
Essays in Biochemistry (2020) 64 753–764
https://doi.org/10.1042/EBC20200016

*Present address: Centre
Hospitalier Universitaire de
Rennes, Rennes, France.

Received: 20 June 2020
Revised: 01 August 2020
Accepted: 13 August 2020

Version of Record published:
26 August 2020

Review Article

Alerting the immune system to DNA damage:
micronuclei as mediators
Kate M. MacDonald1, Soraya Benguerfi2,* and Shane M. Harding1,2,3

1Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; 2Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada; 3Department
of Radiation Oncology and Immunology, University of Toronto, Toronto, ON, Canada

Correspondance: Shane M. Harding (shane.harding@uhnresearch.ca)

Healthy cells experience thousands of DNA lesions per day during normal cellular
metabolism, and ionizing radiation and chemotherapeutic drugs rely on DNA damage to
kill cancer cells. In response to such lesions, the DNA damage response (DDR) activates
cell-cycle checkpoints, initiates DNA repair mechanisms, or promotes the clearance of ir-
reparable cells. Work over the past decade has revealed broader influences of the DDR,
involving inflammatory gene expression following unresolved DNA damage, and immune
surveillance of damaged or mutated cells. Subcellular structures called micronuclei, con-
taining broken fragments of DNA or whole chromosomes that have been isolated away from
the rest of the genome, are now recognized as one mediator of DDR-associated immune
recognition. Micronuclei can initiate pro-inflammatory signaling cascades, or massively de-
grade to invoke distinct forms of genomic instability. In this mini-review, we aim to provide
an overview of the current evidence linking the DDR to activation of the immune response
through micronuclei formation, identifying key areas of interest, open questions, and emerg-
ing implications.

Introduction: DNA damage, cell-cycle checkpoints, and
micronuclei
In every human cell, every day, tens of thousands DNA lesions are sensed and repaired, owing to a suite
of intrinsic programs collectively called the DNA damage response (DDR) [1]. Broadly, the DDR is a
cascading set of molecular signals that senses DNA damage, activates cell-cycle checkpoints, repairs the
damage, and releases the checkpoint upon damage resolution so that cells can continue to divide [1]. This
is, however, not a perfect system. Cells can “pass” checkpoints despite the presence of unresolved lesions,
a process known as checkpoint adaptation with potentially dire consequences [2]. A single mitotic error
has been shown, over several generations, to culminate in the altered genomic landscape characteristic of
adult cancers [3–5]. Recent work has expanded our understanding of the role of the DDR, demonstrating
that through several mechanisms it can alert the immune system to ongoing DNA damage, promoting
immunological recognition and elimination of genetically unstable cells.

The precise molecular cascade initiated by DNA damage is highly specific to the type of DNA lesions
that triggered it (double-stranded breaks [DSBs] vs. chemically altered bases, for instance) [1], and is
influenced by factors such as cell type, genetic background, and phase of the cell cycle [2,6–8]. There
are DSB-induced cell-cycle checkpoints within S phase and at the G1/S and G2/M transitions. All of these
checkpoints serve in part to avoid replicating or entering mitosis with damaged DNA, and each checkpoint
employs a specific signaling program for initiating, maintaining, and eventually reversing the checkpoint.
Each of the DSB-induced cell-cycle checkpoints are initiated by the ataxia telangiectasia mutated (ATM)
and/or ATM-related (ATR) kinases (reviewed in depth by [2]). The conventional understanding is that
when DNA damage is repaired, ATM and ATR signaling stops, and the checkpoint actively dissolves in
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part through the activity of phosphatases and deubiquitylating enzymes, allowing cell cycle re-entry [2]. However,
multiple lines of evidence from yeast to humans indicate that cell-cycle checkpoints are not so dichotomous [9].
Instead, checkpoints appear to be engaged and released at certain DSB thresholds, and at certain magnitudes of
ATM/ATR signaling, which circumvents the checkpoint and allows cell-cycle progression despite the presence of
unresolved DNA lesions [2,9,10]. Cells entering mitosis with DNA damage are especially vulnerable to the gener-
ation of gross chromosomal abnormalities [4,5], and DSB repair is actively suppressed during M phase to counter
amplification of chromosomal instability [11,12]. Cancer cells may leverage imperfect checkpoint signaling to move
through mitosis with abnormal karyotypes or high mutational burdens, but to date the reasons for checkpoint adap-
tation in otherwise healthy cells are not entirely clear [13]. In yeast, checkpoint adaptation not only leads to genomic
instability, but also appears to facilitate repair of the damage by mechanisms active in cell-cycle phases after the one
in which damage was initially incurred, thus maximizing survival [14]. In multicellular organisms, checkpoint adap-
tation may promote mitotically driven cell death, which could serve to eliminate irreparably damaged cells, especially
in cell types not prone to undergo apoptosis [9]. Similarly, recent evidence suggests that traversal of mitosis with DNA
damage can trigger post-mitotic inflammatory signaling and immune-mediated elimination of the damaged cell(s),
limiting genomic instability and tumorigenesis [15,16].

