Neuronal function depends on astrocytic glucose metabolism
Astrocytes store glycogen [41], which, after glycogenolysis, serves to supply lactate as an energy substrate for neurons;
in contrast, lactate oxidative utilization is comparatively less efficient in astrocytes [42]. Astrocytes lack the mitochon-
drial aspartate/glutamate carrier, which reduces the ability of these cells to use the malate/aspartate shuttle to transfer
NADH-reducing equivalents to mitochondria as a mechanism to recover cytosolic NAD+. Therefore, in these cells,
the pyruvate-to-lactate conversion becomes a predominant system to regenerate the cytosolic NAD+ via lactate dehy-
drogenase isoform-5 (LDH5), needed to keep active the glycolytic flux [41]. Neurons, in contrast, are more efficient
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Figure 1. The metabolism of astrocytes matches that of neurons

Glycolysis is regulated, amongst other factors, by the ubiquitin ligase APC/C-Cdh1, which targets the proglycolytic enzyme PFKFB3

for proteasomal degradation in neurons. In astrocytes, APC/C-Cdh1 activity is low, allowing PFKFB3 stabilization and higher gly-

colysis. In neurons, low glycolysis allows glucose conversion into PPP to sustain antioxidant protection, whereas in astrocytes,

high glycolysis releases lactate that may be used by neurons.

cells to converting lactate to pyruvate through the LDH1 isoform. Altogether, these metabolic differences between
astrocytes and neurons help explaining their adaption to couple their metabolism and to transferring lactate from the
glial to the neuronal compartment [41], sustaining the bases for the astrocyte-neuron lactate shuttle (ANLS) model
[9,43] (Figure 1). In vivo evidence for the occurrence of ANLS [44] strongly suggests that it constitutes an evolution-
arily well-preserved mechanism of neuronal survival [45]. Importantly, altered ANLS that occurs with dysfunctional
monocarboxylate transporter-4 and -2 (MCT4 and MCT2), responsible for the lactate release from astrocytes or up-
take by neurons, and lactate content in the brain has been described in Alzheimer’s disease [2,46,47]. Thus, memory
formation requires energy, which is provided by learning-dependent regulations of glucose metabolism pathways
[48–51]. Interestingly, glucose metabolism shifts as the brain matures [18]. While the adult hippocampus preferen-
tially employs glycogenolysis and astrocyte-neuronal lactate-mediated coupling, the juvenile hippocampus selectively
requires, in addition to higher astrocyte-neuronal lactate transport, a direct neuronal glucose transport and a func-
tional PFKFB3 in neurons [18]. Furthermore, the expression of APC/C-Cdh1 in juvenile hippocampal neurons was
inverse when compared with adult neurons [18]. This substantial increase in neuronal glucose metabolism may ex-
plain the significantly higher levels of excitability, synaptogenesis, and synapse pruning during development [52] and
may protect them from death that could be otherwise caused by their high rate of oxidative phosphorylation [18].

Redox control of neurons depends on their own glucose
metabolism
The phenomenon of neurotransmission not only is a highly energetically expensive process but it is associated with a
high production of reactive oxygen species (ROS) derived from different sources, which generally involves Ca2+ in-
flux and glutamatergic stimulation [4,53,54]. For this reason, the antioxidant systems of neurons must be effective in
dealing with these high levels of ROS to which they are subjected. To do this, unlike astrocytes, neurons derive a sub-
stantial proportion of glucose consumption through the pentose phosphate pathway (PPP), responsible for regener-
ating the levels of NADPH necessary for the efficient reduction in glutathione (GSH), the most abundant antioxidant
in the brain [24,27,38]. GSH is mostly synthesized in astrocytes by two steps, catalyzed by glutamate-cysteine ligase
(GCL) and glutathione synthetase (GSS) [55,56]. Neurons also use this biosynthetic machinery to resynthesize GSH,
although with a lower abundance, by capturing amino acid precursors resulting from the degradation of astrocytic
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GSH [55–57]. The loss of a robust antioxidant capacity in neurons is related to the cognitive impairment associ-
ated with certain neurodegenerative diseases that concur with the loss of GSH [58,59]. Interestingly, a proportion of
Parkinson’s disease (PD) patients harbor gene mutations that encode for the PTEN-induced kinase 1 (PINK1)-Parkin
axis, which is critical to regulate mitophagy [60]. Loss of PINK1 activity induces ROS that may lead to the stabiliza-
tion of HIF1α, a master up-regulator of glycolysis [61]. While high glycolytic rates are related to increased growth
and proliferation of astrocytes in patients with PD [62], a greater glycolytic flow in neurons leads to a detriment of the
PPP and reduced GSH [27]. This metabolic switch could help explaining neuronal death in PD and other neurode-
generative diseases coursing with impairment mitophagy, such as Batten disease [16]. Given the need to maintain
proper GSH levels to preserve neuronal function, increasing GSH concentration may therefore be a strong strategy to
provide neuroprotection [63,64]. This occurs, even if complete conversion to GSH is not achieved, and its immediate
precursor,γ-glutamylcysteine can still be used by glutathione peroxidase (GPx) to confer protection against neuronal
loss and motor impairment [65].

