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Eukaryotic pathogens with an intracellular parasitic lifestyle are shielded from extracellular
threats during replication and growth. In addition to many nutrients, parasites scavenge
host cell lipids to establish complex membrane structures inside their host cells. To coun-
teract the disturbance of the host cell plasma membrane they have evolved strategies to
regulate phospholipid asymmetry. In this review, the function and importance of lipid
asymmetry in the interactions of intracellular protozoan parasites with the target and
immune cells of the host are highlighted. The malaria parasite Plasmodium infects red
blood cells and extensively refurbishes these terminally differentiated cells. Cholesterol
depletion and an altered intracellular calcium ion homeostasis can lead to disruption in
erythrocyte membrane asymmetry and increased exposure of phosphatidylserine (PS).
Binding to the PS receptor on monocytes and macrophages results in phagocytosis and
destruction of infected erythrocytes. Leishmania parasites display apoptotic mimicry by
actively enhancing PS exposure on their surface to trigger increased infection of macro-
phages. In extracellular Toxoplasma gondii a P4-type ATPase/CDC50 co-chaperone pair
functions as a flippase important for exocytosis of specialised secretory organelles.
Identification and functional analysis of parasite lipid-translocating proteins, i.e. flippases,
floppases, and scramblases, will be central for the recognition of the molecular mechan-
isms of parasite/host interactions. Ultimately, a better understanding of parasitic dis-
eases, host immunity, and immune escape by parasites require more research on the
dynamics of phospholipid bilayers of parasites and the infected host cell.

Introduction
Many important pathogens, such as Plasmodium spp., the causative agent of malaria, or Leishmania
spp., which cause a spectrum of skin, muco-cutaneous, and visceral diseases, are single-cell eukaryotes,
which adopted a parasitic lifestyle. These protozoan parasites share all hallmarks of eukarya, including
large genomes, cellular organelles, and complex phospholipid bilayers in their plasma membranes
(PMs). Beyond barrier functions and nutrient uptake, the parasite PM facilitates pathogen/host inter-
actions through modulation of immune cells and, for intracellular parasites, by driving host cell inva-
sion. Accordingly, analysing the dynamics of parasite and parasitised phospholipid bilayers is central
for a better understanding of disease, host immunity, and immune escape by the parasite.
Red blood cells (RBCs) maintain an asymmetry between the lipids present in each layer of their

membrane bilayer (Figure 1). Anionic phospholipids such as phosphatidylserine (PS) and phosphati-
dylethanolamine (PE) are sequestered to the inner (cytoplasmic) leaflet of the membrane, while other
lipids, such as phosphatidylcholine (PC) are more abundant in the outer (extracellular) leaflet [5].
Indeed, the concept of membrane asymmetry was first described in RBCs nearly half a century ago
[6,7]. Technological advancements and concentrated research efforts have vastly improved our knowl-
edge and understanding of membrane asymmetry since these early studies. We now know that mem-
brane asymmetry is not restricted to RBCs, but a feature of all mammalian cells and across the
different kingdoms of life, and of organelle membranes, too [8–13]. Membrane asymmetry is
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important for a whole range of cellular functions — from membrane biophysical properties, protein–membrane
interactions, and cell-to-cell interactions, including as a principal signal to initiate apoptosis acting as an ‘eat
me’ label to a neighbouring cell, which will initiate phagocytic uptake [14,15]. This review will concentrate on
the function and importance of lipid asymmetry in the interactions of intracellular protozoan parasites with the
target and immune cells of the host, with a particular emphasis on the malaria parasite Plasmodium, which
infects RBCs.

Lipid asymmetry regulation in red blood cells
Phospholipid asymmetry is established, regulated, and ultimately collapsed by three classes of lipid-
translocating enzymes, termed flippases, floppases, and scramblases (Figure 1) [5,16,17]. These terms are used
as broad descriptors of multiple proteins that perform the respective functions. Flippases move anionic phos-
pholipids, particularly PS and with lower affinity PE, from the outer layer to the inner layer in an

Figure 1. Dynamics of phospholipid asymmetry and cholesterol uptake upon parasite infection exemplified by a lipid bilayer of a