One potential fate for cells surviving checkpoint adaptation with unresolved DNA damage is the formation of
micronuclei. Micronuclei contain either acentric chromosomal fragments or whole lagging chromosomes, depending
on the type of insult to which the cell has been exposed. For example, when cells fail to repair DSBs, often the most
lethal lesion caused by ionizing radiation (IR) [17], they generate untethered, acentric pieces of the genome [18,19]
while exposure to other genotoxic agents, including mitotic spindle poisons such as paclitaxel or nocodazole, cause
whole chromosome segregation errors [5,20,21]. At mitosis, these acentric fragments or whole lagging chromosomes
are left behind at the metaphase plate as the rest of the genome segregates, and they are not incorporated within the
newly forming nuclear envelopes at mitotic exit [18,22,23]. Instead, they are sequestered into micronuclei, a fragment
of double-stranded DNA encased in a version of a nuclear envelope, residing in the cytosol at interphase and distinct
from the primary nucleus [19,24]. Micronuclei have emerged as important features of and functional entities in cells
that have experienced DNA damage, in at least two major ways: directly, when micronuclear envelope rupture exposes
double-stranded DNA to the cytosol, where it is recognized by viral pattern recognition receptors (PRRs) and invokes
an inflammatory signaling program [16,25–27]; and indirectly, as micronucleation is one of the initiating events in a
cascade of accumulating genomic instability, potentially leading to the generation of neoantigens implicated in cancer
immunoediting [4,5,21]. Micronuclei generation following unresolved DNA damage therefore acts as a mediator
between the DDR and immune recognition, and this mini-review will highlight several mechanisms through which
DNA damage-immune system crosstalk can be achieved.

