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Plants deploy extracellular and intracellular immune receptors to sense and restrict
pathogen attacks. Rapidly evolving pathogen effectors play crucial roles in suppressing
plant immunity but are also monitored by intracellular nucleotide-binding, leucine-rich re-
peat immune receptors (NLRs), leading to effector-triggered immunity (ETI). Here, we review
how NLRs recognize effectors with a focus on direct interactions and summarize recent re-
search findings on the signalling functions of NLRs. Coiled-coil (CC)-type NLR proteins exe-
cute immune responses by oligomerizing to form membrane-penetrating ion channels after
effector recognition. Some CC-NLRs function in sensor–helper networks with the sensor
NLR triggering oligomerization of the helper NLR. Toll/interleukin-1 receptor (TIR)-type NLR
proteins possess catalytic activities that are activated upon effector recognition-induced
oligomerization. Small molecules produced by TIR activity are detected by additional sig-
nalling partners of the EDS1 lipase-like family (enhanced disease susceptibility 1), leading
to activation of helper NLRs that trigger the defense response.

Introduction
Plants and animals are continuously coresident with microbes, many of which are potential pathogens.
While animals deploy specialized mobile cells within a circulatory system as the basis of adap-
tive immunity, plants rely on a cell-autonomous immune system to detect and restrict pathogen at-
tacks. This comprises two main layers of recognition that operate either at the cell surface or in
the host cytoplasm as illustrated in Figure 1 [1–3]. Pattern recognition receptors (PRRs) localized
in the plasma membrane (PM) monitor the extracellular environment for the presence of pathogens
through recognition of pathogen-associated molecular patterns (PAMPs), damage-associated molecu-
lar patterns (DAMPs), or apoplastic effector proteins, causing pattern-triggered immunity (PTI) [4–7].
Many adapted pathogens deliver effector proteins directly into plant cells to suppress defense re-
sponses including PTI [1,7]. As a countermeasure, plants have evolved a second layer of recogni-
tion involving intracellular nucleotide-binding/leucine-rich-repeat receptors (NLRs), which recognize
effectors directly or indirectly, inducing effector-triggered immunity (ETI) [1,8]. Although descrip-
tion of the molecular biology of ETI is relatively recent, its existence was first synthesized in the
‘gene-for-gene model’ [9] describing the genetic interaction between host Resistance ‘R’ genes (i.e.,
NLRs) and pathogen Avirulence ‘Avr’ genes (recognized effectors). PTI provides a broad-spectrum re-
sistance to a wide range of nonadapted pathogens and as such contributes to basal immunity [4,10,11].
ETI provides robust defense responses that are often associated with cell death termed the hypersen-
sitive response (HR) at infection sites to inhibit pathogen proliferation [10,12,13]. There is also evi-
dence for cross-talk between ETI and PTI pathways that can enhance immune responses [14,15]. In
this review, we discuss activation of ETI with a focus on the direct recognition of pathogen effec-
tors by plant NLRs and subsequent signalling events, based on the most recent research advances.
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Figure 1. Overview of plant immunity

In the extracellular space, PAMPs, DAMPs, or apoplastic effector proteins released from pathogens are recognized by cell surface

membrane-bound receptors, inducing PTI. To suppress PTI, bacterial pathogens inject effectors into the host cell through a type-III

secretion system, while fungi and oomycetes develop specialized structures such as haustoria to deliver effectors. Intracellular

NLR receptors recognize specific effectors and trigger ETI, which is often associated with cell death at the infection sites. ETI can

potentiate PTI by up-regulation of the underlying genes, while activation of PTI can enhance the defense response triggered by

ETI. PTI and ETI work together to provide robust effective resistance against pathogens.

NLRs and effector recognition
NLR proteins occur in plants, animals, and fungi and share a basic protein architecture consisting of a conserved
central nucleotide-binding (NB) domain, a C-terminal LRR domain, and distinct N-terminal domains. Plant NLRs
can be subdivided into two main groups according to their N-terminal domains: those containing an N-terminal
TIR (Toll/interleukin-1 receptor and resistance) domain (TIR-NLR or TNL), and those with an N-terminal CC
(coiled-coil) domain (CC-NLR or CNL). A subset of CC-NLRs have CC domains related to RPW8 (resistance to
powdery mildew 8) and are known as CCR-NLRs or RNLs [16,17]. Generally, the N-terminal CC or TIR domains
act as the signalling moieties and are often sufficient to activate downstream responses alone [18–22]. The central
NB domain acts as a molecular switch determining the ‘on’ and ‘off’ signalling states of the NLRs by binding ADP
or ATP, respectively [23–26]. In many cases, the LRR domain is responsible for the specificity of effector recognition
[17,25–27], and congruently, this is often where the greatest polymorphism lies in NLR gene families. However, in
other cases, additional noncanonical domains in some NLRs can mediate recognition as described below [25,26].

