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Intrinsically disordered proteins (IDPs) and regions (IDRs) have emerged as key players
across many biological functions and diseases. Differently from structured proteins, dis-
ordered proteins lack stable structure and are particularly sensitive to changes in the sur-
rounding environment. Investigation of disordered ensembles requires new approaches and
concepts for quantifying conformations, dynamics, and interactions. Here, we provide a
short description of the fundamental biophysical properties of disordered proteins as un-
derstood through the lens of single-molecule fluorescence observations. Single-molecule
Förster resonance energy transfer (FRET) and fluorescence correlation spectroscopy (FCS)
provides an extensive and versatile toolbox for quantifying the characteristics of conforma-
tional distributions and the dynamics of disordered proteins across many different solution
conditions, both in vitro and in living cells.

Introduction
The last 20 years have seen the emergence of a class of proteins that challenge the classic structure–function
paradigm [1]. Indeed, a large fraction of proteins in the eukaryotic proteome are completely or partially
unstructured [2], but nevertheless play essential roles in biological function [3–6], ranging from tran-
scription [7–10] and translation [11–13] to transport processes [14] and membrane organization [15–17].
Their ‘shape shifting’ nature upon binding [18] and the occurrence of short linear-interacting motifs
[19,20] make them essential components of cellular signaling, allowing for specificity with a multiplicity
of signaling targets [19–23]. The multivalence of interactions encoded in their sequence can also play an
essential role in regulating self-assembly processes [3,24]. Because of these key roles, disordered proteins
are also central to several diseases, such as neurodegeneration and cancer [25,26].

There is a whole spectrum of conformational heterogeneity in proteins, where disorder can span either
the whole protein, some regions of the protein (e.g. tails and linkers that flank and connect folded do-
mains), or just short loops that are involved in the organization of structured proteins. The environment
‘complexity’ can further modulate the properties of disordered proteins, since conformations and dynam-
ics will depend on whether proteins are studied in isolation, in presence of ligands, or within the crowded
milieu of a cell (Figure 1).

These intrinsically disordered proteins (IDPs) and regions (IDRs) do not adopt a unique stable struc-
ture, but instead sample many different conformations. As a result, their flexible nature cannot be inter-
preted in the terms of classical structural biology and requires a different language to describe the proper-
ties of these conformational ensembles. At the same time, different experimental approaches are required
to access and quantify protein conformations, dynamics, and interactions.
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Figure 1. Spectrum of conformational disorder

A whole spectrum of disorder can occur in proteins, from completely unstructured sequences to disordered linkers and tails flanking

folded domains or just short loops that introduce local disorder in mostly folded proteins. In addition, given the lack of a stable 3D

structure, the complexity of the solution (in vitro and in the cell) can modulate conformations and dynamics of the disordered protein,

whether the protein is studied in isolation, bound to a ligand, within a biomolecular condensate or other crowded environment.

The physics of polymers has emerged as a powerful framework to identify key observables and explain the
thermodynamic-driving forces controlling IDPs [27–30]. In parallel, single-molecule fluorescence spectroscopy has
provided means to directly test and quantify predictions of polymer models. In this review, we have focused on re-
counting the major findings of the biophysics of disordered proteins in a simple and accessible form, discussing how
single-molecule fluorescence spectroscopy can be harnessed to access such properties. We hope this brief summary
can provide an entry point in the investigation of IDPs biophysics with single-molecule tools.

Single-molecule fluorescence
Single-molecule fluorescence spectroscopy offers a versatile toolbox to investigate the conformations and dynamics
of disordered proteins across many solution conditions (Figures 2 and 3). The major advantages of single-molecule
methods compared with classical ensemble approaches are: (i) the possibility of resolving distinct conformational
ensembles, allowing for distinguishing structural conformational changes occurring with solvent conditions or upon
binding with ligands; (ii) the ability of accessing protein dynamics contextually with information on the confor-
mational ensemble; (iii) the particularly low concentration regime (picomolar range), which enables access to the
monomeric form of the protein, even for aggregation and oligomerization prone sequences.

