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Artificial cells are developed to redesign novel biological functions in a programmable
and tunable manner. Although it aims to reconstitute living cell features and address
‘origin of life’ related questions, rapid development over the years has transformed artifi-
cial cells into an engineering tool with huge potential in applied biotechnology. Although
the application of artificial cells was introduced decades ago as drug carriers, applica-
tions in other sectors are relatively new and could become possible with the techno-
logical advancement that can modulate its designing principles. Artificial cells are non-
living system that includes no prerequisite designing modules for their formation and
therefore allow freedom of assembling desired biological machinery within a physical
boundary devoid of complex contemporary living-cell counterparts. As stimuli-responsive
biomimetic tools, artificial cells are programmed to sense the surrounding, recognise their
target, activate its function and perform the defined task. With the advantage of their cus-
tomised design, artificial cells are being studied in biosensing, drug delivery, anti-cancer
therapeutics or artificial photosynthesis type fields. This mini-review highlights those
advanced fields where artificial cells with a minimalistic setup are developed as user-
defined custom-made microreactors, targeting to reshape our future ‘life’.

Introduction
Living cells are self-optimised functional units that can execute diverse processes in a closed compact
system. Natural cells originated from non-living chemicals that eventually evolved to be called ‘living’.
Therefore, building a living system out of non-living materials is essential to understand how life ori-
ginates. Regardless, having a fair understanding of natural cell processes, developing lab-made cells or
artificial living systems is still a challenging mission for scientists [1–3]. However, enormous efforts
toward developing artificial cells are ongoing. They are not essentially natural cell substitutes but non-
living biological tools designed to understand cellular complexity and reconstitute cellular metabolic
functions within them [1,4–6]. Living cells have their own decision-making system that allows them
to adapt, act and survive in the environment. They are self-functioning, self-repairing, self-propagating
and also self-optimising, which enables them to regulate their function in both favourable and
unfavourable conditions. In contrast, an artificial cell is a synthetic system built to fulfil some of the
signature functions of biological cells in a minimalistic way [4–6]. An artificial cell can be developed
as a stripped-down version of existing cells, known as the top-down approach or building from
scratch, known as the bottom-up approach [7–9]. In the bottom-up approach, artificial cells are built
mainly by assembling biological cell-derived molecules (e.g. cell-free extracts) and/or synthetic mole-
cules (e.g. lipid vesicles). Artificial cells do not have a self-optimised instruction module that controls
their function; rather, they are fully controlled by the operator or designer.
One might ask if an artificial cell is known to be non-living, then under which circumstances it

might be transformed into ‘living.’ Currently, there are substantial challenges to work with before
making any progress towards building artificial living cells [10]. There is no clear definition of a hypo-
thetical living artificial cell, as there are still discussions about the minimum requirement of an
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artificial cell to be called ‘living’. Minimum components of an artificial living cell might be (i) a boundary that
separates cell components from surroundings, (ii) self-sustaining metabolic functions to be carried out inside it,
(iii) cell–cell communication and molecular exchange and (iv) cellular growth and division [4,5]. However,
combining all these components in an artificial cell and synchronising them in one system is an extremely
complex task. Therefore, the ambition of an artificial cell to be called ‘living’ is still far from reality.
However, there is noticeable advancement in establishing those components individually in synthetic

systems. The application of lipid vesicles as cell membranes, able to encapsulate cellular ingredients, is a
fast-growing field of research [11]. Signal-responsive cellular communication, adapted from bacterial quorum
sensing machinery, is already established between artificial cells to artificial cells and artificial cells to living cell
[12–14]. Compartmentalised reactions furnishing targeted gene regulation, gene-circuit-based feedback loops or
oscillating reaction networks have been successfully developed in minimum systems and also artificial cell
growth and spontaneous division [15–20]. Synthetic approaches are also being used in artificial cell design,
such as 3D bioprinting, where two-photon 3D laser printing is used to design a 3D hydrogel structure inside a
preformed giant unilamellar vesicle (GUV) encapsulated artificial cell that allows complete positional and struc-
tural control of 3D constructs inside the cell [21]. Recent advancements in artificial cell research have devel-
oped conceptual frameworks and robust technical tools that encourage to explore their utility in practical fields.
This mini-review highlights the potential applications of artificial cells as biosensors, drug delivery systems and
artificial photosynthesis (Figure 1) and discusses the existing limitations the field needs to overcome before
launching its true potential.

