
Review Article

A mini-review on bio-inspired polymer self-
assembly: single-component and interactive
polymer systems
Xiangxi Meng

Materials Research Laboratory, University of California Santa Barbara, Santa Barbara, CA 93106-5121, U.S.A.

Correspondence: Xiangxi Meng (xiangximeng@ucsb.edu)

Biology demonstrates meticulous ways to control biomaterials self-assemble into ordered
and disordered structures to carry out necessary bioprocesses. Empowering the syn-
thetic polymers to self-assemble like biomaterials is a hallmark of polymer physics
studies. Unlike protein engineering, polymer science demystifies self-assembly by pur-
posely embedding particular functional groups into the backbone of the polymer while
isolating others. The polymer field has now entered an era of advancing materials design
by mimicking nature to a very large extend. For example, we can make sequence-specific
polymers to study highly ordered mesostructures similar to studying proteins, and use
charged polymers to study liquid–liquid phase separation as in membraneless organelles.
This mini-review summarizes recent advances in studying self-assembly using bio-
inspired strategies on single-component and multi-component systems. Sequence-
defined techniques are used to make on-demand hybrid materials to isolate the effects of
chirality and chemistry in synthetic block copolymer self-assembly. In the meantime,
sequence patterning leads to more hierarchical assemblies comprised of only hydropho-
bic and hydrophilic comonomers. The second half of the review discusses complex coa-
cervates formed as a result of the associative charge interactions of oppositely charged
polyelectrolytes. The tunable phase behavior and viscoelasticity are unique in studying
liquid macrophase separation because the slow polymer relaxation comes primarily from
charge interactions. Studies of bio-inspired polymer self-assembly significantly impact
how we optimize user-defined materials on a molecular level.

Introduction
Biomaterials have a lot to teach us how to control polymer self-assembly. Biological macromolecules
are encoded with information to form intrinsically ordered and disordered regions to carry out a
plethora of functionalities necessary for bioprocesses [1,2]. Encoding synthetic materials with informa-
tion opens opportunities to guide polymer self-assembly for hierarchical organization and compart-
mentalization that only biopolymers were capable of before [3]. Multiple intra- and inter-molecular
interactions (e.g. hydrophobicity, electrostatics, sterics, and hydrogen bonding) contribute simultan-
eously to the ultimate shape of the polymer. Isolating these intertwined factors is meaningful but chal-
lenging for the polymer community when developing fundamental understandings of controlling
polymer self-assembly. In return, wisdom gained from artificial polymer systems could potentially be
applied to explain malfunctions of biomaterials due to loss of desired structures. Where biology and
polymers meet inspires tremendous innovations for materials to have nature’s ability to form struc-
tured complexes with advanced performance.
Seeking molecular control over bulk polymer assembly has been a longstanding quest in polymer

and biology studies. How much power do we need in our synthetic polymer systems to make them
work like biological macromolecules? What control handles have been given to us to tune artificial
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soft materials to make more meaningful polymers [4]? The increasing number of publications on ‘bio-inspired
polymers self-assembly’ (111k as of August 2022, Web of Science!) indeed tracks the vigorous activities of
embedding nature’s capability into synthetic polymers. In this mini-review article, challenges and recent
advances in controlling self-assembly will be elaborated. Self-assembly will be discussed in (1) single-
component systems to study the phase junction in block copolymers and to investigate hierarchical mesostruc-
tures formation [5,6], and (2) multi-component systems in the context of complex coacervation, which is a
charge-driven liquid–liquid phase separation phenomenon [7] (Figure 1).