The two major single-molecule fluorescence approaches that are commonly applied to IDPs rely on FRET and FCS.
FRET provides a molecular spectroscopic ruler to measure distances on the length scale of nanometers [31]. FRET

experiments involve the attachment of two fluorophores to the protein of interest and require that the emission spectra
of one fluorophore (the donor) overlaps with the absorption spectrum of the other fluorophore (the acceptor). When
this condition is satisfied, the excitation of the donor fluorophore can lead to the direct emission of a donor photon
or to a nonradiative energy transfer toward the acceptor and the consequent emission of an acceptor photon (Figure
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Figure 2. Single-molecule fluorescence spectroscopy

(A) In Förster resonance energy transfer (FRET), donor excitation can either result in a photon emission from the donor itself or

a nonradiative energy transfer to the acceptor with consequent emission of an acceptor photon without a direct excitation of

the acceptor. (B) The efficiency of the energy transfer process depends on the interdye distance r to the power of 6 and on the

characteristic Förster radius, which corresponds to the distance at which the efficiency is equal to 50% (compare with eqn 1).

(C) In fluorescence correlation spectroscopy (FCS), the amplitude of the correlation reports about the inverse of the number of

molecules N in the observation volume, whereas the shift in decay represents the characteristic time of decorrelation. In typical

confocal experiments of freely diffusing molecules, one of the sources of decorrelation is the diffusion of the molecule in and out

of the confocal volume and the characteristic time is the diffusion time τD (compare with eqns 5 and 6). (D) Other timescales that

can be studied in FCS experiments are related to the excitation of the fluorophore (antibunching), the rotational diffusion of the

molecule and intrachain dynamics, and the photophysics of the triplet state.

2A). The efficiency of this energy transfer is given by (eqn 1):

E (r ) = R6
0

R6
0 + r 6 (1)

where r is the distance between the donor and the acceptor fluorophore and R0 is the Förster radius. The Förster
radius sets the distance at which the transfer efficiency is equal to 50% and depends on the spectroscopic properties
of the dyes, their reciprocal orientation, and the refractive index of the solution (Figure 2B).

Single-molecule detection is achieved by limiting the number of molecules in the volume of observation. This
can be directly realized by sparsely immobilizing molecules on the surface, such that the molecules are statistically
sufficiently separated from each other, or by studying freely diffusing molecules and diluting the sample such that
statistically only one molecule is observed at a time. Typical experiments make use of either total internal reflection
fluorescence (TIRF) or confocal microscope setups.

In TIRF experiments, the total internal reflection enables a thin layer of the solution (<100 nm from the cover-
slip) to be illuminated by an evanescent wave and the detection of excited fluorescent molecules is performed via a
camera-based setup. The illumination of a small layer of solution allows studying interactions in presence of a high
concentration of fluorescence proteins (e.g. ligands), since only the molecules close to the surface will be excited;
however, it requires close proximity (normally, immobilization) of the sample to the surface. The camera-based setup
enables the simultaneous detection of multiple molecules, though time resolution of fast events is limited by the
camera frame rate (commonly in the tens of milliseconds timescale).

© 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 3. Experimental methods for the study of disordered proteins

Single-molecule fluorescence offers a versatile set of tools for the investigation of conformations and dynamics in IDPs and IDRs.

FCS provides access to the diffusion time τdiff and corresponding hydrodynamic radius RH (see eqn 6). Single-molecule FRET

provides access to the mean transfer efficiency, whereas the fluorescence lifetime provides constraints for estimating the shape of

the distribution. The root-mean-square interdye distance or RH can be used to study the coil-to-globule transition while modulating

interactions (e.g. denaturant or temperature). Dependence of the interdye distance with the sequence separation between the dyes

provides access to the scaling exponent. Nanosecond-FCS provides access to fast dynamics, from nanoseconds to milliseconds

and enables disentangling the contribution of solvent and internal friction, either by explicitly studying the viscosity of the solution