Figure 1. Artificial cell design using bio-engineering tools.

Artificial cells, developed with lipid-based membranes, cell-free systems and metabolic reaction systems able to carry out

programmable functions and have valuable applications in advanced biotechnology. As biosensors, artificial cells can target

molecules and execute programmed functions for the quantification of target molecules. An artificial cell-based drug delivery

system allows a sustainable and slower release of therapeutic drugs on target sites. Artificial photosynthesis designed in an

artificial cell is able to execute light-induced carbon fixation and energy generation in in vitro systems.
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Importance of artificial cells
Apart from the scientific interest in building a living system out of scratch and the origin of life research, a
question still might arise why do we need artificial cells in modern life, or is there any unmet need that an arti-
ficial cell can solve and a living cell cannot fulfil? The answer is yes; there are many advantages and application
of artificial cells that combines molecular simplicity and technological advancement.
In vitro protein expression systems, also known as cell-free protein expression systems (CFPS), are often

found to have advantages over in vivo systems (E. coli expression), in particular, for the expression of low-
expressing transmembrane proteins and application of non-canonical amino acids [22–25]. Artificial cells can
be designed by blending living and non-living cellular features to keep living cell repertoire and add efficiency
to the in vitro expression systems together in one system [26]. Using a bottom-up approach, artificial cells are
designed for a specific function that usually has no side channels to work parallelly; therefore, cross-interaction
between the product and existing machinery is limited. Artificial cells built from scratch have no in-built
defence mechanism that can reject external molecules to function inside the cell. As artificial cells developed
with CFPS are non-living, most cases do not require sophisticated culture conditions for protein expression
[27,28]. Artificial cells are not direct organisms but live cell components; therefore, the application of artificial
cells in biotechnology can eliminate some of the limitations of biosafety issues (i.e. release of organisms to the
environment) [29,30]. There are also many physical advantages; this simplified system might allow the develop-
ment of physical modelling that can formulate biological functions in a quantifiable and descriptive mathemat-
ical expression [27]. One of the established uses of this artificial cell is as delivery cargo, making it a valuable
tool in the drug delivery research [31–33]. We will discuss in the following text how this synthetic tool is
drawing our attention to its applicability in modern life.

Artificial cell as biosensor
Biosensors enable the detection of chemical substances or biomaterials coming from either living organisms or
the environment and converting them to a detectable signal. A broad spectrum of fields, especially biotechnol-
ogy, disease diagnosis, agriculture and environmental chemistry use biosensing tools that can detect microor-
ganisms, enzymes, heavy metals, antigens, antibodies, nucleic acids and other biomasses [34,35]. Biosensors are
known for their ability to fast and accurate detection of targets. A reaction module attached to the biosensor
can detect molecules and initiate biological reactions in the biosensor. The module can quantify the generated
product and produce some readable signal.
Cell-free(CF) transcription-translation machinery greatly contributes to biosensing modules [36–39]. CF

extract is the cell lysate of an organism extracted to perform cellular functions in an in vitro system [39]. CF
extract consists of all necessary natural elements required for the transcription-translation reaction and is sup-
plemented with additional resources for on-demand protein expression. Widely used in synthetic biology, CF
extract has achieved remarkable success in the rapid detection of either biomolecules, disease pathogens or
environmental pollutants due to its portability and stability and expanding its potential to target varieties of
metabolites to disease-specific RNA [38]. In CF-based biosensors, either the target molecule activates the
reporter gene attached downstream to the biosensing machinery, or the target RNA is detected by the Toehold
switch or by a CRISPR-based detection module mapped into the biosensing system. The output is detected as a
fluorescence reporter or colourimetric reporter, or bioluminescence reporter that is ultimately used as a detec-
tion signal [34,40,41].
Artificial cell-based biosensors use CF extracts encapsulated within a physical barrier to provide a selection

