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Majority of the human genome is transcribed to RNAs that do not encode proteins. These
non-coding RNAs (ncRNAs) play crucial roles in regulating the initiation and progression
of various cancers. Given the importance of the ncRNAs, the roles of ncRNAs in cancers
have been reviewed elsewhere. Thus, in this review, we mainly focus on the recent studies
of the function, regulatory mechanism and therapeutic potential of the ncRNAs including
microRNA (miRNA), long ncRNA (lncRNA), circular RNA (circRNA) and PIWI interacting RNA
(piRNA), in different type of cancers.

Introduction
Approx. 75% of the human genome is transcribed into RNA, while only 3% is transcribed into
protein-coding mRNAs [1]. According to the length, shape and location, non-coding RNAs (ncRNAs)
have been divided into different classes. Among them, microRNA (miRNA), long ncRNA (lncRNA), cir-
cular RNA (circRNA) and PIWI interacting RNA (piRNA) are the four major ncRNA types with distinct
functions in cancers. miRNAs are a kind of small RNA with approx. 22 nucleotides (nt) in length. miR-
NAs bind to the complementary sequence in targeted mRNA and cause RNA-induced silencing complex
(RISC) to degrade targeted mRNA (Figure 1) [2]. piRNA was first identified in Drosophila with 24–30 nt
in length. It mainly exists in germline cells and binds to PIWI family proteins to participate in epigenetic
regulation of chromatin [3]. LncRNAs and circRNAs are more than 200 nt long, but lncRNAs are linear,
while circRNAs are ringlike. Both lncRNAs and circRNAs can be transcribed from exon, intron, inter-
genic region or 5′/3′-untranslational regions and fold into complicated second structures, which facilitate
their interactions with DNA, RNA and proteins (Figures 2 and 3) [4]. LncRNAs and circRNAs regulate
gene expression through multiple mechanisms. They can play as miRNA decoy to prevent the targeted
mRNA degradation. They can modulate transcription factors to bind to promoters and thus regulate tar-
geted gene expression [5]. They can also work as scaffold to regulate protein–protein interactions and
the related downstream signaling pathways. Recently, some studies showed that lncRNAs and circRNAs
participated in epigenetic modulation of chromatin to regulate gene expression.

Abundant evidences have shown that ncRNAs play crucial roles in human malignancies. They can work
as oncogenes or suppressors to regulate cancer initiation and progression. Many ncRNAs can be released
from cancer cells into blood or urine and act as diagnostic markers or prognostic indicators. Here, we
mainly focus on overviewing the recently emerging studies of the four major ncRNAs in cancer.

miRNAs in cancers
Numerous studies have shown the important role of miRNAs in various cancers. Many miRNAs are highly
expressed in cancer cells and promote cancer development. Some miRNAs even regulate the progression
of multiple cancers. miR-126 is known to be highly expressed in breast [6] and colorectal cancers [7]. Re-
cently, Silva et al. showed that miR-126 was also highly expressed in human B-ALL [8]. Forced expression
of miR-126 in mouse hematopoietic stem progenitor cells resulted in B-cell leukemia. Further study re-
vealed that overexpression of miR-126 down-regulated the expression of p53 and its associated genes [9],
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Figure 1. The biogenesis and effector machineries of miRNAs

miRNAs are transcribed as pri-miRNAs by RNA polymerase II. Following processing by the Drosha complex, pre-miRNAs are

exported to the cytoplasma by exportin 5 (XPO5). Mature miRNAs are produced by Dicer and TAR RNA-binding protein 2

(TARBP2)-mediated processing and loaded into the RISC. miRNAs function through degrading mRNA or repressing translation

to regulate cancer.

while suppression of miR-126 triggered apoptosis and inhibited B-ALL progression in xenograft mice. miR-155 has
been identified as an oncogene in many kinds of cancers, including colon, breast, lung, gastric and liver cancer
[10–14]. In agreement with its oncogenic roles, miR-155 has been regarded as a therapeutic target in different cancers.
Recently, miR-155 was further shown to be up-regulated in plexiform neurofibromas [15]. Up-regulated miR-155
increased proliferation and sphere formation of plexiform neurofibromas initiating cells. Inversely, anti-miR-155
nucleic acid decreased tumor number in mouse spontaneous plexiform neurofibromas model. miR-215 is another
oncogene and up-regulated in glioblastoma by hypoxia [16]. Hypoxia-elevated miR-215 targets epigenetic regulator
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Figure 2. The biogenesis and effector machineries of lncRNAs