or by monitoring dynamics as function of sequence separation. Burst variance analysis (BVA) provides an alternative method to

quantify slow dynamics in the microsecond to millisecond timescale. Photon trajectories provide access to kinetics of folding and

binding of IDPs and transition path-times. Recurrence analysis and microfluidics enable further investigation of kinetics associated

with conformational changes in different solvents or upon binding ligands. The experimental quantities can be further compared

with simulations or polymer models.
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In single-molecule confocal setups, a laser beam is coupled into a microscope objective with a high numerical
aperture, which focuses the beam into a diffraction-limited spot within the sample. Emitted photons are detected
through the same objective, filtered through a small pinhole (between 30 and 150 nm), and finally separated and
detected on single-photon avalanche photodiodes [32]. This type of setup is often coupled with fast electronics for
single photon detection, allowing for molecules and fluorophore photophysics to be studied over a broad range of
timescales, from picoseconds to minutes [31]. Confocal microscopy allows for both studying freely diffusing and im-
mobilized molecules. However, for immobilized molecules, it requires focusing on each single molecule individually,
making the acquisition time for multiple immobilized molecules significantly longer compared with the one obtained
by TIRF microscopy; on the positive side, this approach commonly allows for much higher time resolution on the
fast timescales, enabling access to fluorescence lifetimes and anisotropy.

In both TIRF and confocal single-molecule FRET, the transfer efficiency E is quantified by counting the number
of donor and acceptor photons, nD and nA, according to (eqn 2):

E = nA

(nA + nD)
(2)

If fluorescence lifetime is accessible, transfer efficiency can be also evaluated by comparing the lifetime of the donor
in presence and in absence of the acceptor (eqn 3):

E = 1 − τD A

τD
(3)

where τD is the fluorescence lifetime of the donor and τDA is the fluorescence lifetime of the donor in the presence
of the acceptor.

FCS provides an alternative set of approaches to investigate protein conformations (the overall size) and dynamics.
The concept of fluorescence correlation was originally introduced in the 1970s by Elson, Magde, and Webb [33–35]
and relies on studying fluctuations in the intensity of fluorescence signals as a reporter for protein diffusion and
concentration. This can be understood easily by considering a sufficiently dilute solution, where the passing of fluo-
rescent molecules through the detection volume leads to significant changes in the detected intensity compared with
the average background. This can be quantified by studying the correlation of the fluorescence fluctuations [36,37]
(eqn 4):

G (τ ) = < F (t) F (t + τ ) >

< F (t) >2 (4)

where F(t) represents the fluorescence intensity at the time t, <> represents the temporal average over all times
t, τ is the lag time at which the correlation G(τ) is computed. Under the assumption of a Gaussian 3D profile, the
correlation can directly be linked to the diffusion time and concentration of molecules (eqn 5):

G Diff (τ ) = 1
N

(
1 + τ

τDiff

)−1(
1 + τ

τDiff
.
r 2

0

z2
0

)−0.5

(5)

where N is equivalent to the average number of molecules in the detection volume, τDiff is the average time of
molecules diffusing through the detection volume and r0 and z0 are the lateral and axial radial distances of the confocal
volume, respectively (Figure 2C). While the amplitude of the correlation directly reports on the average number of
molecules in the detection volume, τDiff reports about the diffusion coefficient of the molecule and can be related to
its hydrodynamic Stokes-radius, RH (eqn 6):

RH = 2K B T τDi f f

3πηr 2
0

(6)

where KB is the Boltzman constant, T is the absolute temperature, and η is the viscosity of the solution at a given
T.

FCS measurements are commonly performed in a confocal setup and therefore are compatible with single-molecule
FRET experiments. Indeed, FCS is not only limited to measure diffusion and concentration of molecules: depending
on the source causing fluctuations in fluorescence intensity, FCS can provide access to static quenching and other
photophysical properties of the dyes as well as dynamics within the molecule of interest (Figure 2D).