filter for specific targets [42,43]. Lipid vesicle-based membrane is able to protect the CF biosensing module
from outside interference and can transmit varieties of analyte or even environmental change-related signals
inside the sensor [13,42,44–47]. Selective membrane permeability is crucial in artificial cell-based biosensing
systems as target molecular diffusion through the membrane pores is a prior requirement for these biosensors
to function properly. Lipid vesicle-based encapsulation only allows small molecules as chemical signals to pene-
trate through the membrane as lipid vesicles are closely packed hydrophobic layer that offers very small pore
size. This limited permeability is one of the major drawbacks of the artificial cell as self-contained biosensors,
which requires selective molecular exchange through the membrane. Incorporation of membrane proteins by
insertion (e.g. α-hemolysin) or by reconstitution (e.g. ATP synthase) allows passage of some analytes that have
given some freedom to the molecular influx and chemical communication through engineered lipid vesicles
[48–51].
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Living cells (E. coli) engineered as biosensing modules can be enclosed within lipid vesicles as hybrid artifi-
cial cell biosensing systems for better sensitivity [52]. Having a membrane outside the living cell has the advan-
tage of protecting and maintaining the living system within a boundary, even in a non-compatible
surrounding.
To establish the potential of an artificial cell as a biosensor, reading the environment and symbiosis with

living organisms is the fundamental requirement and therefore setting up feedback responses between living
and non-living systems is crucial. The following few studies illustrate artificial cell-based biosensing, where arti-
ficial cells, in conjunction with natural cells, establish two-way cell–cell communication and are able to instruct
natural cells. Artificial cells are not only able to sense the bacterial quorum-sensing signals but are also efficient
in transmitting their programmed reaction product to the natural cells [48]. Two-way communication estab-
lishes a complex feedback response between artificial cells and natural cells that allows artificial cells to sense,
react and lyse the bacteria in their environment [45]. Artificial cells are programmed as a chemical translator
that can convert the E. coli unrecognisable chemical signal (theophylline) to an E. coli readable inducer (IPTG)
as a biosensing response [53]. This work allows natural cells without any genetic engineering to be able to get
instruction from artificial cells and be modulated.

Artificial cell in drug delivery and therapeutic application
Drug delivery represents an in vivo cargo system of ‘packaged’ drugs for target-specific drug administration.
Existing challenges in drug delivery systems are degradation of bio-sensitive molecules during circulation and
unavoidable off-target interaction. Artificial cell design as a drug delivery vesicle and a therapeutic tool are tar-
geted to address two major criteria; (1) packing of ingredients within biocompatible artificial membrane for
safer transport and on-demand synthesis of drugs and (2) slow and sustainable release of drug molecules for
better sensitivity and for a lesser frequency of drug administration.
Since the first report of the artificial cell by Dr. Thomas Ming Swi Chang in 1957, which was based on

encapsulating a biologically active molecule and transporting it in in vivo systems, artificial cell application in
drug delivery has progressed rapidly in the past years [32,54–57]. The basic principle of these artificial cells was
made of a biocompatible and stable membrane usually made of polyamino acids, polysaccharides, polyethylene
glycol, agarose or lipids that can encapsulate enzymes, drugs or even active cells and can be transplanted to the
desired functional area of an organism [32,56]. The outer membrane protects internal compounds from the
host’s immunological defence like leukocytes, antibodies or tryptic enzymes and keeps encapsulated compo-
nents active for an extended period of time. Artificial cells encapsulating therapeutic drugs have biomedical
applications as drug carriers. Several clinically approved drugs in the pharmaceutical industry use liposomes as
biocompatible membrane [58–60].
Artificial cell research in therapeutic applications is relatively new and by changing the combinations of

encapsulates and membranes, artificial cells can be designed for on-site drug synthesis and release. CF protein
expression systems have a huge impact on this process where therapeutic proteins are encoded within artificial
cells for efficient manoeuvring to the drug target sites. E. coli based CF extracts were encapsulated within lipid
vesicles and programmed to express an anticancer protein (Pseudomonas exotoxin A, PE) in the target site
[61]. This PE encoded artificial cell was injected into 4T1 breast cancer tumours of BALB/c mice where in situ
protein expression diffused out to the surrounding tumours and was able to induce apoptosis in those tumour
cells. On-site expression, extended-release and slower diffusion of the anticancer protein from the artificial cells
were found to show better sensitivity to tumour cells compared with purified protein injection.
Artificial cells equipped with pH-sensitive glucose-metabolism machinery are designed to sense glucose