Recognition of effectors in the intracellular space of host cells is a central event in the activation of ETI. Plant
NLR proteins can recognize effectors directly by physical interaction or indirectly through an intermediate partner
as illustrated in Figure 2 [8,10,28]. Indirect effector recognition by NLRs involves recognition of changes induced in
another host protein usually by the enzymatic activity of an effector [8]. Two conceptual models describe such indirect
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Figure 2. Models of effector recognition

Plant NLR proteins recognize effectors (green) either directly or indirectly. (A) Indirect effector recognition occurs through monitoring

effector-induced modifications of an intermediate guardee or decoy protein (black). (B) Direct effector recognition often occurs via

interaction with the LRR domain (left) or with an ID (red), a decoy protein integrated with the NLR protein that mediates direct

effector recognition. Such NLR-ID proteins often occur as part of a sensor/executor NLR pair, with both proteins required for

specific resistance.

recognition (Figure 2A). In the ‘guard’ model, a host protein that is directly targeted by a pathogen effector as part
of its virulence function is guarded by NLR proteins. In the ‘decoy’ model, a protein that mimics the effector target
protein mediates recognition. NLR proteins monitor modifications of the ‘guard’ or ‘decoy’ proteins as indicators of
pathogen infection that trigger their activation [29]. An advantage of indirect effector recognition for the host is that
it is triggered by the function of a pathogen effector, which makes it difficult for the pathogen to escape recognition
(i.e., by modifying or losing the effector) without losing a valuable virulence capability [28]. However, this mode of
recognition generally requires that the pathogen effector has a protein-modifying activity. Direct recognition on the
other hand involves detection of the presence of a pathogen effector by physical interaction with an NLR (Figure
2B), often mediated by the LRR domain [8]. Another mode of recognition is given by the integrated decoy model,
which is a combination of direct recognition and the ‘decoy’ model. Here, NLR proteins contain additional integrated
domains (ID) that mediate direct recognition by mimicking the protein targets of effectors [28,30–32]. Direct effector
recognition has thus far been found more often for eukaryotic filamentous pathogens, whereas indirect recognition
has been more often found for bacterial effectors [33,34]. Below we discuss examples of direct recognition between
NLR proteins and effectors in more detail.

A number of examples of direct interactions are given in Table 1. One of the first examples to be characterized
in detail was between variants of the flax NLR protein, L, and the flax rust fungus effector AvrL567. The specificity
of recognition between L5, L6, and L7 and 12 AvrL567 variants is determined by polymorphic amino acids in the
LRR domains of the NLR [27,35,36] as well as in surface-exposed residues of the AvrL567 protein [37]. This implies
that a physical interface occurs between these regions of the two proteins that underlies recognition. Similarly, the
recognition specificity of the barley NLR protein MLA is determined by polymorphisms in the LRR that are involved
in physical interaction with AvrMla proteins from the barley powdery mildew pathogen [38]. A wheat homolog of
MLA, Sr50, also directly recognizes its corresponding effector AvrSr50 from the wheat stem rust fungus [39]. Some
AvrSr50 variants from virulent rust isolates escape Sr50 binding via one or a few mutations on the effector surface
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Table 1 Examples of direct receptor–effector recognitions

Resistance
proteins NLR type Organism Effector Pathogen Evidence

Domains
involved in
recognition References

L5, L6, and L7 TIR Linum
usitatissimum

AvrL567 Melampsora lini Y2H LRR [35,36]

M TIR L. usitatissimum AvrM M. lini Y2H Unknown [103,104]

L2 TIR L. usitatissimum AvrL2 M. lini Y2H LRR Unpublished data

MLA1, 7, 10, 13 CC Hordeum vulgare AVRa1, 7, 10, 13 Blumeria graminis f.
sp. hordei