Immune recognition of DNA damage in the clinic: radiation
therapy and immunoncology
IR has been used to treat cancer since 1896, and nearly half of all cancer patients today receive radiotherapy (RT) as
part of their treatment [28]. RT can directly cause the DNA damage-driven clonogenic death of carcinoma cells, often
by mitotic catastrophe [29,30]. Seminal observations have shown that radiation therapy alone could not control tumor
growth in mice that had their CD8+ T cells depleted [31], indicating the immune system may also play an important
role during RT for human cancers. This is one conceptual basis for the clinical combination of radiotherapy with
immune checkpoint blockade (ICB): a reactivation of suppressed lymphocyte activity, so the immune-stimulating
properties of RT-induced DNA damage can be fully realized (reviewed in depth by [32]). Systemic anti-tumor im-
mune responses have been of clinical interest since the abscopal effect was presented by RH Mole in 1953, describing
a phenomenon whereby distal tumors regress outside the irradiated field [33]. Abscopal effects are rarely observed
clinically, but an immune-mediated systemic response to localized therapy has become a key focus of efforts to under-
stand RT-ICB synergy [34]. RT-ICB has seen successes in clinical use [35–38] but as studies continue, it is clear that
considerable gaps remain in our understanding of DNA damage-immune interactions, and their role at both a local
and systemic level. Further work is necessary to fully understand the immune-mediated responses to DNA damage,
and whether this is practical to realize in a clinical setting when treating a single lesion in metastatic disease [39]. In
the remainder of this review, we will highlight the specific cell-intrinsic mechanisms that connect DNA damage to
immune activity, which have the potential to be harnessed for clinical use.
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Micronuclei are a reservoir of immunostimulatory nucleic
acids
One mechanism linking the DDR to innate immune activation is the release of endogenous, immunostimulatory
nucleic acids into the cytoplasm. Up-regulated inflammatory signaling is a well-known consequence of IR exposure
[40], and in 2017 several groups showed that this DNA damage-induced signature depends on the accumulation
of endogenous DNA fragments in the cytosol, including within micronuclei [16,25–27]. Damage-induced micronu-
clear fragments recruit their own nuclear envelope at mitotic exit, but the process by which this occurs is not well
understood, and compared with the primary nucleus it appears to be largely defective [22,23]. Micronuclear en-
velopes are structurally fragile, tending to rupture in interphase and exposing double-stranded DNA (dsDNA) to
the cytosol [20,22]. Here, dsDNA is recognized by viral PRRs specific for this ligand such as cyclic GMP-AMP syn-
thase (cGAS) [16,25–27]. cGAS generates cGAMP, a ligand for ER-bound STING (stimulator of interferon genes)
and STING activates the transcription factors IRF3 and NF-κB, leading to induction of a suite of inflammatory genes
and cytokine secretion [16,41–43]. These secreted cytokines can act in an autocrine and paracrine fashion, for ex-
ample through recognition of IFN-β by type I interferon receptors, which signal to JAK/STAT to further up-regulate
interferon-stimulated genes (reviewed by [44]). An inflammatory signaling cascade is thus a possible downstream
consequence of unresolved DNA damage, but negative regulators will balance this response. For example, the TREX1
3′ exonuclease may localize to ruptured micronuclei, degrading the exposed dsDNA and obviating recognition by
cGAS [45]. Some micronuclei are removed from the cytosol by autophagy, similarly preventing PRR nucleation [46].
The specific circumstances under which this degradation might occur remain to be fully understood, but prior work
suggests that TREX1 induction relies on a particular threshold of DNA damage [3,47], and these observations indi-
cate that cGAS-STING-mediated inflammatory signaling is not an inevitable outcome of micronuclei formation or
rupture. Collectively, these innate viral response pathways have the potential to alert the immune system following
cell-intrinsic double-stranded breaks and micronucleation. Through pattern recognition receptors, micronuclei are
a nexus for the interface between DNA damage and the tumor immune microenvironment (Figure 1A–E).

Tumors with a high burden of DDR gene mutations tend to be those with the greatest increase in cytosolic
dsDNA-driven inflammatory signaling, and inhibiting DDR proteins such as ATR potentiates this response [48,49].
That said, should major unresolved DNA damage events cause cell death by mitotic catastrophe or other means rather
than survival and micronucleation, this would preclude dsDNA release and a prolonged inflammatory response. Ad-
ditionally, the ability of a cell to bypass a checkpoint, necessary for micronuclei formation, probably depends on the
actual burden of DNA damage [50–52]. Inhibition of non-homologous end joining (NHEJ), which maintains a high
load of DSBs post-IR, stops cells from progressing into mitosis and initiating micronucleus-associated inflammatory
signaling, and prevented an abscopal response with RT-ICB in a murine melanoma model [16]. While the G2/M
checkpoint has been experimentally implicated in this process, checkpoints at other phases in the cell cycle are also
likely to interfere with micronucleation. Future work is necessary to fill these gaps in our understanding of DNA dam-
age burden, cell-cycle checkpoint engagement, and downstream inflammatory responses, particularly as they relate
to micronuclei formation and cytosolic dsDNA sensing.