© 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Accessing the disordered state
In 1999, the labs of DeGrado and Hochstrasser proved the feasibility of single-molecule FRET experiments on pro-
teins, investigating the denaturation of immobilized [38] and freely diffusing [39] GCN-4 fragments. Contextually,
Deniz et al. [40] demonstrated how this approach enables distinguishing and separating properties associated with
the folded and unfolded states. Specifically, their measurements of the chymotrypsin inhibitor 2 identified changes
of the unfolded state as a function of the denaturant, which the authors speculated could be due to loss of secondary
structure or increase in solubility of the disordered state. Schuler et al. [41] observed analogous changes for the Cold
shock protein of Thermotoga Maritima and, using polyproline sequences as control measurements, ruled out that
the observations were due to photophysical effects, and indeed represented changes in the conformations of the un-
folded state. These works set the stage for investigating the properties of the denatured state of foldable proteins,
which represents another occurrence of ‘disorder’ in proteins.

In the case of denatured proteins, the mean transfer efficiency associated with the distribution of the unfolded
state represents a mean value of the transfer efficiencies associated with the different configurations explored by the
chain: because chain dynamics are significantly faster (nanosecond timescale) than the burst detection (millisecond)
in single-molecule experiments, the different transfer efficiencies are averaged out [31]. The same applies to disor-
dered proteins. The distance distribution associated with the denatured or disordered protein is often sufficiently
well-described by simple polymer models (such as the Gaussian chain [42], Worm-like chain [43], and Self-Avoiding
Walk distributions [29,44,45]), or can be estimated from simulations [28,46–48].

The work of Sherman and Haran [49] on the unfolded state of protein L introduced an important explanation for
the conformational change of the disordered state when increasing denaturant, linking the observed phenomenon to
the coil-to-globule transition in polymers [49–51]. Indeed, depending on the balance of the monomer–monomer and
monomer–solvent interactions, polymers can adopt conformations of a compact globule (when monomer–monomer
interactions dominate) or expanded conformations (when solvent–monomer interactions are favored) [42]. Varying
the strength of monomer and solvent interactions leads to a transition between these two extreme cases and results
in the so-called coil-to-globule transition [52]. Examples of interactions include excluded volume interactions (the
physical occupancy of space of the residues), electrostatic interactions, and hydrophobic interactions. A particular
case occurs when attractive and repulsive interactions in the system (protein and solvent) cancel each other: this
particular condition is referred to as the ‘theta state’ or ‘theta solvent condition’ and is a key reference state in polymer
physics. Altogether, the coil-to-globule framework provides a physical explanation for the change in conformations
of the unfolded (either denatured or intrinsically disordered) state in presence of denaturant, where the denaturant
acts as a better solvent and favors more expanded conformations.

This hypothesis has been further tested by Hofmann et al. [53]. Here, they harnessed the ability of measuring
interdye distances within a protein by attaching fluorophores at different positions. This approach allows directly
estimating the scaling exponent [54] of the disordered state under different solvent conditions, for both folded and
IDPs. The scaling exponent relates the root-mean-square interdye distance <r2>0.5 to the degree of polymerization
of the molecule (in this case, the number of peptide bonds in the protein) and is directly related to the three funda-
mental states identified in the coil-to-globule transition. <r2>0.5 is proportional to N1/3 for the case of a globule, to
N1/2 for the case of an ideal chain, and to N0.588 for the case of a chain dominated by excluded volume effects. Hof-
mann et al. [53] found that in high denaturant different sequences follow the scaling exponent expected for a chain
in a good solvent, whereas under native conditions different scaling exponents are observed depending on the se-
quence properties (charge, hydrophobicity, etc.) (Figure 4A). This observation was consistent with predictions from
simulations [55,56] and with previous estimates of the scaling exponent of folded proteins in denaturant [57] and
has been further corroborated in subsequent works exploring the role of denaturant on unfolded proteins [58–60].
FRET measurements have been also compared with FCS measurements and dynamic light scattering to confirm the
expansion of the disordered state of proteins with increasing denaturant concentration [49,53,61,62].