Self-assembly in a sequence-controlled, single-component
system
Self-assembly in a single-component polymer system is a common phenomenon in biological systems.
Decoupling the intertwined factors contributing to the ultimate chain shape requires precise control of polymer
chemical structure as subtle changes in chemistry might smear the bulk polymer properties. In contrast with
traditional random copolymerization methods, sequence-defined polymer platforms provide a great handle to
make on-demand polymers with precise control over chain comonomer composition, patterning, and chain
length distribution [8]. There are a few well-established sequence-defined polymerizations, such as precise
macromonomer approaches and interactive chain growth, and a wide variety of polymer backbones, such as the
biomimetic polypeptoid/peptides, hybrid, and modified monomers, available for forming self-assemblies on a
broad length scale [9–12].
Among sequence-controlled polymerization methods, polypeptoids are one of the most convenient to make

with excellent yield and monodispersity [6], thus being widely used to develop fundamental understandings of
polymer physics on self-assembly otherwise hard to achieve with traditional random copolymerization techni-
ques. The fully robotic polypeptoid synthesis method grows polymer chains on a solid substrate and continues
adding half-monomers cyclically with (1) an acylation step of a halogenated carboxylic acid in the presence of
a coupling agent and (2) a displacement step with a primary amine. Functional monomers are directly incorpo-
rated into the polypeptoid backbones by forming an amide bond, which also avoids stereochemistry or hydro-
gen bonding as in other sequence-defined polymer platforms. Having tremendous flexibility in chemistry, to

Figure 1. A schematic overview of the topics covered in this review, including (a) single-component and (b) the multi-component polymer

systems.

In the single-component systems, hybrid polymers will be discussed to demonstrate the steric effects between domains in self-assembled block

copolymers. The role of sequences will be elucidated in controlling hierarchical structures formation. In the multi-component system, complex

coacervation as a classic macro-ionic phase separation phenomenon will be discussed in terms of phase behavior, viscoelasticity, and hierarchical

structures formation.
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date polypeptoids have been used to study the effects of local chain stiffness, hydrophobicity/hydrophilicity,
patterning, chain lengths, and defects in bulk polymer properties, including self-assembly.
Polypeptoids are designed as a controllable segment to control block copolymer assembly. When chemically

incompatible segments are covalently bonded together to form a block copolymer, phase separation occurs to
form domains rich of either polymer as demixing minimizes entropy. Guiding polymer micro-phase separation
into complex structures, such as lamellae, gyroids, and hexagonal cylinder packing was a game changer and
created opportunities to extend polymer uses on much smaller scales, such as membranes for nanofiltration
[13] and directed self-assembly for nanopatterning [14]. The Segalman group systematically embedded helices
in hybrid diblock copolymers to learn the chain steric limitations in forming complex structures [15]. Helices
are peculiar structures found in biological macromolecules to stiffen chains. Helical and stiff polypeptoid block
was synthesized with chiral side groups, whereas the coiled and flexible polypeptoid block was with racemic
side groups [15–18] (Figure 2a). Other than helicity, both polypeptoids were chemically identical. In dilute
solutions, helical polypeptoids have smaller statistical segment lengths than flexible ones, but similar insensitiv-
ity to solvent qualities. This suggests that the polypeptoids have stronger self-steric constraints than polymer–
solvent interactions in determining chain conformation [16]. To further demonstrate the effect of a stiffer
block, helical polypeptoids were clicked to a poly(n-butyl acrylate) (PnBA, coil) to form a diblock copolymer
(Figure 2b) [15]. The domain size of a hexagonal cylinder packing structure increased, and a lower order-
disorder transition temperature was found, both attributing to extensive chain stretching near the block junc-
tion and negative packing interactions at the cylinder center. Similarly, an interfacial helical segment in a poly-
styrene (PS, coil)-polypeptoid diblock copolymer shifted the self-assembly window towards less organized
conformation, showing that chain flexibility is important for more organized nanostructures (Figure 2c) [17].
Furthermore, in the lamellae phase window, helicity lowered the disorder temperature without negatively
impacting the domain size (Figure 2d) [18]. A minor enthalpic penalty and a significant entropic gain were
captured as a result of interfacial chain stretching. Without changing the overall polymer chemistry, polypep-
toids demonstrated that a stiffened segment leads to intensified chain stretching in the block junctions that dis-
favors block copolymer self-assembly into more ordered nanostructures.
Monomer sequence can also tune self-assembled lamellar structures demonstrated by a hybrid diblock