Plasmodium-infected erythrocyte. Shown are major phospholipid species, the sterol cholesterol, Ca2+, and candidate membrane-bound enzymes

that catalyse phospholipid shuttling between the outer and inner lipid leaflet. Enrichment of phosphatidylserine (PS; blue) and

phosphatidylethanolamine (PE; cream) in the interior lipid sheet is catalysed by a flippase (purple) under ATP hydrolysis. In contrast, the exterior

layer facing the blood stream, endothelial cells and phagocytes is enriched in phosphatidylcholine (PC; brown) by an ATP-hydrolysing floppase

(pink). Cholesterol (red) is sequestered by the growing parasite, whereas Ca2+ homeostasis is modulated in infected red blood cells. Activation of

scramblase (yellow) by an increase in intracellular Ca2+ results in the random shuttling of all three phospholipids across the two layers. Enrichment

of host-derived cholesterol might be mediated by a cholesterol-binding protein. ADP, adenosine diphosphate; ATP, adenosine triphosphate. Shape

of proteins is based on structures of representative flippase (P4-ATPase Drs2p-CDC50p [1]), floppase (ABCG2 [2]), and scramblase molecules

(TMEM16F [3]) deposited in the protein data bank (PDB [4]).
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ATP-dependent manner [5,18]. This unidirectional movement of these negatively charged lipids creates and
maintains the unequal distribution between the bilayers (Figure 1). The most studied flippases consist of
members of the P4-type ATPase protein family and an accessory CDC50 subunit, which is located at the outer
layer and likely regulates the binding of the lipid substrate by acting both as a chaperone and integral part of
the lipid-translocating machinery [18]. P4-ATPases localise to the PM and intracellular membranes and display
different substrate selectivity for the aminophospholipids PS, PE, or PC, but also a broader range of lipid sub-
strates, such as lysophospholipids. Thus, identifying bona fide flippases among the range of P4-ATPase
members necessitates biochemical assays and experimental genetics. In human RBCs ATP11C is the most
abundant P4-type ATPase, followed by ATP11A and ATP11B [19–21]. Forward and reverse genetic approaches
in humans and mice, respectively, have revealed the functional importance of ATP11C for maintaining mem-
brane asymmetry in RBCs and other cell types, and its mutation can lead to altered cell development and life-
span [22–24]. Floppases similarly function in an ATP-dependent manner, but instead shuttle lipids such as PC
to the outer layer [5] (Figure 1). Several ATP-binding cassette (ABC) proteins have been ascribed floppase
function, such as ABCC1, ABCA7, and ABCG2, which are present in RBCs [19,21,25,26].
The third class of these enzymes, scramblases, are responsible for the disruption of lipid asymmetry [5]

(Figure 1). They do not require ATP to function, but instead indiscriminately scramble lipids in both directions,
allowing the membrane to reach a symmetric equilibrium [5]. Scramblase activity is generally repressed in cell
membranes to ensure that asymmetry is maintained, and only activated under specific circumstances — by
increased intracellular calcium, cholesterol depletion, or by caspase-mediated cleavage; these circumstances can
occur in response to cell damage, signalling cascades, or during apoptosis [5,21,27–29]. PS exposure can act as
an ‘eat me’ signal to phagocytes, such as monocytes and macrophages, which express PS receptors on their sur-
faces, in order to engulf and clear away these damaged or apoptotic cells [30,31]. Scramblase activation and
subsequent PS exposure are also a crucial part of platelet activation [5,27]. Several proteins and their family
members are suggested to act as scramblases, such as TMEM16F (involved in platelet activation), XKr8
(involved in caspase-mediated apoptotic PS exposure), and PLSCR1–4 [21,32–34]. The annotation of the latter
has received scrutiny over whether it truly acts as a scramblase under physiological conditions, but there are
still suggestions that it could play a role [21,28,35]. In RBCs, PLSCR1 and PLSCR4 are highly abundant,
TMEM16F levels are low, and XKr8 appears to be absent [19,21].
The regulation of programmed cell death (or apoptosis) is an important mechanism for multicellular organ-