The information from single-molecule FRET is often integrated with that provided by other approaches, which
can help in defining the properties of the disordered ensemble. This includes measurements of the radius of gyration
via SAXS [45,59,61,63–67], local conformations via NMR [65–68], and simulations [28,46–48,63,65,67,69].

Effect of sequence on chain conformations
The large spectrum of scaling exponents observed under native conditions for different unfolded and disordered pro-
teins [53,64,70,71] reflects the contribution of sequence composition on the conformations of disordered ensembles.
Müller-Späth et al. [72] used single-molecule FRET to probe the conformations of unfolded proteins, showing the
degree of compaction and expansion of the interdye distance depends on the charged residue content in the protein,
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Figure 4. Examples of single-molecule fluorescence measurements

(A) Measurements of the interdye distance (represented in terms of apparent radius of gyration) as function of interdye sequence

separation for the unfolded state of two proteins, human CyclophilinA (hCyp) and Cold-shock protein from Thermatoga maritima

(CspTm), reveal changes in the scaling exponent from low to high values with increasing denaturant concentration (adapted from ref.

[53]). (B) Temperature induced collapse of five different disordered regions, including a destabilized mutant of Cold-shock protein,

the N-terminal disordered tail of HIV-Integrase, λ repressor, and the N- and C-terminal halves of Prothymosin alpha (adapted

from ref. [93]). (C) Conformational changes of alpha synuclein upon binding with SDS vesicles. Single-molecule FRET enables

resolving different intermediates and bound states as a function of SDS concentration (adapted from ref. [122]). (D) Nanosecond

FRET-FCS reveals fast dynamics in the complex between Prothymosin alpha and histone H1. Autocorrelation of donor–donor (DD)

and acceptor–acceptor (AA) exhibits a correlated decay, whereas the cross-correlation (AD) shows an anticorrelated increase in

the signal. A relaxation time is extracted by globally fitting the three correlations. (compare with eqn 7). The rapid increase in

all the correlations at a few nanoseconds is related to the excitation rate of the fluorophore and reflects the fact that a single

fluorophore can emit only a photon at a time: this is commonly referred to as antibunching. (E) Confocal measurements of tethered

molecules provide access to kinetics in the interaction of TAD and NCBD, including quantification of the time spent in short-lived

states such as the transition path-time, as a function of NaCl concentration (adapted from ref. [127]). (F) FCS measurements

provide quantification of concentrations inside and outside of phase separated solutions as well as access to the diffusion time

of the fluorescent molecules in both phases (adapted from ref. [138]). Concentrations of labeled components can be estimated

from the amplitude of the correlation, whereas diffusion time is measured from the decay time of the correlation (compare eqn 5).

(G) In cell, single-molecule FRET measurements of Prothymosin alpha (yellow curve) reveal modulation of conformational changes

compared with in vitro measurements (blue curve), which are amplified by inducing osmotic stress and increasing the concentration

of molecules in the cell (red curve). Adapted from ref. [137].
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License 4.0 (CC BY).

881

D
ow

nloaded from
 http://port.silverchair.com

/essaysbiochem
/article-pdf/66/7/875/940919/ebc-2022-0065c.pdf by guest on 08 M

arch 2024



Essays in Biochemistry (2022) 66 875–890
https://doi.org/10.1042/EBC20220065

in good agreement with prediction from polymer theories [73–75]. Indeed, the theory of polyelectrolytes (polymers
whose monomers carry all the same type of charge) and polyampholytes (polymers carrying both positive and nega-
tive charges) indicate that the dimension of charged polymers depends on the contribution of the total net charge of
the protein (which favors the expansion of the chain) and the total number of charged residues of the chain (which
represents local compaction along the chain due to the positive and negative residues in the chain). These observa-
tions matched independent computational work from the Pappu group [76], which further demonstrated how the
net charge, total number of charged residues, and charge patterning can modulate the conformations of IDRs, fa-
voring extended, compact, and more exotic conformations such as tadpoles and hairpins [77]. Advanced polymer
models have been further developed to capture sequence-specific effects of charge distribution [78–80], revealing
how the pattern of charges in polyampholyte sequences can even lead to coexistence of two distinct ensembles of
conformations [81,82]. Importantly, parameters such as net charge and total charge are influenced by the ionization
of charged groups, which may be affected by the local density of charged residues [83]. Polyampholyte and polyelec-
trolyte theories capture also the conformational response to salt, including effects of charge screening and counterion
condensation [73,75,80,84,85].