Other sources of immunostimulatory nucleic acids
Nuclear DNA, exposed to the cytosol via micronuclei, is not the only potential source of immunostimulatory dsDNA.
Exosomes are extracellular vesicles that contain protein, lipids, DNA and/or RNA, and they may play a role in en-
dogenous DNA exposure via a paracrine signaling-like mechanism. Immunostimulatory dsDNA or cGAMP can be
packaged into exosomes and released from damaged cells, where they are picked up by immune or other cell types
to initiate STING signaling [53–57]. Ionizing radiation is also known to cause mitochondrial damage, and failure to
repair this damage leads to the release of mitochondrial DNA (mtDNA) which, similar to bacterial genomes, is exten-
sively hypomethylated [58,59]. Like micronuclear DNA, mtDNA is recognized by cGAS to drive STING-mediated
inflammatory signaling [58] (Figure 1J). Disrupted mitochondria can also trigger a JNK-driven retrograde signal-
ing cascade to block the activity of DDR protein 53BP1 in the primary nucleus, permitting extensive end resection
at nuclear DSBs and the cytosolic accumulation of chromatin fragments [60]. Furthermore, mitochondrial damage
can intersect DNA repair and inflammatory cascades with programmed cell death, through p53. P53 is an essential
gatekeeper of the G1/S cell-cycle checkpoint, and is also responsible for executing apoptosis via the intrinsic mito-
chondrial pathway [61,62]. However, given that apoptosis is generally considered an immunologically silent event
(reviewed by [63]), the influence of mtDNA on DDR-mediated inflammatory programs may not directly follow from
intrinsic apoptotic signaling. Primary nuclear envelope rupture, for example via chromatin bridge breakage, is yet an-
other mechanism whereby dsDNA can become exposed to the cytosol [3,4,45]. DSBs can accumulate in the primary
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Figure 1. Inflammatory signaling following DNA damage can be achieved via several cytosolic nucleic acid recognition

pathways

(A) DNA damage in the nucleus causes dsDNA fragments to become separated from the rest of the genome, and can cause the

aberrant expression of endogenous retroviral elements (ERVs) as dsRNA. (B) dsDNA fragments can be sequestered into micronu-

clei, residing in the cytoplasm. (C) Micronuclear envelopes are prone to rupture, whereupon cGAS can recognize the enclosed

dsDNA, (D) produce cGAMP, and (E) signal through STING to promote inflammatory gene expression. (F) dsRNA in the cytosol,

which may come from ERV dsRNA or from (G) transcribed dsDNA, is recognized by RLRs such as RIG-I and MDA5. (H) This

alerts mitochondrion-bound MAVS, (I) leading to expression of inflammatory genes. (J) Mitochondrial DNA is another cGAS ligand,

and will also initiate STING-driven inflammatory signaling. (K) Ultimately, inflammatory gene expression induced through any of

these pathways can result in extracellular release of cytokines such as type I interferons, allowing a damaged cell to influence its

microenvironment.

nucleus if these ruptures are not immediately repaired, which primes micronuclei formation in subsequent mitoses
[64]. Understanding the specific influences that result in death over damage repair in both the primary nucleus and
mitochondria has long been an area of active research, and future studies will expand our understanding of their roles
in DDR-driven immune recognition or indolence.

Immunostimulatory RNA fragments can also be generated as a consequence of unresolved DNA damage. Acute
DNA damage can cause the aberrant expression of short interspersed elements (SINEs) [65] and endogenous retro-
viruses (ERVs) [66,67], which can persist in the cytosol in double-stranded RNA (dsRNA) form. Though the specific
mechanism of ERV activation is not always clear, epigenetic modifications can de-repress these loci, and there is
currently great interest in applying DNA de-methylating drugs for immune activation in cancer [68]. ERV dsRNA
accumulates in the cytosol where it is recognized by RIG-I-like receptors (RLRs), a set of RNA-sensing PRRs that
includes RIG-I, MDA5, and LGP2 [69,70]. RIG-I and MDA5 alert the RLR adaptor protein MAVS, promoting a type
I interferon response post-radiotherapy and a broadly immunostimulatory phenotype [71] (Figure 1F–I). Not all nu-
cleic acid sensing pathways are straightforwardly immunostimulatory, however, as LGP2 has been shown to negatively
regulate the interferon response and lead to an immune-tolerant phenotype following IR-induced DNA damage [69].
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Differing microenvironmental effects must also be considered, as cancer cell-secreted interferon-stimulated genes
have been implicated in tumor radioresistance and resistance to immunotherapy [72,73]. Further work is needed to
fully understand the contexts in which nucleic acid sensing following DNA damage can invoke an immunostimula-
tory or immunosuppressive response, and its role in the outcome of cancer therapy.