isms to remove unwanted cells during development or damaged cells during infection or senescence, with
phagocytic cells such as macrophages and monocytes participating in this process [31,36]. Since RBCs do not
contain a nucleus, mitochondria, or protein synthesis machinery, they constitute elementary cells and have
been a popular model system for membrane research. However, this also means that RBCs are not able to
perform the same apoptotic processes as nucleated cells, such as the fragmentation of DNA and mitochondrial
membranes [36,37]. Nonetheless, RBCs can enter an apoptotic-like state, termed ‘eryptosis,’ which shares other
common markers of apoptosis — like altered ion balance, particularly of calcium and potassium, cell shrinkage,
membrane blebbing, and a loss of membrane asymmetry, resulting in PS exposure [38,39]. Indeed, RBCs may
be particularly dependent on PS exposure as a signal for cell death, since they lack the other apoptotic signals
available to nucleated cells. These eryptotic markers generally begin to appear as the RBC ages, when factors
such as ATP depletion hamper the cells’ ability to actively maintain ion homeostasis, water balance, and
deformability [40,41]. These changes signal that the aging RBC is ready to be removed from circulation, and it
is generally filtered out and phagocytosed in the spleen or liver [42].

The case of intracellular parasites: refurbishing host cells
Several parasites have chosen RBCs as their home, since they provide abundant nutrients, shelter from the
host’s immune system, and transportation through the human body. These parasites are members of the
phylum apicomplexa, which are all obligate intracellular pathogens and infect a wide variety of host cells [43].
This phylum encompasses parasites such as Plasmodium, the causative agent of malaria, Babesia and Theileria,
tick-borne pathogens of veterinary importance [44–46]. As the parasite grows inside, it modifies the RBC to
support its survival — scavenging lipids, proteins, and other molecules from the host cell and extracellular
environment. Parasites introduce new channels and virulence factors in the RBC membrane to ensure adequate
nutrient uptake and aid in the avoidance of the immune system [47,48]. Since the parasite seemingly places a
heavy burden on the RBC — even before it completes its replication and ultimately destroys the cell to seek out
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new host cells — many researchers have sought to investigate whether these consequences include changes to
membrane asymmetry.

Asymmetry at the Plasmodium-infected RBC membrane:
cell culture artefacts and clinical relevance
Many studies have attempted to determine whether lipid asymmetry in the RBC membrane is disrupted when
parasitised with Plasmodium, often reaching contradictory results (for example, [49–54]). A recent
meta-analysis of these studies looked at the contradictory body of evidence for whether or not PS is exposed on
the surface of infected RBCs [22]. A main conclusion was that much of the controversy is likely attributable to
the variety of methods to assay PS exposure — lipid hydrolysis, anti-PS antibodies, thrombin-activation, and
eventually annexin V staining — and the shortcomings associated with each [22]. In addition, several of the
experimental conditions might have artificially exacerbated PS exposure — glucose deprivation, high potassium
concentrations, extreme parasite burdens — suggesting that observed disruptions to lipid asymmetry may not
necessarily reflect physiological conditions [22]. More recent techniques, such as combined annexin V and
DNA staining to distinguish infected and uninfected RBCs without artificial separation, have addressed many
of these arguments [22].
On the balance of evidence, PS is likely exposed in a portion of infected RBCs under in vitro culture condi-

tions, and this disruption to membrane asymmetry can be exacerbated by a number of factors such as heat
stress (mimicking malarial fevers), hyperparasitaemia (leading to an increase in parasite burden), and treatment
with chemical agents, which directly or indirectly lead to infected RBCs entering eryptosis [52,54–56].
Two mechanisms have been identified as the source for this disruption in membrane asymmetry (Figure 1):

an increase in calcium levels in the otherwise low-calcium environment of the RBC cytoplasm, and cholesterol
depletion from the RBC membrane — both of which can activate scramblase proteins and lead to PS exposure
[28,29,57]. The infected RBC population has a higher level of scramblase activity compared to uninfected
RBCs, although a concurrent increase in flippase activity has also been observed [54]. It has been hypothesised
that cholesterol depletion likely plays a role in both phenomena, since this lipid affects membrane fluidity and
can, therefore, affect the turnover rate of these proteins [28,29,58,59].