copolymer, PS-polypeptoid (Figure 2e) [19,20]. The polypeptoid block containing non-compatibilizing units
formed lamellae with the most distinct phase boundary. The presence of compatibilizing units in the polypep-
toids segment increased interfacial widths and interfacial mixing [20]. Simulation based on self-consistent field
theory supported the hypothesis of chain conformational change caused by localizing compatible comonomers
at the domain interface [19]. These exciting findings demonstrate fascinating fine-tuning methods to smear
phase boundaries while minimizing mixing efforts to compatibilize blocks in one single polymer molecule.
Moving on, reversed studies to look for minimal required chirality and compatibilizing units will be of interest
to the biology and biomedicine community to design sensors that detect cellular aggregates formed as a result
of protein misfolding or denaturing due to sequencing mistakes.
More hierarchical two-dimensional and three-dimensional structures can be achieved by combining hydro-

phobic and hydrophilic side groups in alternating or diblock sequences, such as nanofibers [21–23], nanotubes
[23–25], and nanosheets [26–33] (Figure 3). Hydrophobic (e.g. aromatic, halogenated aromatic, and aliphatic)
and hydrophilic (e.g. carboxylic and amine) side groups are used to tailor the amphiphilicity of the polypep-
toids to form nanostructures freely in solution or assisted by a substrate [21,31,32]. The strong hydrophobic
interactions (π–π stacking) are a typical self-assembly driving force. To form a hydrophobic core in bilayer
nanosheets, experiments and simulation showed evidence of amide bond rotation from trans- (coiled) to cis-
conformation to facilitate dense polymer packing in alternating residual sequences [34,35] (Figure 3a). An
interesting report showed that three units were the onset for polypeptoids to self-assemble into ordered
nanosheets and nanofibers: two phenyl and one amine side groups [22]. Intriguingly, the molecular orientation
in a nanosheet crystalline was visualized by a cryogenic electron microgram which provided information of
precise chain stacking on an atomic level for the first time [29]! The tolerance of hydrophobic packing was
investigated by chemically modifying the phenyl side groups in different positions to examine for nanosheet
formation [27] and stability [26]. Aromatic side groups with two carbon spacers (phenethyl side group)
appeared to favor nanosheets formation potentially due to greater rotational flexibility required for lateral and
planar π interactions. Setting up the molecules with appropriate degrees of freedom for sufficient intra- and
interpolymeric interactions hydrophobically and electrostatically is important in controlling ordered structures
formation as applied materials. A study on encapsulating proteins and oxide nanoparticles into multilayered
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polypeptoid nanosheets [31] shows a promising future for using self-assembled polymers as scaffolds, func-
tional membranes, and drug delivery vehicles.
Self-assembled nanotubes can be formed from blocky co-polypeptoid structures with one or more nonpolar

segments [23–25,36,37]. The ordering of the nonpolar groups was shown to start with spheres, then a lipid-like
bi-layer, followed by rolling into a single-walled tube with excellent chemical stability and mechanical strength
(Figure 3b) [25]. Nonpolar block size is proportionally scaled to the tube diameter and wall thickness. A
three-arm polypeptoids design demonstrated the transition from nanotubes to nanofibers by replacing the aro-
matic side groups with aliphatic ones and reducing the number of polar side groups [23]. Aromatic side groups
with only one carbon spacer (benzyl side group) dominated reports on polypeptoid nanotubes. Surprisingly,
one report showed single-wall nanotube formation from diblock copolypeptoids prepared with linear polar and

Figure 2. Demonstration of how side group chirality and monomer sequence affect block copolymer bulk self-assembly.

(a) Chemical structures of helical polypeptoids formed with chiral side groups and coiled polypeptoids formed with racemic side groups. The helical

persistence length was a correlation distance along the helical contour, while the coiled persistence length was along the polymer chain contour,

suggesting that helices made the polypeptoids segment more locally stiff in chain conformation while the chain remained overall flexible. Adapted

with permission from ref. [18]; copyright © 2019 American Chemical Society. (b) Illustration of poly(n-butyl acrylate) (PnBA)-b-polypeptoids forming

hexagonally packed cylinders, where helical polypeptoids block increased D-spacing due to unfavorable packing conditions due to chain stretching.