Y2H LRR [105,106]

Sr50 CC Secale cereale AvrSr50 Puccinia graminis f.
sp. tritici

Y2H LRR [39,40]

Sr35 CC Triticum aestivum AvrSr35 P. graminis f. sp.
tritici

CoIP, BiFC,
structure

LRR [107,108]

RppC CC Zea mays L. AvrRppC P. polysora CoIP, BiFC Unknown [109]

RPP1 TIR-JID/PL Arabidopsis
thaliana

ATR1 Hyaloperonospora
arabidopsidis

Structure LRR and JID/PL [26,110,111]

ROQ1 TIR-JID/PL N. benthamiana XopQ Xanthomonas Structure LRR and JID/PL [25,112]

N TIR N. tabacum p50 Tobacco mosaic
virus

Y2H NB-LRR [113]

Pi54 CC Oryza sativa AvrPi54 Magnaporthe
oryzae

Y2H unknown [114]

Pi-ta CC-ID O. sativa AvrPi-ta M. oryzae Y2H LRR-ID [115]

Sw-5b CC Solanum
lycopersicum

Nsm Tomato-spotted
wilt virus

CoIP LRR [68]

RB/Rpi-blb1 CC Solanum
bulbocastanum

Avrblb1 Phytophthora
infestans

Y2H CC [116]

Pik-1/Pik-2 CC-ID/CC O. sativa AvrPik M. oryzae Structure, Y2H ID [117,118]

RGA5/RGA4 CC-ID/CC O. sativa AvrPia,
AVR1-CO39

M. oryzae Y2H ID [50,119]

RRS1/RPS4 TIR-ID/TIR A. thaliana PopP2 Ralstonia
solanacearum

Y2H ID [48,51,120–122]

RRS1/RPS4 TIR-ID/TIR A. thaliana AvrRps4 Pseudomonas
syringae

Structure ID

[40], while a central region of the LRR is the main contributor to its recognition specificity [41]. Likewise, recognition
between the Arabidopsis NLR RPP1 and the downy mildew effector ATR1 involves interaction of effector surface
residues with the C-terminal region of RPP1 including the LRR [42,43].

Recent structural determination of the TIR-NLR proteins, ROQ1 and RPP1, in complex with their respective ef-
fectors, XopQ1 and ATR1, revealed key insights into the molecular basis of recognition [25,26,44]. In both cases, the
LRR domains showed extensive physical contact with the effector proteins. However, in addition to this, a short do-
main located C-terminal to the LRR domains of ROQ1 and RPP1 called the C-JID/PL domain (jelly roll and Ig-like
domain, or post-LRR) also contributed to the direct interaction with each effector. This was centered on a region of
the JID/PL domain that shows high sequence variability. Mutagenesis assays confirmed that residues within the LRR
and JID/PL domains determine the effector recognition specificity. The JID/PL domain exists in many but not all
TIR-NLR proteins across multiple plant species [45,46], and could be a common effector recognition component of
TNLs in addition to LRR domains.

NLRs with integrated decoy domains often occur as one member of an NLR pair, in which one protein known as
the sensor NLR contains an ID that interacts directly with effectors to induce activation of the alternate executor (or
helper) NLR (Figure 2B) [17,28,30,47]. Arabidopsis RRS1/RPS4 [48], rice Pik-1/Pik-2 [49], and RGA5/RGA4 pairs
[50] are three well-known examples of paired sensor/executor NLRs. The sensor proteins Pik-1 and RGA5 of rice rec-
ognize different effectors from the rice blast fungus that bind to their HMA (heavy-metal associated) IDs and trigger
immunity via the executors Pik-2 and RGA4, respectively [49,50]. The RRS1 sensor protein carries a WRKY domain as
an ID and recognizes the unrelated bacterial effectors Pseudomonas syringae AvrRps4 and Ralstonia solanacearum
PopP2, leading to immune responses mediated by the executor protein RPS4 [48,51]. These effectors normally target
host WRKY transcription factors, but their action on the RRS1 WRKY ID leads to effector recognition. In the case
of AvrRps4, physical interaction of the effector with the RRS1 WRKY domain disrupts an intramolecular interaction
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with another C-terminal domain thereby destabilizing the inactive state of the protein complex [52]. Overexpres-
sion of the executor NLRs, RPS4 and RGA4, causes autoactive cell death in planta, but overexpression of the sensor
NLRs, RRS1 and RGA5, does not [53,54]. Moreover, the autoactivity of these executor NLRs can be suppressed by
coexpression of RRS1 or RGA5. Hence, sensor NLRs can act as suppressors in some cases to inhibit executor NLRs
in the absence of effector recognition. However, in other cases, paired NLRs work co-operatively. For instance, the
rice CC-NLR pair Pikp-1/Pikp-2 requires both NLRs to trigger cell death, and neither of them is autoactive when
expressed alone [55].