While charged residues are an important determinant of IDPs/IDRs conformations, other amino acids can play
a fundamental role on protein conformations [29]. For example, a comparative analysis of the hydrodynamic radii
of different IDPs identified the content in proline residues as an essential factor modulating the disordered confor-
mational ensemble [86]. SAXS measurements and simulations of Ash1 further revealed that proline residues can
favor expanded configurations even when the charge content of the protein is changed by phosphorylation and more
compacted conformations are expected to be populated [87]. Understanding the effect of sequence composition is
essential to rationalize the conformational response to solution conditions and how this impacts the interaction with
ligands. This is particularly important in the case of linkers, where sequence composition can modulate the local
effective concentration of interacting regions [88,89].

Effect of temperature
Temperature modulation provides a wealth of information regarding the entropic and enthalpic contribu-
tions controlling molecular conformations and interactions [90]. This is often realized using custom built
temperature-controlled chambers, where the sample temperature can be directly controlled and calibrated against
a well-known standard (e.g. the temperature-dependent lifetime of rhodamine B) [90–92].

Single-molecule FRET experiments on IDRs and unfolded proteins as a function of temperature [91,93] have re-
vealed a surprising result for the temperature dependence of chain dimensions. With increasing temperature, the
disordered state conformations first undergo compaction before starting to expand again (Figure 4B). Similar re-
sults have been reported also for different IDPs by dynamic light scattering [94] and small angle X-ray [95,96]
measurements. At first glance, these observations appear counterintuitive. Based on the classical dependence of the
coil-to-globule observed in polymers [52], one would expect that a temperature increase would result in an expan-
sion of the chain due to decrease in the strength of the interactions at play. The strengthening of interactions with
increasing temperature points to a contribution of the ‘hydrophobic effect,’ but the extent of collapse is found to
be amplified for hydrophilic charged sequences, not hydrophobic ones [93]. These observations can be rational-
ized by accounting for the temperature-dependent solvation free energies of the sequence amino acids [93]. The
same temperature-induced collapse occurs when studying the unfolded state upon hot and cold denaturation [97,98],
showing that the cold-denatured and hot-denatured state of a protein represents the same denatured state and their
response to temperature follows the temperature trend of solvation-free energies [98].

Accessing chain dynamics
While FRET is often used to determine conformational changes, it can also be used to investigate chain dynamics. Fast
dynamics can be accessed by studying the autocorrelation of the donor and acceptor photons or the cross-correlation
of donor and acceptor [99,100]. Use of zero-mode waveguides can shorten the acquisition time (down to tens of
minutes) and enable measurements of very fast dynamics (low-nanoseconds) [101]. When studying fast dynamics
with FCS, the correlation function in (eqn 5) (extends to (eqns 7a and 7b):

G (τ ) =
(

1 − ci, j
ab

τ

τ
i, j
ab

) (
1 + ci, j

CD
τ

τCD

) (
1 + ci, j

T
τ

τ
i, j
T

)
G Diff (τ ) , i = j (7a)
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G (τ ) =
(

1 − ci, j
ab

τ

τ
i, j
ab

) (
1 − ci, j

CD
τ

τCD

) (
1 + ci, j

T
τ

τ
i, j
T

)
G Diff (τ ) , i �= j (7b)

where i and j identify either the donor or acceptor photon emission, ci, j
ab and τ

i, j
ab represent the amplitude and

relaxation time of the antibunching component, ci, j
T and τ

i, j
T capture the contribution in amplitude and relaxation

time of the triplet state, and and τCD reports about the amplitude and relaxation time of chain dynamics. Note that
the relaxation timescale τCD is the same across all correlations, whereas the sign associated with the chain dynamics
amplitude ci, j

CD depends on whether this is is an autocorrelation (i = j) or a cross-correlation (i � j). The reason for
change of sign in the cross-correlation is intuitively understood by considering that FRET, as measured by comparing
donor and acceptor emission, is inherently anticorrelated: an increase in the acceptor emission comes at the cost of a
decrease in donor signal and vice versa (see Figure 4D).