The DNA and RNA sensors of cytoplasmic nucleic acids trigger molecular signaling cascades with substantial over-
lap, and while each nucleic acid ligand has a canonical PRR and downstream effect on gene expression, there likely
exists considerable cross-talk between these pathways. A few examples of this have been recently reported: STING,
downstream of dsDNA-activated cGAS, can also be stimulated by the RNA-sensing RLRs [74]. Immunostimulatory
dsDNA can be transcribed into dsRNA, and recognized by MAVS [75] (Figure 1G). Another PRR, ZBP1, recognizes
both dsDNA and dsRNA in their left-handed Z-form [76,77]. Its activity promotes assembly of the NLRP3 inflamma-
some, a multiprotein construct that initiates a pro-inflammatory response upon recognition of its target [78]. STING,
too, can activate NLRP3 directly [79,80] and dsDNA is recognized by another inflammasome, AIM2 [81]. AIM2
activates caspases 1 and 3, which negatively regulate interferon signaling by cleaving cGAS, MAVS, and IRF3 down-
stream of STING [82,83]. It is possible that micronuclei may be recognized by dsDNA-specific PRRs other than cGAS
and/or engage pathways outside of cGAS-STING, including PRRs recognizing dsRNA [15]. The ultimately pro- or
anti-inflammatory response established following DNA damage will likely depend on the balance of responses exerted
by the aforementioned pathways, the influence of cell type and microenvironment, and may even depend specifically
on the type of DNA damage to which the cell is responding. The relative contributions of each of these pathways
in different cancer types, following RT or various chemotherapeutic regimens, and the frequency with which they
co-occur in a given cell is currently not known, but will almost certainly influence any immune-modulating outcome
of the DNA damage response.

Micronuclei-initiated genomic instability
Prior to micronuclear envelope rupture, micronuclei are generally capable of primary nuclear activities including
transcription [23,84,85], DNA damage repair [23,86–88], and DNA replication [21,23,89]. Micronuclear replication
in particular has linked micronuclei to a major genomic instability event called chromothripsis [4,5,21,23]. Some mi-
cronuclei attempt to replicate their DNA alongside the primary nucleus, but this process is largely defective, leading to
under-replicated regions of the micronuclear genome and their accumulation of extensive DNA damage [4,5,21,23].
At the next mitosis, some cells attempt to re-incorporate the fragment contained within the micronucleus back into
the primary nucleus [21]. The fragmented micronuclear genome gains access to the appropriate repair machinery in
the primary nucleus, and it can be re-ligated in disarranged blocks, giving rise to the extensive rearrangement along
a whole chromosome, single chromosomal arm, or even multiple chromosomes that is the distinguishing feature of
chromothripsis [5,21] (Figure 2F,G). Chromothripsis is thought to be an initiating event in cancer development, and
regions of the cancer genome carrying evidence of chromothripsis often coincide with driver mutations [90–92]. Over
several cell division cycles these degenerative processes initiated in micronuclei can result in the highly complex, chro-
mothriptic genomes characteristic of some adult tumors [4]. Rather than a passive indicator of past DNA-damaging
events, micronuclei are now known to be active instigators of the chromosomal instability that is a hallmark of cancer.

When their envelopes rupture, DNA replication and repair within micronuclei stop [22,23]. However, ruptured
micronuclei can still be re-incorporated into the primary nucleus and show signs of chromothripsis [5], likely indi-
cating that aberrant micronuclear replication is not the only source of damage that can promote genomic instability.
Despite disrupted DNA replication, micronuclear rupture leads to increased DNA damage as measured by γH2AX
[23]. TREX1 activity has been implicated in the onset of chromothripsis, but its role in micronuclear DNA damage
is still the subject of active study [4,93]. The consequences of micronuclear envelope rupture, its impact in accumu-
lating genomic instability, and its recognition by both DDR proteins and PRRs are still emerging. Finally, while this
discussion has primarily focused on the outcome of DSBs, particularly applicable to RT, micronuclei formation has
been reported following cellular exposure to chemotherapeutics with other kinds of DNA-damaging effects. These
include chronic replication stress [84,88], transcription stress [94], or alkylating base damage [95]. It will be impor-
tant to understand the factors that govern micronuclei generation and activity under these divergent circumstances,
given the influence that micronuclei can have in genomic instability and immune recognition of damaged cells.