NLR resistosomes and immune signalling
Several early studies showed that self-association of the TIR or CC signalling domains is a precondition of cell death
activity. For example, mutations that disrupt the self-association of Sr33 or MLA10 CC domains abolish the cell
death caused by either expression of the CC domain alone or the full-length CNL protein [21,56]. Similarly, the crys-
tal structures of isolated plant TIR domains contain separate self-interaction interfaces, AE and DE (Figure 3), and
mutational analyses have shown that both are necessary for TIR signalling [57–59]. These observations suggested
that NLR proteins function via assembly into multimeric signalling complexes after effector detection [60]. In agree-
ment with this, there is now direct structural evidence that three different NLRs self-associate to form higher-order
‘resistosome’ protein complexes after effector recognition [25,26,61], discussed in further detail below.

CC-NLR activation and immune signalling
Structural determination of complexes containing the full-length CC-NLR protein ZAR1 revealed major confor-
mational changes during its activation. This work identified three structural phases: an inactive monomeric state,
an intermediate preactivation monomeric state, and the active state, which forms a wheel-like pentameric resisto-
some complex [24,61]. Inactive ZAR1 binds ADP, while an RKS1 pseudokinase molecule interacts with the LRR
domain. This prerecognition complex detects the Xanthomonas effector AvrAC indirectly via a decoy protein ki-
nase, PBS1-like protein 2 (PBL2). After uridylation by AvrAC, PBL2UMP interacts with the ZAR1-RKS1 complex
through RKS1, causing outwards rotation of the ZAR1 NB domain, which promotes ADP release and subsequent
ATP binding. ATP binding induces further structural changes that assist formation of the active pentameric struc-
ture. The N-terminal α1 helix of the CC domain is exposed upon ZAR1 activation and in the resistosome complex,
the five CC domains form a funnel-shaped structure with the α1 helices at the apex. The active ZAR1 resistosome as-
sociates with the PM and can act as a Ca2+ influx channel [61–64]. Mutation of negatively charged residues within the
funnel-shaped CC domain structure abolish ion transport and cell death activity, suggesting that this structure inserts
into the membrane to form a Ca2+ permeable channel that is necessary for immunity activation. Newly published re-
search shows that the isolated CC domain of the Arabidopsis helper CCR-NLR NRG1.1 also adopts a four-helical
bundle structure that closely resembles those of other plant CC domains and the inactive state of ZAR1 [18]. More-
over, the active AtNRG1.1 protein oligomerizes and forms puncta in the PM, and both activated AtNRG1.1 and
AtADR1 can cause Ca2+ influx. Both channel activity and cell death induction also require conserved negatively
charged residues in the N-terminal of the CC domains, as observed for ZAR1. This suggests that the CCR domains
of these proteins function similarly to the CC domains of other CNL proteins. Moreover, transcriptome analysis re-
vealed that similar gene expression changes are triggered by activation of both CCR-NLRs and other CNLs [18,65].
Hence, formation of Ca2+ permeable channels might be a common mechanism for immune activation by CC-NLRs.
There are, however, exceptions to this model. For instance, many of the CC-NLRs in the Solanaceae family operate
within a sensor-helper network, where a variety of sensor CC-NLRs are involved in pathogen detection but require
helper CC-NLRs of the NRC family to induce immune responses [66,67]. For instance, Sw-5b (Table 1) acts as a sen-
sor that directly interacts with the Nsm protein of tomato-spotted wilt virus and requires NRC family helper NLRs
for signalling [67,68]. A recent preprint [69] suggests that pathogen recognition by sensor CC-NLRs in this family
leads to oligomerization and membrane association of the NRC helpers.