Adapted with permission from ref. [15]; copyright © 2018 American Chemical Society. (c) Demonstration of polystyrene (PS)-b-polypeptoid

self-assembled into different nanostructures and a helical interfacial segment shifted the self-assembly window towards a more significant

polypeptoids volume fraction with narrower gyroids region. Adapted with permission from ref. [17]; copyright © 2021 American Chemical Society.

(d) Representation of PnBA-b-polypeptoids self-assembled into lamellae structures with lower thermal stability against disordering, indicating

unfavorable chain stretching in forming lamellae morphology. Adapted with permission from ref. [18]; copyright © 2019 American Chemical Society.

(e) Schematic PS-b-polypeptoid diblock copolymer with non-compatibilized and compatibilized polypeptoid segments to form lamellae structures

with widening intermixing regions. Adapted with permission from ref. [19]; copyright © 2020 American Chemical Society.
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nonpolar side groups in tiles using only van der Waal interactions (Figure 3) [24]. The diameter of the nano-
tubes proportionally scales with the size of blocks, indicating a good control handle for tube formation. The
sequence-defined platform is a great tool to advance studies of polymer self-assembly by fine-tuning specific
parts of the sequence without disrupting the rest of the molecule, providing precise structure-property correla-
tions otherwise difficult to achieve.
Polypeptoids have great potentials to embed more functionalities to target real-life problems. It will be

curious to investigate the minimal changes in structures and sequence required to migrate hierarchical struc-
tures from one to another. Defect tolerance would also be an attractive direction to look into as we have a
powerful tool to plant mistakes on a monomer level that could be useful in a wide range of applications. For
example, we can develop diseases related models to see how discontinuous hydrophobic residuals would affect
hydrophobic core formation as in biological bilayer structures. Another approach will be to explore the targeted
disassembly of the sheets and tubes as protective encapsulation scaffolds to release hydrophobic drugs. All of
the forementioned applications will rely on building a more fundamental understanding of
structure-processing-property relations with sequence-defined polymers.

Self-assembly induced by electrostatic in a
multi-component system
A cell is a crowded place full of charged macromolecules interacting with soft frictions in water so learning to
take advantage of the electrostatic interactions to drive self-assembly becomes beneficial. About 100 years ago,
Oparin [38] and Haldane [39] theorized almost simultaneously that life might have started in a simple soup
rich in large molecules in the primitive ocean (similar to the idea of membraneless organelles). Even though
the linkage between the physical material condensation and biology remained unestablished, the idea of a
stable liquid–liquid phase separation driven by supramolecular interactions attracted lots of investigations in
soft materials design. Bungenberg de Jong and Kruyt used the term ‘coacervates’ for the polymer-rich phase in
liquid–liquid phase separation, a colloidal assembly between oppositely charged polyelectrolytes [40,41]. Ever
since the 1920s, research in coacervates and their formation mechanism has covered the span of almost all cat-
egories in charged polymer science. And coacervation also facilitated new developments in encapsulation and
drug delivery methods [42,43], food and personal care products [44,45], and compartmentalization [46–48].
Understanding the unique charge-driven phase behavior has become the key to studying complex coacervates
and polymer chain dynamics [49–51].
With low surface tension and abundant charge interactions [52], complex coacervates have a long history of

being used to encapsulate cargos, e.g. proteins/polypeptides [53–57], DNA/RNA [58], water-soluble cargos
[59–61], and biomedicine [62,63]. The non-ionic hydrophobic backbone and aromatic side groups are strong
promoters for cargo loading because the polymer-cargo π–π interactions resist swelling in the coacervates phase
[60,61]. However, highly ionic environments can destroy the coacervation equilibrium due to having no
entropic gain from crowding small molecules in a polymer-rich phase. Coacervate microencapsulation leads to
developing encapsulation scaffolds for molecules of a wide variety of hydrophobicity as well as target delivery
vehicles that are sensitive to environmental changes, such as salt and local pH.
The solid intractable polyelectrolyte complexes (PECs) and liquid coacervates were studied separately for a