LncRNAs are transcribed by RNA polymerase II. LncRNAs function as guide molecules to recruit factors for chromatin remod-

eling, as decoys to hinder transcriptional factors from the promoter of target gene, as sponges of associated miRNA to prevent

degradation of target gene, or as scaffolds to facilitate interaction of associated proteins.

KDM1B, to regulate the related downstream signaling and thus maintain glioblastoma initiating cell growth [17].
Some miRNAs, such as miR-105 can be secreted by cancer cells via exosome to modulate tumor microenvironment.
miR-105 is highly expressed in metastatic breast cancer cells [18]. After secretion, miR-105-containing exosomes en-
ter into endothelial monolayers and suppress the expression of the tight junction protein ZO-1, resulting in elevated
vascular permeability and cancer metastasis [18]. Zhuo et al. further showed that circulating miR-105 could act as a
clinical indicator of breast metastasis.

Some miRNAs have been regarded as tumor suppressors, such as let-7 and miR-34a. The let-7 miRNAs contain
many family members. Most of them are down-regulated in different types of cancers, including hepatocellular carci-
noma [19], non-small cell lung cancer [20], prostate cancer [21], breast cancer [22], colon cancer [23] and pancreatic
cancer [24]. Let-7 miRNAs target and down-regulate many oncogenic genes including E2F1, ARID3B, K-RAS and
c-Myc, resulting in suppression of tumor progression [25]. Furthermore, higher levels of let-7 indicate better progno-
sis in hepatocellular carcinoma and thyroid carcinoma [26]. Recently, Pablo et al. showed that let-7 also targeted Long
Interspersed Element class 1 (LINE-1), the only autonomously active transposable elements highly expressed in lung
cancer, to impair its translation and reduce its mobilization [27]. They proposed that Let-7 sustained somatic genome
integrity by restricting LINE-1 retrotransposition. miR-34a is another tumor suppressor that plays an important role
in suppressing cancer progression. We previously showed that miR-34a was critical for asymmetric division of colon
cancer stem cells (CCSCs) [28]. Silencing miR-34a inhibits asymmetric cell division, promotes CCSC self-renewal
and thus accelerates colon cancer progression. Kennerdell et al. also showed that miR-34a was decreased in most
of the colon cancer cell lines and low levels of miR-34a predicted poor prognosis [29]. Tumor suppressor miR-29
is identified in microenvironment of chronic lymphocytic leukemia (CLL). In CLL, miR-29 targets Tumor-Necrosis
Factor (TRAF4), a factor associated with CD40 activation and B-cell receptor signaling [30]. Down-regulated miR-29
elevates the expression of TRAF4 and activates CD40 signaling in CLL. Reversely, activated CD40 represses the ex-
pression of miR-29. miR-29-TRAF4-CD40 signaling axis plays as a negative feedback regulation loop in CLL. We
have summarized the recent studies on miRNA functions in cancer in Table 1.
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Figure 3. The biogenesis and effector machineries of circRNAs

circRNAs are transcribed by RNA polymerase II and cyclized by backsplicing. circRNAs function as scaffolds to facilitate interaction

of associated proteins, or as miRNA sponges to prevent degradation of target gene.

lncRNAs in cancers
Like miRNAs, lncRNAs also play as oncogenes or suppressors to regulate tumorigenesis and progression. HOTTIP,
derived from HOXA gene, has been shown to be highly expressed in many caners. Recently, Luo et al. demonstrated
that HOTTIP played as an oncogene in acute myeloid leukemia (AML) [31]. They found that HOTTIP was aber-
rantly elevated in AML and worked as an epigenetic regulator to modulate hematopoietic gene-associated chromatin
signature and transcription. LncTCF7 is another lncRNA transcribed from TCF gene locus. Wang et al. showed that
lncTCF7 was highly expressed in liver cancer stem cells (CSCs) and was important for liver CSC self-renewal [32].
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Table 1 List of miRNAs and their role in cancer development