TIR-NLR activation and immune signalling
TIR-NLRs adopt a very different signalling strategy compared with CC-NLRs. TIR domains possess NADase catalytic
activity; upon self-association, TIRs hydrolyze NAD+ and generate a variant-cyclic-ADP-ribose products (v-cADPR),
which is hypothesized to activate downstream signalling [19,20]. The TIR domain of the animal SARM1 protein and
some bacterial and archaeal TIRs were first shown to have intrinsic NAD+ hydrolase activity [70,71]. Plant TIRs
share similar structures to that of SARM1 TIR and possess NADase activity dependent on a conserved glutamate
residue, albeit at much lower levels than SARM1 [19,20]. The NADase activity of isolated plant TIR domains requires
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Figure 3. Working model for TIR activation and signalling pathways

Upon TIR-NLR activation, resistosome formation causes the TIR domains (indicated by the green squares in the schematic model)

to oligomerize through AE and BE interfaces to activate NADase activity, which cleaves NAD or NADP+ to generate various small

molecules and ADP-ribosylation products (left). Alternatively, TIR domains may also self-associate through AE and DE interfaces

to form helical filaments, which can bind and hydrolyze DNA/RNA and generate 2′,3′-cAMP/cGMP (right). Extreme left: Roq1TIR

tetramer cryo-EM structure (PDB: 7JLX). Extreme right: L6TIR (PDB: 3OZI) tetramer structural model assembled through AE and

DE interfaces. The TIR monomer subunit structures are shown in green, yellow, lavender, and salmon with the catalytic glutamate

residues shown in red in the resistosome tetramer (left) and in orange in the AE–DE filament (right). The NADase activity products

ADPr-ATP/di-ADPR bind to EDS1/SAG101 complexes, while pRibAMP/ADP binds to EDS1/PAD4 complexes. This results in activa-

tion of their helper CCR-NLRs, NRG1, and ADR1, respectively. NRG1s promote cell death, whereas ADR1s induce SA biosynthesis,

achieved by triggering Ca2+ influx or through some other unknown mechanism(s). Solid arrows indicate confirmed links, dotted

arrows indicate tentative pathways.

self-association, with mutations in the AE or DE interfaces abolishing the NADase activity (as well as cell death
signalling), while the activity can be enhanced by using molecular-crowding agents (e.g., polyethylene glycol) that
promote self-association by increasing the effective protein concentration [19,20]. These observations suggest that
plant TIRs need to form higher order structures for NADase activation.

The TIR-NLR proteins ROQ1 from Nicotiana benthamiana and RPP1 from Arabidopsis recognize their cognate
effectors directly [25,26]. Unlike the ZAR1 resistosome that forms a disc-like pentamer structure with the N-terminal
CC domain helix protruding from its center, ROQ1 and RPP1 form tetrameric structures more like a triple-layered

476 © 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons
Attribution License 4.0 (CC BY).

D
ow

nloaded from
 http://port.silverchair.com

/essaysbiochem
/article-pdf/66/5/471/937853/ebc-2021-0072c.pdf by guest on 13 M

arch 2024



Essays in Biochemistry (2022) 66 471–483
https://doi.org/10.1042/EBC20210072

cylinder. Four LRR-JID/PL domain-effector complexes spread out at the one end, while the NB domains oligomer-
ize in the center and thereby drive the TIR domains to self-associate at the other end of the cylinder. TIR domain
self-association occurs through two AE and BE interfaces as two asymmetric pairs (Figure 3). While the AE interface
is conserved between the resistosome and isolated TIR domain structures, the BE interface is unique to the resisto-
some and was not observed in TIR X-ray structures, although it does involve some of the same residues involved in the
DE interface. Formation of the ROQ1 and RPP1 tetramers exposes two NADase catalytic sites in the two BE interfaces,
such that the tetramer includes two NADase-active TIR domains and two inactive domains. Fusion of plant TIRs to
the multimerization domain of SARM1 (octamer-forming) or to NLRC4 (which contains about ten protomers in
an open-ended ring) can activate cell death signalling in N. benthamiana [19,72]. Thus, TIR oligomerization works
upstream of activation of NADase activity, and the stoichiometry of the activated TIR complex is not strictly limited
to tetrameric structures. The presence of the BE interface in these resistosomes in place of the DE interface in some
TIR-alone crystal structures suggested the possibility that the latter could be a crystal artefact. However, a recent
study showed that the plant L7 TIR domain forms helical filaments with AE and DE interfaces that bind to dsDNA or
dsRNA molecules within the helical groove and can hydrolyze these molecules to release 2′,3′-cAMP/cGMP [73]. This
activity depends on the same active site residues involved in NADase activity. Hence, plant TIRs may adopt differ-
ent interface combinations (AE+DE or AE+BE; Figure 3) to initiate either 2′,3′-cAMP/cGMP synthetase or NADase
activity, respectively, which could both contribute to generation of downstream signalling molecules, possibly with
different signalling outcomes [73].