levels and subsequent release of insulin [62]. This glucose-responsive artificial cell design works as the natural
pancreatic beta cell that releases insulin in the extracellular space only under low glucose concentration.
Membrane functionality of the lipid vesicle was uniquely designed as glucose transporter through embedded
membrane protein as well as insulin secreter using membrane fusion process.
Tumour-specific drug targets and drug delivery have been studied with an artificial cell equipped with a

cancer cell-derived membrane (Figure 2) [63]. Membrane protein composition in a cancer cell membrane
exhibit cancer-specific cell-adhesion property and is responsible for specific cell identifiers. This property is uti-
lised as a tumour-homing tool for tumour-specific drug administration. Artificial cells formed with a natural
cell membrane are also able to escape the immune defence of organisms as the cell membrane is derived from
natural cells. This artificial cell was found to target a particular cancer cell selectively in an in vivo system and
deliver encapsulated anti-cancer molecules [63]. These studies illustrate artificial cell application as an efficient
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drug carrier as well as target-specific drug releaser, which is a promising effort toward improved drug sensitiv-
ity and overcoming off-target cellular toxicity.

Artificial cell hosting photosynthesis and carbon fixation
Photosynthesis process is able to transduce light energy into chemical energy that fuels the living functions of
the photosynthetic organism. Reconstituting photosynthesis inside artificial cells would be able to provide sus-
tainable energy sources for the coupled biomimetic function inside the artificial cell. Photosynthetic reaction
centre proteins (RC) are transmembrane proteins embedded in the photosynthetic cell membrane responsible
to initiate the light energy transmission process [64]. These photo-enzymes use light photons to shuttle elec-
trons through the membrane, catalyses quinine molecule and establish a proton gradient across the membrane
for ATP production. RC proteins (extracted from Rhodobacter sphaeroides bacteria) were reconstituted within
GUV to allow the development of light-induced pH change across the synthetic cell membrane [65]. This
protein reconstitution resulted in a high degree of uniform orientation (90%) as well as resembled physiological
photosynthetic protein orientation, showing one of the preliminary features of photosynthesis programmed in
the artificial cell.
Light-activated ATP synthesis within an artificial organelle was made possible using two membrane proteins;

a photo-converter and an ATP synthase [66,67]. This artificial organelle is able to produce ATP directly as the
light-activated product that can fuel the ATP-dependant coupled reactions [67]. GUV encapsulated artificial
cell consisting of this artificial photosynthetic organelle has shown to initiate carbon fixation and actin

Figure 2. Tumour targeting artificial cell-based therapeutics.

Cell membranes extracted from cancer cell lines are used as artificial cell membranes. This membrane carries tissue-specific

cell adhesion molecules/proteins that can recognise specific cancer cells. Histone protein mixed with an anti-cancer p53 gene

are encapsulated within these cell membranes by physical extrusion methods. As this membrane is extracted from natural

cells, artificial cells prepared with this membrane can invade the host’s immune defence, selectively target particular cancer

cells and be used as a tumour-homing tool in in vivo systems [63].
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polymerisation fuelled by this light-induced ATP [67]. ATP catalyses pyruvate carboxylase that converts
3-carbon pyruvate to 4-carbon oxaloacetate and demonstrates carbon fixation in vitro.
Autocatalytic ATP generation to supply continuous energy to the artificial cell was efficiently programmed

within GUV as a combination of artificial photosynthetic organelle and CF extract for the protein synthesis
[68]. Within a positive feedback loop, light-induced ATP was used as the substrate for the coupled transcription
reaction and facilitated protein translation to drive the synthesis of bacteriorhodopsin and ATP synthase that
again produce ATP in the artificial organelle. This finding demonstrates that using a fundamental mechanism
of photosynthesis, an artificial cell can self-sustain its cellular function continuously triggered by light-activated
ATP and subsequent generation of in situ ATP in a feedback loop.
Carbon fixation by directly entrapping carbon dioxide was made possible inside an artificial cell. An artificial

cell was designed to mimic the function of natural chloroplast by converting carbon dioxide into multicarbon
compound glycolate [69]. Light-induced carbon dioxide fixation reaction was reconstituted within an artificial
cell coupled with the native energy machinery of photosynthesis, that is, thylakoid membrane-based energy
module (TEM) [69]. This reconstitution allows a complex array of multi-enzymatic reactions that uses carbon
dioxide as input and converts it to a two-member carbon compound glycolate. These studies demonstrate the
possibility of hosting photosynthesis within an artificial setup that uses light energy as a trigger to initiate a
multistep carbon fixation reaction programmed in a loop.