This approach has enabled quantifying the timescale at which disordered proteins sample the distribution asso-
ciated with their conformational ensemble, which is often in the order of tens or hundreds of nanoseconds. The
measured quantity is the reconfiguration time, which is the time that it takes to the specific interdye distance to lose
memory of the previous configuration. Chain dynamics are consistent with the expected behavior of simple polymer
models [102–104], where the overall reconfiguration time of the chain is given by the sum of two contributions, one
dependent on the solvent and therefore on viscosity, and one independent of the solvent and is usually referred to
as internal friction. Internal friction may arise from different molecular sources, including dihedral angle rotation
[105–107] and transient contact formation [108]. ns-FRET FCS provides an effective tool to quantify solvent and
internal friction contributions. One method relies on studying the viscosity dependence of the reconfiguration time
titrating a viscogen that slows down the dynamics of the chain: a linear extrapolation to zero viscosity provides a value
that reports on internal friction contributions. Alternatively, chain dynamics across different segment lengths of the
disordered region can provide access to the same quantities: in this case, internal friction causes deviations from the
behavior of ideal chain, where the reconfiguration is expected to scale with the length of the segment [104]. Com-
parison with all-atom simulations [109], NMR [66,110], and Neutron Scattering [111,112] experiments supports this
model and the importance of internal friction effects.

Photo-induced electron transfer (PET) FCS provides a complementary point of view [109,113–115]. Here, the
autocorrelation decay reports about quenching of the fluorophore due to static contact formation with quenching
residues (tryptophan, tyrosine, and histidines) or synthetic moieties. In this case, the rates of forming and breaking the
static complex, kon and koff , define the amplitude cCD = koff /kon and the relaxation time τCD = 1/(koff /kon) associated
with chain dynamics (eqn 7a). Since the contact formation time measures the time required for two specific residues to
come into contact, this time is usually longer than the reconfiguration time and the same polymer models mentioned
above can be used to connect the two quantities. As expected based on the polymer models [103], contact formation
is also impacted by internal friction [109].

While in the majority of cases, both FRET- and PET-FCS detect dynamics on the nanosecond time scale, this ap-
proach can indeed identify dynamics up to the diffusion time of the molecule (or longer, for immobilized molecules).
Analysis of dynamics in the microsecond timescale can also be achieved by using BVA, which studies how the vari-
ance of transfer efficiency varies along the burst duration [116], or Hidden Markov analysis of the photon trajectory
[117,118].

Accessing ligand interactions
Single-molecule fluorescence spectroscopy can provide a direct readout for the interaction between disordered pro-
teins and their ligands, whether these are small solutes (e.g. ions), another protein, or nucleic acids. Importantly, FRET
enables the contextual study of conformations and dynamics, allowing discerning whether the interaction leads to
folding upon binding [119–122] (Figure 4C), diffusion of the disordered protein on the folded-binding partner [123],
or formation of a dynamic complex in which both components remain disordered (as in the case of prothymosin al-
pha and histone H1 [124,125] (Figure 4D)). Study of surface-tethered molecules enables quantification of the on- and
off-rates of association via the analysis of the dwelling times in the bound and unbound state [120,126], as well as of
transition path times [121,127] (Figure 4E). Alternatives for studying kinetics of interactions are offered by microflu-
idic mixing and recurrence analysis [128]. Microfluidic mixing provides common deadtimes of ∼1 ms, comparable
with classic stop flow experiments [129–131]. Recurrence analysis relies on extremely dilute solutions, so dilute that
there is a significant probability in short times to see the same molecule coming back (‘reoccurring’) in the confocal
volume more than observing a new molecule [128]. This provides a direct tool to identify subpopulations in broad
distribution histograms [123].