Signalling convergence and distribution: EDS1 and helper
NLRs
Two levels of signalling components are required downstream of the TIR domain catalytic activity
(NADase/2′,3′-cAMP/cGMP synthetase) leading to resistance outputs (Figure 3). The first level consists of
members of the EDS1 family of lipase-like proteins. EDS1 forms mutually exclusive heterodimers with its family
members PAD4 (phytoalexin deficient) or SAG101 (senescence-associated gene) [74–77]. The second level is
composed of the helper CCR-NLRs, NRG1 and ADR1, that work co-operatively with either the EDS1-SAG101 or
EDS1-PAD4 heterodimers, respectively, to mediate immunity [16,78–82]. It remains unclear how immune signals
are transferred from TIRs to these downstream signalling partners.

EDS1 family proteins feature an N-terminal lipase-like α/β-hydrolase-fold domain and a C-terminal EP domain
(named from the EDS1-PAD4 interaction), which is composed primarily of α-helical bundles [77]. Both EDS1 and
PAD4 contain a conserved SDH catalytic triad in the lipase-like domain, and the EP domains have a conserved
EPLDIA motif with unknown function [77,83–86]. The solved Arabidopsis EDS1-SAG101 heterodimer structure
and the modelled EDS1-PAD4 complex show that the two heterodimers adopt similar interaction profiles [77]. Their
interaction is mainly mediated by the N-terminal domains, with the αH helix in the EDS1 N-terminal lipase-like
domain fitting neatly into the groove of the N-terminal domain of PAD4 or SAG101. The C-terminal EP domains in-
teract weakly, creating cavity surfaces that are necessary for immune signalling mediated by both EDS1 heterodimers
[77,79,83,84,86–88]. One hypothesis has been that the products of TIR catalytic activity bind to this cavity to mod-
ify EDS1 heterodimers, and two recent preprints confirm this hypothesis. Huang et al. [89] show that TIR catalytic
activity results in the production of phosphoribosyl-AMP/ADP, which binds to the EDS1/PAD4 complex, while Jia
et al. [90] show that TIR activity also leads to ADPr-ATP production and binding to the EDS1/SAG101 complex. In
both cases, small-molecule binding causes conformational changes in the EDS1 complexes and results in engagement
with the ADR1 or NRG1 helper NLRs, respectively.