Cancer type Oncogene Tumor suppressor

Breast let-7 sustains self-renewing [73] miR-30 promotes apoptosis [76]

miR-141 promotes metastasis [74] miR-140 inhibits proliferation [77]

mi-766 promotes proliferation,
chemoresistance,
migration and invasion

[75] miR-143 inhibits proliferation [78]

miR-600 inhibits stemness [79]

miR-7 inhibits cell growth [80]

Lung miR-518b promotes proliferation
and metastasis

[81] let-7 represses expression
of k-Ras

[83]

miR-629 promotes proliferation
and metastasis

[82] miR-200a represses EMT [84]

miR-190b suppresses cell growth [85]

Ovarian let-7 elevates multiple drug
resistance

[86] miR-134-3p reduces multiple drug
resistance

[87]

miR-126 inhibits proliferation [88]

Prostate miR-141 promotes proliferation [89] miR-145 inhibits proliferation
and invasion

[90]

miR-34 reduces stemness [91]

Colorectal miR-1274a promotes proliferation
and metastasis

[92] miR-137-3p inhibits migration [94]

miR-592 promotes proliferation
and clonogenicity

[93] miR-22 represses invasion [95]

miR-3622a-3p reduces stemness [96]

Brain miR-137 promotes proliferation [97] miR-128 inhibits proliferation
and differentiation

[98]

miR-136 promotes apoptosis [99]

Pancreatic miR-200b-3p sustaining
self-renewing

[100] miR-142-5p inhibits proliferation [101]

Liver miR-93-5p suppresses
senescence

[102] miR-342-3p inhibits proliferation [103]

miR-1225-5p inhibits proliferation
and invasion

[104]

miR-589 suppresses stemness [105]

Stomach miR-635 inhibits proliferation
and invasion

[106]

miR-876-5p inhibits proliferation
and invasion

[107]

Leukemia miR15/16 Sustains stemness [108] miR-99 suppresses stemness [109]

miR-185 impairs survival of
drug-resistant cells

[110]

miR-146a alleviates myeloma
proliferation

[111]

Mechanistically, LncTCF7 recruited SWI/SNF complex to TCF7 promoter and activated Wnt signaling for sustain-
ing liver CSC self-renewal. Epigenetically induced lncRNA1 (EPIC1) is first identified as an oncogene in luminal B
breast cancer [33]. Recently, EPIC1 has been found to be highly expressed in glioma [34], cholangiocarcinoma [35],
pancreatic [36] and lung cancers [37]. Elevated EPIC1 promotes tumor growth by interacting with MYC to elevate
its target genes, such as CDKN1A, CCNA2 and CDC20 [33]. Recently, Li et al. showed that linc0624, an antisense
strand of CHD1L, worked as molecular decoy to segregate HDAC6–TRIM28–ZNF354C transcriptional corepressor
complex away from the specific genomic loci, thus promoting the progression of hepatocellular carcinoma [38].

Some lncRNAs act as suppressors to suppress cancer development and progression. Pvt1b, a p53-dependent
isoform of the lncRNA, suppresses lung cancer growth by down-regulating c-Myc expression [39]. DIRC3 is
down-regulated in melanomas and its lower expression level is associated with shorter survival [40]. Further study
reveals that DIRC3 inhibits proliferation of melanoma cells via elevating the expression of tumor suppressor IGFBP5.
Recently, SATB2-AS1, an antisense transcript of tumor suppressor SATB2, has also been shown to be down-regulated
in colorectal cancer. Knockdown of SATB-AS1 significantly increases cell proliferation, migration and invasion [41].
Mechanistically, SATB-AS1 works as a scaffold to recruit p300 to SATB2 promoter, up-regulating SATB2. Elevated
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SATB2 recruits HDAC1 to Snail promoter, suppressing Snail expression and epithelial-to-mesenchymal transition.
MALAT1, a nuclear lncRNA, is also a tumor suppressor in breast cancer. Jong et al. showed that knockout of MALAT1
promoted breast cancer metastasis through disrupting the recruitment of transcription factor TEAD and co-activator
YAP to the target gene promoters [42]. We have summarized the recent studies on lncRNA functions in cancer in Table
2.