Genomic instability is recognized by the immune system
Genomic instability can be detected by the immune system in several ways. Accumulating instability following aneu-
ploidy (which can occur when whole chromosomes are segregated into micronuclei [5,21,96]) has been shown to di-
rectly up-regulate expression of natural killer cell ligands and the senescence-associated secretory phenotype (SASP),
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Figure 2. DNA damage can signal the immune system via multiple, intersecting mechanisms

(A) DNA damage and checkpoint adaptation leads to micronuclei formation. (B) Micronuclear envelopes are prone to rupture in

interphase, rendering them vulnerable to DNA damage and to recognition by cGAS. (C) cGAS nucleation drives an inflammatory

response through STING signaling, (D) culminating in the release of inflammatory cytokines and/or SASP factors into the microen-

vironment. (E) Ruptured micronuclei are also exposed to cytosolic nucleases such as TREX1, whereupon the dsDNA within the

micronucleus can be degraded, precluding cGAS recognition and inflammatory signaling. (F) Prior to their envelope rupturing,

micronuclei may try to replicate their DNA. This leads to the accumulation of DNA damage and a fragmented, under-replicated

micronuclear genome. (G) When micronuclear chromosomes are re-incorporated into the primary nucleus, these damaged frag-

ments can be re-ligated into disarranged blocks, driving major genomic instability events such as chromothripsis. This outcome

is not mutually exclusive with the models depicted in (B-E), as DNA damage via non-replication-associated means can accrue in

ruptured micronuclei, and exposed dsDNA can be re-incorporated into the primary nucleus. (H) Ongoing genomic instability can

deposit mutations in protein-coding genes, generating neoantigens. (I) Neoantigen proteins are degraded by the proteasome, and

peptide fragments are loaded onto MHC-I, where they are presented for recognition by CD8+ T cells.

recruiting innate immune cells [96]. The SASP, typically defined as a pro-inflammatory secretome, was one of the first
comprehensively described processes of IR-induced cytokine secretion [97], and a large subset of SASP cytokines are
dependent on DDR signaling for their production [98]. Because of this, the SASP can be considered an extracellular
extension of the DDR that influences the microenvironment through paracrine signaling [99] (Figure 2D). Irradiated
and extensively damaged cancer cells experiencing a persistent DDR and initiating the pro-inflammatory SASP can
recruit immune cells for tumor clearance [100,101], but the SASP can also promote tumor-sustaining inflammation
or a stromal environment that supports cancer growth and immune evasion [102,103]. Indeed, chronic signaling
through cGAS-STING appears to promote senescent phenotypes and can drive aneuploid tumors towards metastasis
[25,104,105]. The specific factors released with the SASP can vary, depending on the cell type and whether senescence
was initiated by specific oncogenes, telomere attrition, or DNA damage [97,106]. Understanding the role of the DDR
in modulating these extracellular communications could uncover potential therapeutic targets favoring anti-tumor
immunity, and lead to a better appreciation for their role in carcinogenesis [99].
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Ineffective repair of DNA damage can increase mutational burden and chromothripsis-associated chromosomal
alterations. This genomic instability can subsequently lead to the production of neoantigens, which are altered forms
of self-peptides that appear foreign to the immune system [107]. Genomic instability in general [108–110] and mu-
tations to DDR proteins in particular [111,112] are a positive predictive biomarker for ICB efficacy. Together, these
observations indicate that a high mutational burden leads to elevated neoantigen production, promoting the immuno-
logical recognition and infiltration necessary for effective ICB treatment. For novel neoantigens to exert any influence
over tumor cell clearance through adaptive immunity, they must be presented on the cell surface by major histocom-
patibility complex class I (MHC-I), and this process has also been linked to the DNA damage response. Unchecked,
broad-scale DNA damage expands intracellular peptide pools for loading onto MHC-I [113], up-regulates MHC-I
expression [48,113,114], and promotes the cell’s elimination by CD8+ T lymphocytes, particularly when combined
with ICBs [114–117] (Figure 2H,I). Thus, DNA damage during cancer therapy is correlated with increased neoanti-
gen burden and immune recognition, offering one potential mechanistic underpinning for synergy between DDR
inhibitors or radiotherapy and ICB. Similarly, it is likely that emerging genomic instability during carcinogenesis acts
as a selective pressure to suppress immune-mediated tumor clearance, for example by activating immune checkpoints.
The balance between genomic instability, tumor immune-mediated clearance, and the cytokine milieu of the tumor
microenvironment is critical to understanding both tumorigenesis and treatment responses, and forms the basis of
many ongoing studies.