The helper CCR-NLRs, ADR1 and NRG1, represent an ancient branch of the CC-NLR gene family that occurs
in widely diverged plant lineages. This family is usually represented by only one or a few copies within each species
in contrast with the broad diversity of other CNL and TNL families. CCR-NLRs from various species, especially
Arabidopsis, are required for the function of all tested TNLs and some CNLs [16,65,91–94]. Studies in Arabidop-
sis revealed that ADR1 and NRG1 function differently: generally, AtADR1s are used by both TNLs and CNLs and
function upstream of the SA pathway to restrict pathogen growth, whereas AtNRG1s function mainly for cell death
induction by TNLs. AtADR1s and AtNRG1s work synergistically to provide effective resistance [78–81]. However,
another study showed that ADR1 can also mediate cell death induced by RRS1/RPS4 in Arabidopsis when NRG1s and
the SA pathway are blocked [95]. Transient overexpression of Solanum tuberosum ADR1 (StADR1) or NbNRG1
induces a resistance response that suppresses the accumulation of potato virus X without visible HR [16,91]. Thus, it
is reasonable to conclude that both ADR1 and NRG1 possess transcriptional reprogramming and cell death-inducing
capacities [95]. EDS1-PAD4 and EDS1-SAG101 heterodimers form two parallel signalling pathways with ADR1 and
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NRG1 acting downstream, respectively [79,81,86,87]. Several studies have suggested that the EDS1-SAG101 het-
erodimer works together with NRG1 in inducing cell death triggered by TIR-NLRs, whereas the EDS1-PAD4 het-
erodimer acting with ADR1 provides broader transcriptional defense in basal immunity used by both TNLs and
CNLs [79,86,88,96,97]. All TIR-NLRs tested so far in N. benthamiana require EDS1-SAG101 and NRG1 for activa-
tion of immunity [79,80,87], while the NbEDS1–NbPAD4–NbADR1 module has not yet been shown to contribute to
immunity in N. benthamiana. An expression profiling study showed that NbNRG1 is required for 80% of the tran-
scriptional changes induced by recognition of the bacterial XopQ1 effector in N. benthamiana, suggesting a major
role in this response [80]. The remaining 20% of transcriptional changes may be controlled by other signalling pro-
teins, possibly including NbADR1. The entire Arabidopsis AtEDS1–AtSAG101–AtNRG1 module can be transferred
into N. benthamiana to mediate TIR-NLR-triggered immunity [79]. However, combinations of these genes derived
from different species (e.g., AtEDS1 plus NbSAG101), or the AtEDS1–AtPAD4–AtADR1 module, cannot confer cell
death mediated by TIR-NLRs or restriction of pathogen growth in N. benthamiana [79,86,91]. This supports the idea
that EDS1 family proteins and helper CCR-NLRs coevolved separately in different species.

In summary, EDS1 family proteins seem to act as a signalling convergence node where the EDS1-PAD4 and
EDS1-SAG101 heterocomplexes work complementarily to collect immune signals from NLRs. These heterocom-
plexes further activate either ADR1 or NRG1 to execute different immune responses, which require their CCR do-
mains and Ca2+ channel activity. A reasonable hypothesis is that the EDS1 family node evolved as an adapter complex
to connect TNLs to a pre-existing CNL signalling pathway. No TNL, SAG101, or NRG1 proteins exist in monocots,
but the monocot TIR-only protein BdTIR possesses NADase activity and can induce EDS1- and NRG1-dependent
cell death in N. benthamiana [16,20,79,83]. It would therefore be interesting to learn how TIR-only proteins function
in monocot plants. Little is known of the physical connections between NLRs and EDS1. Some Arabidopsis TNLs
including RPS4, RPS6, and SNC1 have been reported to interact with EDS1 [53,98–100]. Effector-dependent associ-
ations between EDS1-SAG101 and NRG1, and EDS1-PAD4 and ADR1, have been proposed in Arabidopsis based on
genetic and molecular evidence [95]. However, how immune signalling is transferred from NLRs to the EDS1 node
and then activates helper RNLs remains unclear. Apart from mediating ETI triggered by plant intracellular NLRs,
the EDS1-PAD4-ADR1 module is reported to participate in immune responses mediated by the cell surface receptor
RLP23, suggesting that it may also function as a convergence point for PTI and ETI [101]. Two recent studies in Ara-
bidopsis reported that PTI and ETI mutually reinforce each other during resistance (Figure 1) [14,15]. The authors
argue that PTI provides the primary defense against most pathogens, and that ETI mediated by intracellular NLR
proteins enhances the transcription and protein stability of PRR signalling components, reversing the attenuation of
PTI caused by pathogens. Conversely, ETI responses could be strongly enhanced by activation of plant cell surface
immune receptors [102].

Summary
• Plant NLRs have evolved direct and indirect recognition mechanisms to detect pathogens. Direct

recognition is the dominant form in resistance to biotrophic filamentous pathogens such as fungi
and oomycetes.

• Selection imposed by direct recognition leads to evolution of effector proteins through modification
of surface residues that prevent interaction with host receptors.

• CNL and TNL proteins assemble into higher-order resistosomes after effector recognition. In CNL
resistosomes, the CC domains seem to act as Ca2+ channels on the PM while oligomerization of
TNLs activates TIR domain enzymatic functions that produce potential signalling molecules.

• EDS1–PAD4–ADR1 and EDS1–SAG101–NRG1 modules work differently and synergistically for ETI.

• Mapping physical connections between TIR-NLRs, EDS1 family proteins and NRG1 or ADR1, are
required to understand immune signal transmission during ETI.
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