circRNAs in cancers
circRNAs are recently identified ncRNA type and act as either tumor suppressors or oncogenes. For instance, circ-
CDYL is down-regulated in colon cancer, bladder cancer and triple-negative breast cancer and its underexpression is
positively correlated with patient survival [43]. Further studies shows that overexpression of circCDYL promots apop-
tosis and inhibits proliferation of breast cancer cells [44]. Mechanically, circCDYL functions as a sponge to protect
TP53INP1 from miR-190a-3p-mediated down-regulation [45]. The expression of circFOXO3 is lower in the breast
cancers compared with that in adjacent benign tissues [46]. Interestingly, circFOXO3 works not only as an miRNA
sponge to protect Foxo3 mRNA from attack, but also as a scaffold to bridge p21 and CDK2 to inhibit cell cycle pro-
gression [47].

In contrast with the tumor suppressive roles, some cirRNAs have been identified as oncogenes. circ-CCAC1,
also known as cholangiocarcinoma-associated circular RNA1, is highly expressed in cholangiocarcinoma and
cholangiocarcinoma-derived endothelial vessels [48]. In tumor cells, circCCAC1 recruits miR-514a-5p to up-regulate
YY1 and its downstream gene CAMLG, which elevates the cell activity [48]. In endothelial vessels, circ-CCAC1
up-regulates SH3GL2 by sequestering EZH2, thus reducing intercellular junction protein levels and increasing cell
leakiness [48]. circRNAHIPK3 derived from exon 2 of HIPK3 gene is highly expressed in many types of cancer, in-
cluding glioma [49], prostate cancer [50], breast cancer [51], colorectal cancer [52] and renal cancer [53]. Through
screening of 424 miRNAs, 9 miRNAs showed great suppressive ability on the HIPK3 exon 2. Interestingly, all the
nine miRNAs have been identified as tumor suppressors and suppressed by circHIPK3 [54]. These studies demon-
strate that the expression of circRNAs is dynamically regulated in different cancers, and regulates cancer progression
through distinct mechanisms. We have summarized the recent studies on circRNA functions in cancer in Table 3.

piwiRNAs in cancers
Generally, piRNAs are expressed in the germline, but recent studies have demonstrated that piRNAs are also ex-
pressed in cancer cells, where piRNAs play crucial role in repression of transposable elements cleaving, deadenyla-
tion and decay. For instance, piRNA-823 has been identified to regulate proliferation and migration of a variety of
cancer cells [55,56]. In multiple myeloma (MM), silencing piRNA-823 induces the expression of apoptosis-related
genes by modulating de novo DNA methylation [57]. In colorectal cancer, inhibition of piR-823 suppresses cell pro-
liferation and induces cell apoptosis by activating apoptosis-associated transcription factor HSF1 [58]. Cordeiro et al.
examined several piRNA pathways in classical Hodgkin lymphoma and found that piR-651 was down-regulated in
classic Hodgkin lymphoma patients compared with that in healthy controls. In addition, low levels of piR-651 are pos-
itively correlated with short overall survival of the classic Hodgkin lymphoma patients [59]. piRNA-54265 is highly
expressed in cancer tissue and serum of the colorectal cancer patients. piRNA-54265 activates STAT3 signaling by
facilitating PIWIL2/STAT3/SRC complex assemble [60]. Thus, piRNAs are also important for cancer progression.