Conclusion
In a cell that slips cell-cycle checkpoints and moves through mitosis, unresolved DNA damage can compound over
generations of cell division into highly complex, unstable genomes, a hallmark of cancer development [4]. Check-
point adaptation generates micronuclei [24], subcellular structures that allow the cell to broadcast ongoing genomic
instability to the immune system, via PRR-induced inflammatory signaling [16,27] or an exacerbated mutational
burden that can promote neoantigen formation or presentation [5,21]. In a clinical setting, there is great interest in
exploiting communication between DNA damage and the immune system for the treatment of cancer by combining
DNA-damaging therapies (RT or chemotherapy) and ICB, and micronuclei have been implicated in this synergis-
tic process [16]. An improved collective understanding of micronuclear biology, development of genomic instability,
and the communication between multiple cell types in the tumor microenvironment is critical to understanding car-
cinogenesis. This work will also contribute to the rational adaptation of these concepts toward optimal therapeutic
implementation, combining DNA-damaging agents and immunotherapy in the cancer clinic.

Summary
• Cell-cycle checkpoint failure, adaptation, or bypass allows the cell to proceed though mitosis despite

the continued presence of DNA damage. This process can generate micronuclei.

• Micronuclei are recognized by viral pattern recognition receptors that initiate inflammatory gene ex-
pression, alerting the immune system to the presence of damaged or mutated cells.

• Major genomic instability events such as chromothripsis can take place within micronuclei, which
may indirectly alert the immune system to DNA damage through neoantigen formation.

• The source and recognition of DNA or RNA species, either in the cytoplasm or micronuclei, is an
emerging feature of the DNA damage response and has important implications for cancer develop-
ment and therapy.
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106 Özcan, S., Alessio, N., Acar, M.B., Mert, E., Omerli, F., Peluso, G. et al. (2016) Unbiased analysis of senescence associated secretory phenotype (SASP)
to identify common components following different genotoxic stresses. Aging (Albany N.Y.) 8, 1316–1329, https://doi.org/10.18632/aging.100971

107 Schumacher, T.N. and Schreiber, R.D. (2015) Neoantigens in cancer immunotherapy. Science (80-) 348, 69–74,
https://doi.org/10.1126/science.aaa4971

108 Le, D.T., Durham, J.N., Smith, K.N., Wang, H., Bartlett, B.R., Aulakh, L.K. et al. (2017) Mismatch repair deficiency predicts response of solid tumors to
PD-1 blockade. Science (80-) 357, 409 LP – 413 LP, https://doi.org/10.1126/science.aan6733

109 Yarchoan, M., Hopkins, A. and Jaffee, E.M. (2017) Tumor Mutational Burden and Response Rate to PD-1 Inhibition. N. Engl. J. Med. 377, 2500–2501,
https://doi.org/10.1056/NEJMc1713444

110 Zhao, P., Li, L., Jiang, X. and Li, Q. (2019) Mismatch repair deficiency/microsatellite instability-high as a predictor for anti-PD-1/PD-L1 immunotherapy
efficacy. J. Hematol. Oncol. 12, 54, https://doi.org/10.1186/s13045-019-0738-1

111 Vidotto, T., Nersesian, S., Graham, C., Siemens, D.R. and Koti, M. (2019) DNA damage repair gene mutations and their association with tumor immune
regulatory gene expression in muscle invasive bladder cancer subtypes. J. Immunother. Cancer 7, 148, https://doi.org/10.1186/s40425-019-0619-8

112 Wang, Z., Zhao, J., Wang, G., Zhang, F., Zhang, Z., Zhang, F. et al. (2018) Comutations in DNA Damage Response Pathways Serve as Potential
Biomarkers for Immune Checkpoint Blockade. Cancer Res. 78, 6486 LP – 6496 LP

© 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons
Attribution License 4.0 (CC BY).