The astrocyte-neuron glutathione shuttle couples
neurotransmission with neuronal antioxidant protection
The master regulator of the antioxidant response in the brain is the transcriptional activator of nuclear
erythroid-related factor 2 (Nrf2) [66–69]. Nrf2 governs the transcription of a wide spectrum of antioxidant enzymes,
not only those required for the GSH pathway, such as GCL and GPx, but other enzymes such as heme oxygenase-1
(HO-1), thioredoxin (Trx), NAD(P)H dehydrogenase quinone (Nqo-1), and enzymes involved in NADPH regener-
ation [70–72]. The poor antioxidant response and increased susceptibility of neurons to ROS are largely due to the
continued degradation and destabilization of Nrf2 by the Cullin3-Kelch-like ECH-associated protein 1 (Cul3-KEAP1)
complex. Under basal conditions, Nrf2 binds to the redox sensor KEAP1, which, in the absence of ROS, allows the
interaction of Nrf2 with E3 ubiquitin ligase Cul3, for its polyubiquitination and subsequent proteasomal degradation.
After the accumulation of ROS, the oxidation of key cysteine residues in KEAP1 takes place to induce a conforma-
tional change in the Cul3-KEAP1 complex, allowing nuclear translocation and transcriptional activity of Nrf2 [72,73].
Here, Nrf2 induces the expression of genes whose promoters contain its binding site, referred to as the antioxidant
response element (ARE) [74]. In neurons, levels of Nrf2 decline by a mechanism involving the epigenetic repression
of the Nrf2 promoter leading to histone hypoacetylation around the Nrf2 transcription start site, making these cells
especially vulnerable to ROS [75]. However, Nrf2 is more stabilized in astrocytes making them primarily responsi-
ble for the removal of ROS in the nervous system, since antioxidants are not only mainly synthesized in astrocytes
but have also been shown to supply them to adjacent neurons in both in vitro and in vivo models [70,76]. For this
reason, astrocytes are key to providing antioxidant capacity to neurons, although neurons are also able to induce the
expression of antioxidant genes in an Nrf2-independent manner through the interpretation of Ca2+ signals [77–79].

In astrocytes, the activation of glutamatergic receptors (GluR), mainly N-methyl-D-aspartate receptors (NMDAR),
triggers a signal transduction pathway involving phospholipase C mediated by the release of Ca2+ from the endoplas-
mic reticulum and the subsequent activation of protein kinase Cδ (PKCδ). The activation of this kinase promotes,
by phosphorylation, the stabilization of p35, a cofactor of Cdk5. In the cytosol, the active Cdk5-p35 complex phos-
phorylates Nrf2 on the residues Thr395, Ser433, and Thr439, which is enough to promote the translocation of Nrf2
to the nucleus and induce the expression of the antioxidant machinery [70]. This astrocytic pathway provides an
antioxidant reserve that neurons use for ROS detoxification. The increase in intracellular Ca2+ produced, following
excessive activation of NMDARs by glutamate, is known as an excitotoxic response that could lead to neuronal death
when unresolved [35,80]. The neuronal activity involves an astrocyte response that entails, among other antioxidant
mechanisms, de novo biosynthesis of GSH and its release to neurons through the astrocyte-neuron glutathione shut-
tle (ANGS) [24]. Therefore, this intercellular communication via NMDAR couples neurotransmission with neuronal
survival, as demonstrated during ischemic preconditioning [81].