long time and the transition has only recently been discovered. Solid PECs exhibit tremendous potentials in
thin film science [64–67] because of their great encapsulation and self-healing capability, as well as pH and salt
sensitivity [68–71]. And PECs demonstrated unexpected moisture-dominating polymer relaxation and toughen-
ing even in the absence of salt [72–75]. Recently, the Schlenoff group showed the phase transition continuum
from solid to liquid complex coacervates using a canonical pair of polyelectrolytes, poly(4-styrene sulfonate
sodium salt) (PSS) and poly(diallyldimethyl ammonium chloride) (PDADMAC) in the presence of potassium
bromide (KBr) [49] (Figure 4a). Neutron scattering confirmed that the chain conformation was flexible
(Gaussian polymer) in coacervates, supported by the decreasing radius of gyration due to the abundance of salt
and water as opposed to solids [76]. In particular, the Perry group used rheological methods to probe the
polymer network change as a result of the physical transition from solid PECs to liquid coacervates [77]. A
frequency-invariant crossover point in the normalized complex moduli was identified as an ‘diphasic’ salt con-
centration that separated a gel-like network with ionic crosslinkers and a flexible polymer network with
dynamic ionic bonds (Figure 4b). This solid-to-liquid transition opens a new processing window of using
complex coacervates thanks to the special salt-plasticizing nature of PECs. There are a few special features of
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the thermodynamically stable, macro-ionic coacervate phase, for example, net charge neutrality [78] and time-
dependent mixing kinetics to reach equilibrium [79]. Whereas PECs can have overcompensating polymer com-
ponents [80,81] and kinetically trap polymers while forming a precipitate. Harnessing the liquid nature of
complex coacervates, nanofabrication of films [82,83] and fibers [84–86] with a fully water-based method in
one step was enabled, leading to the invention of more environmentally friendly precursor solutions.
Controlling coacervation, or the liquid–liquid phase separation behavior, is key to studying the coacervate

self-assembly. Having hundreds of polyelectrolytes coacervated, the significant role of the polymer backbone
chemistry is demonstrated in detail [87,88] (Figure 5a). In general, greater molecular weight [50,84,89], more

Figure 3. Demonstration of how polypeptoids of different hydrophobic and hydrophilic monomer arrangements can lead

to self-assembled into (a) nanosheet and (b) nanotubes.

(a) Polypeptoids have a conformational change while densely packed into a lipid-like bilayer nanosheet structure. Adapted with

permission from [35]; copyright © 2018 American Chemical Society. (b) The polypeptoids nanotubes formed over time and

evolved from spheres with a hydrophobic core, bilayer sheet, and a tube. Adapted with permission from [25]; copyright © 2018

Springer Nature publishing group.
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hydrophobic backbones [90–93], and charge densities [94,95] enhance coacervates/PECs salt resistance; and
small protonated amines and aromatic sulfonate bind strongly [96]. In addition, sequence-defined polypeptides
provided insights into weak polyelectrolytes coacervation to combat precipitation as a result of strong
hydrogen-bonding. The interplay between chirality, charge density [92,93] patterning [97–101], and hydropho-
bicity (π-interactions) has been examined. In particular, having a racemic polypeptide component, a small
segment of homochiral units and alternating chiral unit patterning contribute positively to liquid coacervates
formation because hydrogen bonding was disrupted. Intriguingly, the different surface tensions of coacervate
droplets were shown to facilitate the formation of hierarchically organized, multiphasic coacervate droplets with
up to three compartments [102] (Figure 5b). This finding provides a prototypical scenario for biological con-
densates in primitive ocean and membraneless compartmentalization while bridging polymer chemistry and
biophysics.
Modulating charge and neutral blocks (i.e. di-block, terminal, and centered) of polyelectrolyte was shown to

control the formation of different hierarchical structures in the coacervate phase (Figure 5a). While bulk coacer-
vates have been the mainstream in studies, lamellar [104], micelles [105,106], hexagonal cylinder packing [107],
and crosslinked gels network (including body-centered cubic structure) [108–110] are achieved via chemically
modifying the backbone chemistry of the polyelectrolytes and tuning the polymer/salt volume fraction. Among
others, lamellae should be the easiest to develop as the two blocks of have extremely low compatibility (i.e.
large χ, Flory-Huggins interaction parameter) thus a phase separation is entropically favored. However,
although theory and simulations provided excellent predictions of forming lamellae structure by capturing the

Figure 4. The reversible phase transition continuum of polyelectrolytes complexation between liquid to solid physical

states.