763

D
ow

nloaded from
 http://port.silverchair.com

/essaysbiochem
/article-pdf/64/5/753/895971/ebc-2020-0016c.pdf by guest on 11 April 2024

https://doi.org/10.1158/1541-7786.MCR-07-0031
https://doi.org/10.1007/s00412-004-0284-6
https://doi.org/10.1016/j.mrfmmm.2011.09.003
https://doi.org/10.1016/j.dnarep.2009.07.004
https://doi.org/10.1093/mutage/ger082
https://doi.org/10.1016/j.cell.2011.12.013
https://doi.org/10.1016/j.cell.2010.11.055
https://doi.org/10.1101/gad.17010011
https://doi.org/10.1093/toxsci/kfi200
https://doi.org/10.1016/j.devcel.2017.05.022
https://doi.org/10.1371/journal.pbio.0060301
https://doi.org/10.1038/ncb1909
https://doi.org/10.3389/fgene.2015.00094
https://doi.org/10.1038/nature10599
https://doi.org/10.1084/jem.20130783
https://doi.org/10.1038/nm.2890
https://doi.org/10.1073/pnas.211053698
https://doi.org/10.1016/j.cell.2018.08.027
https://doi.org/10.1158/2159-8290.CD-19-0761
https://doi.org/10.18632/aging.100971
https://doi.org/10.1126/science.aaa4971
https://doi.org/10.1126/science.aan6733
https://doi.org/10.1056/NEJMc1713444
https://doi.org/10.1186/s13045-019-0738-1
https://doi.org/10.1186/s40425-019-0619-8


Essays in Biochemistry (2020) 64 753–764
https://doi.org/10.1042/EBC20200016

113 Reits, E.A., Hodge, J.W., Herberts, C.A., Groothuis, T.A., Chakraborty, M., Wansley, E.K. et al. (2006) Radiation modulates the peptide repertoire,
enhances MHC class I expression, and induces successful antitumor immunotherapy. J. Exp. Med. 203, 1259–1271,
https://doi.org/10.1084/jem.20052494

114 Garnett, C.T., Palena, C., Chakraborty, M., Tsang, K.-Y., Schlom, J. and Hodge, J.W. (2004) Sublethal irradiation of human tumor cells modulates
phenotype resulting in enhanced killing by cytotoxic T lymphocytes. Cancer Res. 64, 7985–7994, https://doi.org/10.1158/0008-5472.CAN-04-1525

115 Friedman, J., Morisada, M., Sun, L., Moore, E.C., Padget, M., Hodge, J.W. et al. (2018) Inhibition of WEE1 kinase and cell cycle checkpoint activation
sensitizes head and neck cancers to natural killer cell therapies. J. Immunother. Cancer 6, 59, https://doi.org/10.1186/s40425-018-0374-2

116 Patel, P., Sun, L., Robbins, Y., Clavijo, P.E., Friedman, J., Silvin, C. et al. (2019) Enhancing direct cytotoxicity and response to immune checkpoint
blockade following ionizing radiation with Wee1 kinase inhibition. Oncoimmunology 8, e1638207, https://doi.org/10.1080/2162402X.2019.1638207

117 Zhang, Q., Green, M.D., Lang, X., Lazarus, J., Parsels, J.D., Wei, S. et al. (2019) Inhibition of ATM Increases Interferon Signaling and Sensitizes
Pancreatic Cancer to Immune Checkpoint Blockade Therapy. Cancer Res. 79, 3940–3951, https://doi.org/10.1158/0008-5472.CAN-19-0761

764 © 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons
Attribution License 4.0 (CC BY).

D
ow

nloaded from
 http://port.silverchair.com

/essaysbiochem
/article-pdf/64/5/753/895971/ebc-2020-0016c.pdf by guest on 11 April 2024

https://doi.org/10.1084/jem.20052494
https://doi.org/10.1158/0008-5472.CAN-04-1525
https://doi.org/10.1186/s40425-018-0374-2
https://doi.org/10.1080/2162402X.2019.1638207
https://doi.org/10.1158/0008-5472.CAN-19-0761