Asymmetry of internal membranes: more questions than
answers
While mature human RBCs lack internal membranous structures, parasitic invasion creates a complex structure
of membranes, where asymmetry could play a role in parasite survival (Figure 2). Plasmodium parasites invade
RBCs using a variety of receptors and ligands, with signalling cascades in both parasite and host cell culminat-
ing in the invagination of the RBC membrane around the parasite [60,61]. The parasite remains in this result-
ing membrane-bound organelle, termed the parasitophorous vacuole (PV), adding newly synthesised lipids and
proteins as it grows and multiplies, until the daughter cells (merozoites) are ready to egress both the PV and
the host cell before invading new RBCs [47,62–64]. As a consequence, molecules that are exchanged between
the host serum and the parasite have to transverse three membranes: RBC plasma membrane, PV membrane
(PVM), and parasite plasma membrane (PPM).
One notable phenomenon is that the PVM membrane is created from the ‘outside in’ host cell membrane,

and, accordingly, the proteins may also be orientated in the opposite direction [65,66]. This has been proposed
as a mechanism for retaining high calcium concentrations in the vacuolar compartment, since the human
calcium extrusion pump, PMCA, may now be orientated to pump calcium in this direction [65,66]. Similarly,
erythrocyte flippases and floppases may be orientated and functioning in the new direction, keeping PS and PE
on what is still technically the cytoplasmic side. However, not all host proteins are translocated into the PVM
[67], and so the localisation, orientation, and function of lipid-translocating proteins in this membrane are yet
to be confirmed.
In addition to the PVM, the parasite also establishes membranous structures within the host cell cytoplasm,

such as the Maurer’s clefts and tubovesicular network (TVN), which are involved in the trafficking of lipids
and proteins between the host and parasite [68] (Figure 2). The parasite contains membrane-bound organelles
originally derived from evolutionary endocytosis — the double-membraned mitochondria, and the quadruple-
layered apicoplast [69,70]. This non-photosynthetic plastid likely resulted from the secondary endocytosis of
algae, and compartmentalises processes, such as isoprenoid biosynthesis via methyl erythritol phosphate
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(MEP), fatty acid chain elongation, and parts of the haem biosynthetic pathway [71]. This multitude of mem-
branes raises many potential questions about the existence, role, and maintenance of membrane asymmetry
between these different compartments.
The overall lipid composition of the RBCs changes significantly upon infection with Plasmodium. As the

parasite develops, it synthesises and scavenges lipids, increasing the amounts in total lipids, phospholipids,
neutral lipids, sphingolipids, and cholesterol [71–74]. Changes to individual structures are much harder to
measure, as protocols for separating the parasite from its host cell generally leave segments of the latter attached
[75]. It is well established that the parasite PM normally contains a relatively low abundance of cholesterol,
since it shows resistance to saponin lysis, while both the host PM and PVM can be lysed (though not fully
removed) [75,76]. It has also been demonstrated that the PVM initially matches the cholesterol composition of
the host cell membrane it was derived from, but this cholesterol is diluted as the PVM grows with the incorpor-
ation of parasite-synthesised phospholipids [64]. A lipidomic study of isolated apicoplasts also reveals an atyp-
ical lipid composition compared to the overall composition found in infected RBCs [77]. Apicoplasts are
particularly rich in saturated phospholipids (in particular phosphatidylinositol) and contain also lipids that are
rather unusual for plastids (like sphingomyelins, ceramides, and cholesterol). Collectively, these studies

Figure 2. Establishment of multiple membrane structures in a Plasmodium falciparum-infected erythrocyte.

Shown are the invagination of the host cell plasma membrane during parasite invasion resulting in a parasite-derived organelle, the parasitophorous

vacuole, and the intracellular growth stage of P. falciparum in an infected erythrocyte. Host-encoded flippases (purple), floppases (pink), and

scramblase (yellow) are highlighted and potential parasite homologues are shown in grey. Note multiple parasite organelles, which include the classic

eukaryotic single membrane organelles, ER and Golgi cistern, the double membrane organelles, nucleus (orange) and mitochondrion, a specialised

lysosome (termed digestive vacuole), and a relict plastid organelle. The latter, termed the apicoplast, is non-photosynthetic, and contains four lipid

membranes, which originate from the secondary endosymbiosis of a protist algae. In addition, the growing parasite induces membranous structures in