Discussion and future prospective
Designing artificial cells can provide a platform for understanding the biological principles of natural cells; in
addition, its engineering framework reveals an exciting field of study that allows its design to be customisable
for many functions. Membrane-enclosed artificial cells have the advantage of designing with hand-selected bio-
materials, primarily engineered genomes encoding signalling proteins or metabolic enzymes and artificial orga-
nelles that can easily target living cells, tissues, chemicals or biomolecules. However, an artificial cell design
must fulfil some functional conditions to be able to use as a bioengineering tool. Artificial cells must sense the
surrounding, recognise the target or migrate to the target site, activate themselves and transmit their synthe-
sised product to initiate the required function. As a biosensor, artificial cells must interact with the surrounding
environment to activate their function, which primarily depends on membrane permeability and cell–cell com-
munication. In the current scenario, artificial cell biosensing studies are based on the small chemical exchanges
through a lipid membrane that limits the artificial cell applicability as a biosensor. Although reconstitution of
membrane proteins within lipid vesicles adds some flexibility to target molecular recognition, to date, artificial
cell study is limited to a small number of analytes. Advancements in membrane permeability that can allow
not just ions or small molecules but also selected proteins or nucleotides might improve artificial cell design as
biosensors.
Artificial cells have a huge importance in the drug delivery system, which depends on the efficient encapsula-

tion property of the lipid membrane. Currently, liposome is most favoured as the membrane in drug delivery
applications due to its biodegradability and its phospholipid bilayer, which is closer to the biological cell mem-
brane. However, for in vivo drug targets, it becomes challenging to mimic complex cellular membranes with
their simple and homogeneous lipid composition. Therefore, target-specific modification in the lipid compos-
ition is required to design an artificial cell with efficient drug delivery capability.
In therapeutic application, ongoing artificial cell research uses both membrane functionality and CF system

for on-site, sustainable therapeutic protein expression. This enables using a huge variety of therapeutic mole-
cules using the CF system in an artificial cell. Artificial cells formed with natural cell-derived membranes have
an advantage over lipid membranes. With this kind of membrane, it can bypass the host’s immune defence
and accumulate primarily on target cells with common cell-adhesion molecules. Although this is a unique strat-
egy of tumour targeting method, the concept needs further in vivo studies for proper investigations. The
biggest challenge in this field is that these studies are relatively new and still in their early stages of
development.
Artificial photosynthesis could be a life-changing research effort in the near future, which might be helpful

for solar energy conversion, biofuel generation and carbon fixation. Artificial cells as portable artificial photo-
synthetic devices have definite potential, which is currently limited to a very small number of studies.
Artificial cell design is a combination of membrane engineering and the core functional module, which

needs to develop parallelly. The biggest challenge in artificial cell research is developing a customised mem-
brane with the required functionality, permeability and compatibility so that the core functional modules can
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operate by effectively sensing the environment and delivering an accurate signal as a response. So far, with a
handful of studies, it is difficult to explore the practical application of artificial cells fully. However, the combin-
ation of biology, medicinal application and advancement in engineering techniques might develop artificial
cells to be applicable in biotechnology.

Summary
• Artificial cells are a non-living synthetic design developed to mimic biological functions and

modulate them using a minimalistic setup. Having relatively simple engineering principles, arti-
ficial cells are equipped with a membrane and membrane encapsulated functional core.

• Including biosensing and drug delivery applications, artificial cells are designed and developed
in various sectors as portable bioengineering devices able to communicate and respond to
the surrounding.

• An artificial cell has huge potential in future therapeutics and synthetic biology applications,
which currently lack customised membrane options and selective membrane permeability.
However, progress in membrane engineering might be able to circumvent this limitation in the
near future, which would accelerate artificial cell applicability in biotechnology.
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