Targeting ncRNAs in cancer therapy
Recently, several ncRNAs have been used as novel therapeutic targets to treat cancers. Considering different roles of
ncRNAs in specific cancer types, ncRNA mimics, antisense oligonucleotides (ASOs) or small molecule drugs have
been applied for the treatment of cancers. miR-34a mimic packaged in a liposomal nanoparticle, called MRX34, has
gone through a phase I clinical trial in patients with advanced solid tumor [61]. Moreover, miR-31-3p and miR-31-5p
have been considered as colorectal cancer predictive biomarkers in phase III clinical trial [62,63]. Li et al. took a com-
putational approach to design and identify small molecules on the base of the predicted miRNA hairpin precursor
structures. They found that a benzimidazole analog selectively inhibited the processing of pri-miR-96 into oncogenic
miR-96 and thus elevated miR-96 target gene expression and promoted cancer cell apoptosis [64]. Further optimiza-
tion of benzimidazole turns out a dimeric benzimidazole and bisbenzimide compound, targaprimir-96, which shows
a favorable pharmacokinetics profile and is effective at releasing tumor burden in a triple-negative breast cancer
xenograft mouse model [65]. Another dimeric benzimidazole and bisbenzimide analog, targaprimir (TGP)-515, is
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Table 2 List of lncRNAs and their role in cancer development

Cancer type Oncogene Tumor suppressor

Breast 00617 promotes metastasis [112]

XIST promotes proliferation
and inhibit apoptosis

[113] SCIRT restrains
transcriptional
program of
tumor-initiating cells

[121]

H19 promotes stemness [114]

ROR elevates multiple drug
resistance

[115] PVT1 inhibits cell growth [122]

HOTAIR promotes proliferation
and metastasis

[116]

01271 promotes metastasis [117]

DILA1 promotes proliferation
and multiple drug
resistance

[118]

ERINA promotes cell-cycle
progression

[119]

TROJAN promotes proliferation
and invasion

[120]

Ovarian HOTAIR promotes stemness [123]

LINP1 promotes proliferation
and invasion

[124]

Brain HAS2-AS1 promotes invasion [125] ROR inhibits proliferation [129]

H19 promotes
angiogenesis

[126]

CRNDE promotes proliferation
and invasion

[127]

XIST promotes proliferation
and invasion

[128]

Liver HOTAIR promotes proliferation
and invasion

[130] DILC suppresses stemness [136]

PTENP1 suppresses
proliferation and
invasion

[137]

β-Catm sustains self-renewing [131]

TRG-AS1 promotes proliferation
and invasion

[132] TSLNC8 suppresses
proliferation and
metastasis

[137]

HUR1 promotes proliferation [133] inhibits cell growth, cell
survival and
transformation

[138]

01138 promotes proliferation,
invasion and
metastasis

[134] TCAM1P-004 inhibits cell growth, cell
survival and
transformation

[138]

MALAT1 promotes proliferation
and inhibit apoptosis

[135] RP11-598D14.1

Colon URHC promotes proliferation
and invasion

[139] PGM5-AS1 inhibits proliferation
and invasion

[142]

CCAT2 elevates chromosomal
instability and promote
proliferation and
invasion

[140] 00959 suppresses migration
and invasion

[143]

PURPL promotes cell growth [141]

Lung TRINGS protects cancer cells
from necrosis

[143] 00261 active DNA damage
response and block
proliferation

[146]

MIR22HG promotes cell survival [144]

GUARDIN sustains genomic
stability and prevent
apoptosis and
senescence

[145]

Leukemia CRNDE promotes proliferation [147] PANDA inhibits cell growth [148]
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Table 3 List of circRNAs and their role in cancer development

Cancer type Oncogene Tumor suppressor

Breast UBE2D2 elevates multiple drug
resistance

[149] 000554 represses EMT [152]

HIPK3 inhibits proliferation
and invasion

[153]

DCAF6 sustains stemness [150]

DNMT1 activates autophage [151]

Lung MYLK promotes glycolysis
and proliferation

[154]

CPA4 promotes stemness [155]

LDLRAD3 promotes proliferation
and survival

[156]

Colon UBAP2 promotes proliferation
and metastasis

[157]

Brain POSTN promotes proliferation
and metastasis

[158] SHPRH suppresses
proliferation

[159]

Liver 0000517 promotes glycolysis
and clonogenicity

[160]

0067934 promotes proliferation
and metastasis

[161]

ASAP1 promotes proliferation,
colony formation
migration and invasion

[162]

CDYL sustains stemness [163]

10720 promotes EMT [164]

Gastric 0000144 promotes proliferation
and clonogenicity

[165]

NRIP1 promotes proliferation
and glycolysis

[166]