© 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).

883

D
ow

nloaded from
 http://port.silverchair.com

/essaysbiochem
/article-pdf/66/7/875/940919/ebc-2022-0065c.pdf by guest on 08 M

arch 2024



Essays in Biochemistry (2022) 66 875–890
https://doi.org/10.1042/EBC20220065

IDPs in complex environments
The single-molecule fluorescence toolbox is constantly growing and advancements in the last decade have demon-
strated the feasibility and relevance of investigating IDPs in a complex environment. Indeed, the lack of a stable 3D
structure makes disordered proteins prone to changes due to the surrounding milieu. We have already discussed how
salt, temperature, and interactions with other molecules can alter IDPs conformations and dynamics. This becomes
even more relevant in the context of the intracellular medium. Indeed, the cell milieu is occupied by a significant frac-
tion of components (proteins, nucleic acids, metabolites), which is sufficiently high to limit the available volume that
each component can explore. This phenomenon is commonly referred to as crowding and impacts many aspects of
proteins and nucleic acids, including folding, dynamics, interactions, and in the case of disordered proteins, also their
conformations. Recent applications on both proteins [132,133] and nucleic acids [134,135] have now highlighted the
advantages of single-molecule fluorescence spectroscopy in quantifying such contributions on a molecule of inter-
est. Indeed, single-molecule FRET can provide a direct readout for the conformational and kinetic changes within
crowded solutions [132,133] as well as probe the possibility of inducing ‘folded’ conformations in equilibrium with
the disordered state [132]. One important finding is that disordered proteins sense crowding differently depending on
their degree of expansion [133]: IDRs that are more expanded are more sensitive to changes in the crowded solution.
This can be quantified and rationalized in terms of their scaling exponent. IDRs with a scaling exponent larger than
0.5 will collapse with increasing concentration of crowding agents, whereas IDRs with a scaling exponent equal or
smaller than 0.5 will have less or negligible impact of the crowded milieu, as expected based on the theory of polymer
mixtures [136]. A discussion of the polymer and colloidal theories that applies to crowding are reported in [71]. The
trend observed in vitro with polymeric crowded solutions is also observed in cells, where the same proteins undergoes
compaction when decreasing the available volume in the cell, e.g. by inducing osmotic stress [137]. The emerging role
of membrane-less compartments in the cellular environment has pushed to investigate the driving forces controlling
their assembly. In particular, IDRs have been largely investigated in the context of biomolecular condensates. Recent
experiments have showcased the possibility of using: (i) FCS to determine concentrations and dynamics inside the
dilute and dense phase of condensates [138–142]; (ii) single-molecule FRET to quantify the conformational changes
of disordered proteins within the dense phase [143,144]. (Figure 4F,G)

Summary
• Single-molecule fluorescence spectroscopy provides a versatile toolbox to investigate the bio-

physical properties of disordered proteins in isolation, when bound to another macromolecule, or
within crowded environments.

• Measuring interdye distances via FRET enables studying contribution of the sequence compo-
sition and temperature effects on the dimensions of the disordered ensemble, providing direct
access to physical parameters such as the scaling exponent.

• Nanosecond FRET- and PET-FCS provides access to fast chain dynamics and enables resolving
solvent and internal friction contributions, whereas FCS captures conformational changes of the
whole protein in terms of hydrodynamic radius.

• Integration of single-molecule fluorescence with orthogonal techniques such as SAXS, NMR, DLS,
Neutron scattering, and simulations provides further constraints to capture the complexity of con-
formational ensembles along different length- and time-scales.

• Advancements in single-molecule spectroscopy and the growing understanding of the physical
principles regulating disordered proteins pave the way to applying these methodologies to quan-
titatively understand the mechanisms of function and dysfunction.
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