The mitochondrial energy efficiency of astrocytes impacts on
redox signaling and organismal welfare
In recent years, numerous findings have changed the current view of how neural cells produce ROS and what are their
function within the nervous system. Despite being considered deleterious by-products, ROS have now been shown
to be essential for proper metabolic and redox coupling. To understand this issue, we should look at the regulation
of the OXPHOS. One of the main differential characteristics between neurons and astrocytes is that neurons depend
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Figure 2. Astrocytic mitochondrial ROS physiologically regulates metabolism and behavior

The mitochondrial respiratory chain is poorly assembled in astrocytes, which determines a low bioenergetic efficiency, but a high

mitochondrial ROS (mROS) production. The high abundance of mROS in astrocytes actively promotes a transcriptional program

that contributes to sustaining energy and redox metabolism, impacting on mouse cognitive performance. In contrast, the higher

assembly of the mitochondrial respiratory chain in neurons determines higher energy efficiency and lower mROS production in

these cells.

mainly on OXPHOS to fulfil their energy requirements, while astrocytes mainly rely on glycolysis for energy produc-
tion [21–24]. Mitochondria are considered the main producers of ROS within the cell [82]. Thus, along with other
enzymatic sources within mitochondria [83], increased ROS production emerges from electron transfer through mi-
tochondrial complexes during OXPHOS [82]. To account for an efficient function of the electron transport chain
(ETC) and ATP production from respiration, respiratory complexes are assembled into quaternary structures called
respiratory supercomplexes (RSCs) [84,85]. Surprisingly, astrocytes barely assemble CI to CIII and CIV to form RSCs,
presenting most of the CI disassembled. However, neurons have most of their complexes assembled in RSC, housing
CI, CIII, and CIV [25,85] (Figure 2). The less active, free CI of astrocytes, accounts for less efficient respiration along
with a significant increase in ROS production [25]. In free CI, the flavin mononucleotide containing the NDUFV1
subunit is more available to interact with O2 [85]. In this scenario, the generation of superoxide anion (O2

· −) is car-
ried out since the ETC is in an oxidized state [86], with a low efficiency to consume O2 from NADH substrates in
astrocytes, compared with neurons. In a model of targeted expression of catalase to the mitochondria, astrocytic ROS
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was attenuated in vivo and was shown to regulate brain metabolism, neuronal function, and organismal behavior
[87]. Moreover, the impact of astrocytic mitochondrial ROS on behavior was also confirmed in a different biolog-
ical environment. Thus, the production of astrocytic mitochondrial ROS can be reduced in vivo by the activation
of cannabinoid-1 receptors that are present in mitochondria (mtCB1) [88]. This decrease in astrocytic mitochon-
drial ROS, by down-regulating HIF1α, attenuates the glycolytic flow and lactate release to neurons, causing neuronal
bioenergetic deficit and social impairment [88]. Therefore, these concepts are in line with hormesis, defined as the
process of adaptive response to a persistent, but not lethal, stressful stimulus that generates in the cell resistance to such
stress, probably due to a greater antioxidant capacity [89–91]. This fact could explain how astrocytes are prepared to
efficiently manage oxidative stress and how redox homeostasis constitutes a clear example of compartmentalization
of neural cells that is closely related to brain metabolism [87].

Summary
• Ubiquitin ligase APC/C-Cdh1 co-ordinates astrocyte-neuron metabolic coupling by promoting

PFKFB3 destabilization and attenuation of glycolysis in neurons, facilitating PPP activity for antioxi-
dant protection.

• In astrocytes, APC/C-Cdh1 activity is very low resulting in PFKFB3 stabilization and higher basal
glycolytic rate and lactate release.

• The mitochondrial respiratory chain is tighter assembled in neurons than in astrocytes, which deter-
mines higher bioenergetic efficiency and lower mROS production in the neurons.

• The weaker assembly of the mitochondrial respiratory chain in astrocytes determines lower bioener-
getic efficiency and higher mROS production in these cells.

• Astrocytic mROS promote a transcriptional signature that contributes to sustaining the metabolic
and redox metabolism and brain function.
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