the host cell, including vesicles, a tubovesicular network, and Maurer’s clefts. DV, digestive vacuole; ER, endoplasmic reticulum; PPM, parasite plasma

membrane; PVM, parasitophorous vacuole membrane; RBC, red blood cell/erythrocyte; TVN, tubovesicular network.
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highlight clear differences between host and parasite membrane composition, however, none have probed the
asymmetric state of any of these membranes. While the need to sequester certain lipids on either side of these
internally hidden membranes may not be as important for intracellular parasites in the absence of phagocyte
recognition, membrane asymmetry may have other functional roles at these sites, such as protein binding.
Whether there are functional roles of asymmetry or differences between different compartments and organelles
remains to be investigated.
In the absence of experimental evidence, we can only speculate about the asymmetrical nature of these mem-

branes based on the existence of putative lipid-translocating proteins. The parasite genome encodes several pro-
teins that show homology to human flippases, floppases, and scramblases. In the case of flippases, this includes
P4-ATPases PF3D7_1219600 (PfATP2) and PF3D7_1223400 (PfATP8). These are likely essential to the para-
site’s survival, and orthologs in another Plasmodium species localise to the PPM [78–80]. Plasmodiun falcip-
arum encodes three CDC50 orthologues, PF3D7_0719500 (PfCDC50A), PF3D7_1133300 (PfCDC50B), and
PF3D7_1029400 (PfCDC50C), the latter being the chaperone partner of PfATP2 [81,82]. Other P4-ATPases,
such as PF3D7_031900 (PfATP7), may localise to internal membranes [80]. The parasite encodes 11 ABC
family members containing transmembrane domains, of which PF3D7_0112200 (PfMRP1/ABCC1),
PF3D7_1229100 (PfMRP2/ABCC2), PF3D7_1447900 (PfMDR2/ABCB2), PF3D7_1339900 (PfMDR5/ABCB5)
have been localised to the PPM [81,83,84]. These proteins might operate as floppases, though no information is
currently available to assign functions to any of these candidate transport proteins. A parasite candidate scram-
blase protein, PF3D7_1022700 (PfPLSCR), was identified based on homology to the human PLSCR proteins,
and displayed scramblase-like activity when expressed in proteoliposomes [85]. It appears to localise to mem-
branes within the parasite during the majority of intraerythrocytic asexual development, with the potential
exception of merozoites.
The existence of these proteins could indicate that parasite membranes are asymmetrically arranged, though

further evidence is clearly required to determine the localisation and function of these proteins, Of note, none
of the parasite-encoded, candidate lipid-translocating proteins has yet been localised to the PVM. None of the
proteins contains common export motifs indicative of export beyond the PPM, but this does not preclude the
possibility that they could be exported in a different manner [86]. There is a need to ultimately determine the
distribution of lipids within different parasite compartments through studies, which probe the asymmetrical
nature of internal membrane structures, preferably without destructive separation techniques. Towards this
goal, organelle enrichment by affinity purification of epitope-tagged signature membrane proteins, as estab-
lished for the apicoplast [77], is expected to reveal the organellar lipid composition and permit conventional
cell biological assays, e.g. annexin V stain. Symmetric membranes are less common than asymmetric mem-
branes, likely because they are less selective for transiting molecules. The superior selectivity together with the
‘scaffolding effect’, where different lipid compositions on both bilayers can provide greater mechanical stability,
hold the membrane in its proper shape, and prevent it from deformation, makes it likely that the dynamic
intracellular environments are reflected by asymmetric internal membranes.