(a) A digital photograph of the poly(4-styrene sulfonate sodium salt) (PSS) and poly(diallyldimethyl ammonium chloride)

(PDADMAC) complex coacervates prepared in increasing salt concentrations. The numbers at the cap of each vial were the

as-prepared KBr concentration. Adapted with permission from ref. [49]; copyright © 2014 American Chemical Society. Further

permissions related to the material excerpted should be directed to the ACS. (b) Plots of tan(δ) and the normalized phase angle

2δ/π on the PSS/PDADMAC complexes and coacervates as a function of as-prepared salt concentration. Data were shown for

oscillation frequencies from 1–100 rad/s indicated by the arrows. The star highlighted a frequency-invariant point marking the

transition between solid-to-liquid in complexes. Adapted with permission from ref. [77]; copyright © 2017 Royal Society of

Chemistry.

© 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and the Royal Society of Biology and distributed under the Creative Commons

Attribution License 4.0 (CC BY-NC-ND).

599

Emerging Topics in Life Sciences (2022) 6 593–607
https://doi.org/10.1042/ETLS20220057

D
ow

nloaded from
 http://port.silverchair.com

/em
ergtoplifesci/article-pdf/6/6/593/941386/etls-2022-0057c.pdf by guest on 10 April 2024

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/


intense polymer-salt-water interplay, lamellae is experimentally the hardest to form in coacervation (Figure 5c)
[103,111,112]. It is difficult to make polyelectrolytes with a perfect polarity balance between hydrophobic,
hydrophilic, and ionic segments that entropically favors lamella. Moving on, I believe the electrostatic-driven
self-assembly will inspire more work to leverage charges to compatibilize traditionally incompatible polymers
[113], intensify chain interactions, and stabilize polymers chemically and temporarily, enabling on-demand
polymer chain morphology changes in an applied materials perspective.
A more comprehensive understanding of the dynamic molecular interactions inside complex coacervates has

been developed by joint efforts of experiments and simulation tools. Multiple complex parameters, such as
charged site connectivity, polymer compatibility, and the water network have been taken into account for

Figure 5. Schematic of the interactive complex coacervates self-assemblies formed with various oppositely charged

homo- and copolyelectrolyte structures.

(a) Schematic presentation of the structure of complex coacervates to form bulk, micellar, gel, and hexagonally packed

cylindrical morphologies in solution. Adapted with permission from ref. [62]; copyright © 2016 John Wiley and Sons publishing

groups. (b) Multiphasic coacervates coexist in a single droplet with different surface tensions, indicating stable liquid–liquid

coacervates phase separation across other polymer systems in a single incident. Adapted with permission from ref. [102];

copyright © 2020 American Chemical Society. (c) A simulation diagram showing the combinations of polymer ionization in

diblock polyelectrolytes and salt concentration for possible lamellae formation in complex coacervates. Adapted with

permission from ref. [103]; copyright © 2018 American Chemical Society.
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physical accuracy [114,115]. Contribution to free energy upon complexation came primarily from the entropy
due to the release of counter-ions and water restructuring [116–119]. Sequence-defined polypeptides showed a
more significant entropic gain from coacervating the pairs with a larger block of neutral monomers and a
greater salt resistance (Figure 6) [118]. The larger repeat unit size led to a more compact structures as lower
probability of counterion and water aggregating near neutral segments, as well as a more significant excluded
volume effect. Greater activation energy and longer time are required to shift the consecutively paired charges
all at the same time [91,117–120]. It is worth mentioning that effects of charge connectivity and polymer
excluded volume were neglected in traditional models but captured by the Sing group who used a polymer ref-
erence interaction site model (PRISM)-based model. Combining sequence-specific polymer materials and simu-
lation works, a much more comprehensive description of complex coacervation will be readily developed in the
foreseeable future.