Ovarian FGFR3 promotes proliferation
and EMT

[167] 9119 suppresses
proliferation

[169]

ITCH suppresses
proliferation, invasion
and glycolysis

[170]

UBAP2 promotes proliferation
and inhibits apoptosis

[168]

MTO1 suppresses
proliferation and
invasion

[171]

identified to target pri-miR-515, resulting in up-regulation of human epidermal growth factor receptor 2 and en-
hancement of the therapeutic efficacy of the anti-human epidermal growth factor receptor 2 antibody in breast can-
cer cells [66]. Likewise, a bisbenzimide analog called targarpremir-210, also called TGP-210, is identified to bind to
pre-miR-210, leading to the inhibition of processing of mature miR-210 and suppressing the outgrowth of xenograft
tumors in mice [67]. The attachment of a nuclease recruitment module on to targarpremir-210 offers a conjugate,
TGP-210-RL, which is able to recruit RNase L on to pre-miR-210 to induce the degradation of pre-miR-210. Com-
pared with TGP-210, TGP-210-RL conjugate exhibits higher binding affinity to the pre-miR-210 while lower affinity
to DNA [68]. Recently, an oligonucleotide inhibitor of miR-155, called cobomarsen, has been reported to decrease
cell proliferation and induces cell apoptosis in Diffuse Large B-cell Lymphoma. Clinically, this compound efficiently
inhibits tumor growth without obvious side effects on the patients, supporting its potential therapeutic application in
Diffuse Large B-cell or other types of Lymphoma [69]. Further computational and experimental studies demonstrates
that mitoxantrone is able to directly bind to pre-miR-21 and subsequently inhibits Dicer-mediated biogenesis of onco-
genic miR-21 [70]. Several studies have demonstrated that ASOs can be used as inhibitors to block lncRNAs [71]. In
mouse model, ASOs targeting MALAT1 blocks metastasis of lung cancer cells [72]. Together, targeting ncRNAs has
been showing a promising approach for cancer therapy.
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Conclusion
ncRNAs contain various classes and participate in regulation of the progression of various types of cancers. Some ncR-
NAs highly exist in serum or urine of the cancer patient and are capable to work as diagnostic markers or prognostic
indicators. Many clinical trials have also been conducted by targeting ncRNAs and exhibited promising therapeutic
effects. With deep investigation of the mechanisms, we have been broadening our understanding of ncRNA func-
tions. For instance, miRNAs are originally considered to suppress target gene expression by binding to the 3′-UTR
regions. Recently, we have realized that miRNAs could also bind to other regions of the genes and even up-regulate
target gene expression. Now we also know that some lncRNAs actually can encode small peptides to regulate bio-
logical processes. However, there are still many unknown ncRNAs, particularly the new ncRNA classes with precise
roles need to be investigated. Even for the well-known ncRNAs, their function and regulatory mechanisms could be
changed with spatial-temporal alteration, such as expression pattern, structure and interacting proteins. Therefore,
efforts still need to make to understand the precise function and mechanisms of the ncRNAs.

Targeting ncRNA therapies have been conducted in many clinical trials. Emerging technologies and new ap-
proaches will contribute to even better outcomes. For instance, targeting ncRNA approaches could be co-operated
with immune therapy or other therapeutic treatments. Human organoids can be used for investigating functions or
preclinical effects of ncRNAs in patients. Targeting ncRNAs by CRISPR-mediated gene editing may also be worth
trying for certain diseases. Many ncRNAs both functions in physiology and pathology. Therefore, deep investigation
of the function and mechanism will help to identify the ncRNAs specifically regulating cancers and reduce the adverse
side effects. Overall, ncRNAs are heavily involved in regulating various cancers and targeting ncRNAs have exhibit
promising therapeutic effect, while we still need to keep making efforts to reveal the mystery of ncRNA functions.

Summary
• ncRNAs work as oncogenes or tumor suppressors to regulate carcinogenesis and progression.

• ncRNAs regulate cancer progression through distinct mechanisms and represent potential drug tar-
gets or therapeutic entities.

• Clinical trials have been conducted to treat cancers by targeting ncRNAs and exhibited promising
therapeutic effect.
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