Consequences of altered asymmetry: phagocytosis of
infected erythrocytes
Disruption to membrane asymmetry has several conceivable biological consequences, some of which have been
explored experimentally. The essential nature of parasite proteins, such as PfATP2, suggests an important func-
tional role during asexual growth. Due to lack of information about asymmetry in internal membranes, we will
focus on the host cell membrane, where there is potential for interaction with immune cells, such as monocytes
and macrophages, which recognise exposed PS as a signal for phagocytosis (Figure 3). There is in vitro evidence
for a role of PS exposure in monocyte phagocytosis of infected RBCs, and these interactions can be blocked
with either the PS-binding protein annexin V on iRBCs, or with PS liposomes on the phagocytes [54,87].
Similarly, blocking a phagocyte PS-receptor protein, CD36, decreases monocyte and macrophage phagocytosis
of infected RBCs. However, since CD36 is a promiscuous ‘scavenger’ receptor, and also recognises other ligands
on parasitised RBCs, this provides less direct evidence than inhibition of PS exposure on infected RBCs. In
patient samples, monocytes with phagocytosed parasites are frequently observed (Figure 3). More broadly,
monocytes and macrophages influence the course of malaria infection through their pro-inflammatory response
after classical (M1) activation, which includes the release of IL-1, IL-12, IL-23, and chemokines [88,89]. Aside
from phagocytosis, in vitro evidence has also suggested a role for PS exposure in parasite cytoadherence to
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ligands present on the vascular endothelium — an important part of the parasites’ defence against the host
immune system, which sequesters them away from circulation and prevents splenic clearance [52,54,90]. While
the importance of the avoidance strategy is well-accepted, a causal relationship between PS exposure and
cytoadherence in vivo has not been established.
As outlined above, there are many gaps in our understanding of membrane asymmetry and its role in

malaria infection. It is also clear that there is no simple answer for who benefits most from this process — a
typical phenomenon of these close relationships between parasite and host, which have evolved together in a
constant arms race [91]. Being able to recognise and phagocytose an infected cell may seem to be a simple
benefit to the host, but if this comes at the cost of a hyperinflammatory response, then it is no longer advanta-
geous [92,93]. Similarly, it may seem like immune evasion is the ultimate goal of a parasite, but perhaps the
clearance of a subsection of parasites could be an advantage, since it lowers the chance of the host dying before
the infection can be transmitted — an especially important consideration for P. falciparum, which requires 10–
14 days to fully develop transmissible parasites [94]. It may, therefore, be beneficial for the parasites to reduce
parasite burden, and recognition by exposed PS may trigger a less severe immune response than opsonisation
by antibodies or complement [40,95]. Collapsing membrane asymmetry may also have other complex conse-
quences in processes such as invasion, egress, and nutrient uptake. The threat of immune discovery could
mean that the parasite is limited in which modifications it can induce in the RBC before collapsing asymmetry
and hence impose some restrictions on the parasite. With this complicated relationship in mind, we will turn
our attention to another intracellular parasite which appears to take advantage of PS exposure.

Figure 3. Alternative interference with phagocytosis by protozoan parasites.

Plasmodium-infected cells (top) are recognised through the exposure of phosphatidylserine (PS) on the erythrocyte plasma membrane (and

additional parasite-encoded proteins; not shown). Binding to the PS-receptor on macrophages results in phagocytosis and lysosomal fusion with

the endocytic compartment leading to the formation of a phagosome. Killing inside a phagosome occurs through classical activation (M1) and is

accompanied by a pro-inflammatory response. Leishmania parasites (bottom) enhance PS exposure on their surface to increase phagocytic uptake

by macrophages, which constitute their only host cell for growth and replication. Leishmania parasites have evolved mechanisms to inhibit

lysosomal fusion and/or acidification of the phagosome, resulting in a replication-competent niche inside infected macrophages.
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Apoptotic mimicry and the Leishmania parasite
Like the apicomplexans, Leishmania is also a protozoan parasite, belonging to the class Kinetoplastida. This
parasite is the causative agent of leishmaniasis, which affects the epithelia of skin, mucosa and inner organs.
During chronic infections, Leishmania parasites reside in macrophages [96–99]. Rather than avoiding PS expos-
ure and the detection by the immune system, these parasites exploit this mechanism to end up in their host
cells (Figure 3). To aid in its uptake, the parasite uses ‘apoptotic mimicry’ — where it exposes PS in the outer
layer of its PM and hence increasing phagocyte recognition [98–102]. After subsequent engulfment, the para-
sites employ a number of strategies to prevent their degradation, allowing them to live and multiply in the
macrophage without being targeted by the immune system [98,103]. The molecular basis for enhanced PS
exposure implicated in Leishmania-macrophage interaction is under investigation, but one candidate protein,
LABCG2, a Leishmania member of ABC half-transporters (ABCG subfamily), has been implicated in PS expos-
ure and macrophage infectivity of Leishmania major metacyclic promastigotes, the parasite stage transmitted
by infected sand-flies (Phlebotominae) [104]. We note that some studies have failed to detect PS in the PM of
Leishmania donovani promastigotes by complementary lipid analysis techniques [105,106]. Parasites were still
stained with annexin V [106], illustrating that annexin V, and perhaps also phagocytic PS receptors, may not
be completely specific to PS, despite consistent detection of PS on early apoptotic cells by fluorescently labelled
annexin V [107].
Drug-induced increase in intracellular Ca2+ levels of Leishmania promastigotes, the replicative stage in the