Figure 6. Schematic demonstration of the structures of sequence-defined polycations with increasing charge and

neutral block size using polypeptides to form coacervates with fully charged polyanions.

(a) The block size τ indicated each repeat unit in the polycation. The polyanion was fully charged and stoichiometrically mixed

to form coacervates. (b) Salt resistance increased as τ increased for each combination. (c) Different block sizes barely made a

difference in enthalpy. At the same time, the entropic gain increased for larger block sizes, suggesting that coacervation was

entropy-driven and larger block sizes had more significant entropic gain. Adapted from ref. [118]; copyright © 2017 Springer

Nature publishing group.
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Complex coacervates are viscoelastic materials because ionic pairs constantly form and break between oppos-
itely charged polymers in water [121–123]. This unique chain interactions lead to the viscoelastic nature of
complex coacervates, differentiating coacervates from traditional polymer solutions whose rheological property
was predominantly determined by polymer topology, concentration, and chain length [124]. In other words, as
the classic sticky Rouse Model suggests, the ionic bonds create an interactive ionic network with friction points
between polymers to slow down chain relaxation. A characteristic relaxation time parameter is commonly
referred to describe how liquid-like or solid-like of a coacervate [124–127]. Similar to controlling the phase
behavior of coacervation, slower chain relaxation was found in systems with more hydrophobic backbones [91],
decreasing dielectric constant in the solvent background [122,128], greater temperature, and less ionic environ-
ments [129,130]. Coacervates are also linear viscoelastic materials, meaning their dynamic moduli are self-
similar and could be superposed to reveal a governing behavior by shift factors, such as temperature, pH, solu-
tion dielectric constant, salt/polymer concentration [121–123,127,129]. The capability to manipulate the inter-
actions in complex coacervates significantly impacts how coacervates can be designed as interactive material
platform for uses in a wide range of applications. With the versatile handles given to tune the charge interac-
tions in water, future work to embed functionalities to complex coacervate materials will benefit a lot from the
fundamental theories developed so far, for example, making a semiconductive film via coacervation [131].
One last topic that fascinated me was the studies on water dynamics in the complex coacervates network.

Water molecules, taking over 80 wt% of coacervates, are a critical but often times overlooked factor in coacerva-
tion studies because capturing water dynamics is difficult. A lot of the studies indicate how water restructures
by simply stating swelling or anti-swelling the coacervates phase. Work by the Han group fascinated me by
showing the dynamic hydrophobicity-induced dehydration process in coacervation using a custom-made
instrument [132,133]. They also showed that water diffusivity was high near the polymer network probed by
spin labels, indicative of a highly interactive polymer-water network [134–136]! Work to investigate the role of
water and its interactions with polymer, salt, and counterions will be interesting and enriching our knowledge
of a much more dynamic network that surrounds and reshapes the polymer network.

Conclusion
Nature demonstrated excellent skillsets in making spontaneous self-assembly happen in water. This review
paper discusses how sequence and charge, two of the most impactful drivers in biomaterial self-assembly can
be used to build fundamental understandings of synthetic polymer self-assembly. In particular, bio-inspired
sequence-specific polymers provide an extremely well-controlled method to make user-defined molecules, offer-
ing a handle to directly and precisely correlate polymer chemistry and performance on a molecular level.
Charge-driven self-assembly in multi-polymer network opens opportunities to modulate polymer interactions
in water, allowing for a fully water-based material platform in applied sciences. Building on the well-established
science of bio-inspired polymers, engineering applied materials will be enlightened in fields, such as energy
conversion, nanolithography, and biomedicine.

Summary
• Bio-inspired strategies pave the paths toward designing functional polymer materials with bio-

material’s strengths of self-directed assembly, bringing tremendous impacts in fundamental
biophysics and smart materials design.

• The power of controlling polymer sequence drives rapid development of understanding
sequence patterning and chain steric effects in copolymer self-assembly.

• The viscoelastic and dynamic chain interactions in forming liquid complex coacervates
provide new insights into charge-driven self-assemblies related to membraneless organelles/
or biological condensates.
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