sandfly vector, induced swift, bi-directional and non-specific trans-bilayer movement of phospholipids indica-
tive of scramblase activity [108,109], but a candidate scramblase has not yet been identified in Leishmania
genomes [110]. Accordingly, functional analysis of Leishmania lipid-translocating proteins and more cell bio-
logical assays are needed to clarify the molecular basis of this phenomenon. Apoptotic mimicry has also been
described for other parasites which can infect macrophages, such as Toxoplasma gondii, a food-borne apicom-
plexan parasite that causes toxoplasmosis in immune-suppressed individuals and foetuses, and Trypanosoma
cruzi, the causative agent of Chagas disease and transmitted by kissing bugs, where it seems to promote an
anti-inflammatory response [111,112]. More research is warranted to resolve whether apoptotic mimicry of
parasites is an active regulatory mechanism that contributes to host colonisation in vivo or whether it can be at
least partially attributed to experimental conditions during cell culture.

Asymmetry and Toxoplasma gondii: flippase contributes to
microneme secretion
Membrane asymmetry might also be important for infections by T. gondii, a universal parasite capable of
infecting nucleated cells of a wide range of homeothermic hosts [113]. While data on potential interference
with the dynamics of lipid asymmetry of Toxoplasma-infected cells are lacking, the import of PS and PE, but
not PC, into extracellular parasites (so-called tachyzoites) has been reported [114]. T. gondii encodes six candi-
date P4-type ATPases and four CDC50 co-chaperomes, of which one pair, ATP2B and CDC50.4, mediates flip-
ping of PS, which in turn acts as a lipid mediator for the last step in microneme exocytosis, i.e. fusion of
micronemes with the PM [115]. Flippase activity was measured at the single-cell level employing a lactadherin
C2 domain — GFP fusion protein as genetically encoded molecular probe [15]. These findings will inform cor-
responding work in malaria research, and, indeed, a recent experimental genetics analysis of the three
Plasmodium CDC50 members uncovered roles in the maturation of blood stages and efficient parasite egress
for CDC50C and CDC50B, respectively [82]. Candidate floppase and scramblase genes have not yet been
assigned in the T. gondii genome [116], perhaps indicating that intracellular replication in nucleated cells might
require less regulation of lipid asymmetry of host cell PMs than inside erythrocytes, which are refractory to T.
gondii infection.

Conclusions
While many aspects of membrane asymmetry have been elucidated in eukaryotic cells, there are still many
questions about what happens when one eukaryote parasitises another. The added complexity of having two
organisms with fundamentally different objectives, along with the deeply nested structure of so many mem-
branes within membranes, presents additional challenges for those attempting to tease apart the organisation of
the bilayers. However, this system — although complicated — allows for the exploration of the functional role
of membrane asymmetry and the process of its regulation. We have highlighted some intriguing gaps in our
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collective understanding of membrane organisation in the context of host–parasite interactions, focusing
mainly on the malaria parasite Plasmodium. Without a doubt, further investigations into this fascinating topic
will reveal more ways how membrane asymmetry is used in the tug-of-war between the parasite and the host.

Summary
• Intracellular parasites establish complex membrane structures inside host cells.

• Protozoan parasites encode candidate lipid-translocating enzymes, but data on the dynamics
of lipid asymmetry on the plasma and internal membranes are scarce.

• Erythrocyte infections by malarial parasites lead to changes in lipid asymmetry on the RBC
membrane and phagocytosis.

• Leishmania parasites use disrupted phospholipid asymmetry on their surface to enhance
infection of macrophages by phagocytic uptake.

• A Toxoplasma gondii flippase mediates the final step in membrane fusion during exocytosis.
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