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Immune-checkpoint blockade (ICB) has transformed the landscape of cancer treatment.
However, there is much to understand around refractory or acquired resistance in patients
in order to utilize ICB therapy to its full potential. In this perspective article, we discuss
the opportunities and challenges that are emerging as our understanding of immuno-
oncology resistance matures. Firstly, there has been remarkable progress made to under-
stand the exquisite overlap between oncogenic and immune signaling pathways. Several
cancer-signaling pathways are constitutively active in oncogenic settings and also play
physiological roles in immune cell function. A growing number of precision oncology
tumor-targeted drugs show remarkable immunogenic properties that might be harnessed
with rational combination strategies. Secondly, we now understand that the immune
system confers a strong selective pressure on tumors. Whilst this pressure can lead to
novel tumor evolution and immune escape, there is a growing recognition of tumor-intrin-
sic dependencies that arise in immune pressured environments. Such dependencies
provide a roadmap for novel tumor-intrinsic drug targets to alleviate ICB resistance. We
anticipate that rational combinations with existing oncology drugs and a next wave of
tumor-intrinsic drugs that specifically target immunological resistance will represent the
next frontier of therapeutic opportunity.

Introduction
Immune-checkpoint blockade (ICB) has transformed cancer treatment paradigms; however, the
majority of patients are either refractory to treatment or eventually acquire resistance. The understand-
ing of ICB therapy resistance is progressing rapidly, with several emerging concepts shaping the direc-
tions of the field. It is clear that many tumor-targeted drugs exert remarkably potent impacts on
immune cells that may be either beneficial or detrimental. Moreover, the immune system exerts a sig-
nificant selective pressure on tumors that confers unique signaling pathway dependencies. Neither of
these concepts had been anticipated before the advent of immunotherapy because tumor cells were
generally studied in isolation, but they guide us towards the next frontier of therapeutic opportunities.

Combination of immune-checkpoint blockade with
tumor-targeted drugs
Treatment of metastatic cancer relies on combination approaches to minimize resistance and enhance
the duration of response [1,2]. The integration of ICB with tumor-targeted therapies revealed
unanticipated cross-talk between oncogenic and immunological signaling networks. For example, ICB
combination with Mitogen-activated protein kinase (MAPK) pathway inhibitors was beneficial in pre-
clinical models [3]. This finding was unexpected because MAPK signaling is important for T-cell
development and effector activation [4]. Detailed mechanistic experiments revealed that
MHC-I-dependent antigen presentation is suppressed by MAPK or upstream KRAS driven oncogenic
signaling, whereas immunosuppressive PDL-1 and CD73 proteins are induced [5–7]. Thus, KRAS/
MAPK pathway inhibition seems to exert an overall net benefit on tumor cell intrinsic
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immunogenicity, a hypothesis that is currently under clinical evaluation (NCT02967692). These data neverthe-
less imply that tumor-selective MAPK inhibition would be advantageous, to eliminate potentially negative
effects on T-cells. Notably, oncogene-mutant-selective KRAS G12Ci showed excellent preclinical combination
benefit with ICB in preclinical models where MAPK activation is driven by KRAS G12C mutation [8], and this
combination is currently under clinical evaluation (NCT04185883).
Inhibitors of phosphoinositide 3-kinase (PI3K) and downstream AKT/Target of Rapamycin (MTOR) signal-

ing pathways also represent another prominent class of oncogene targeted therapies being investigated in com-
bination with ICB. PI3K/AKT/MTORi were developed as tumour-targeted agents, given pathway alterations are
reported in 38% of solid tumors [9]. However, PI3K/MTOR pathway inhibitors show remarkable immunomo-
dulatory properties. Ali et al. showed that inhibition of the PI3Kδ isoform could acutely deplete immunosup-
pressive regulatory T-cells from the tumor microenvironment [10]. We extended these findings, showing the
clinical PI3Kα/δ inhibitor AZD8835 enhances cytotoxic effector functions of conventional T-cells [11].
Inhibitors of MTOR also combine well in ICB combination, but subtleties are revealed when comparing the
associated immune effects. For example, dose-dependent inhibition of T-cell proliferation is observed with
MTOR but not PI3K inhibition, and MTORi additionally promotes innate-immune inflammatory cytokine
profiles [11–13]. PI3Ki/MTORi combinations with ICB have not been widely explored in the clinic, and further
evaluation is warranted.
Whilst we highlight MAPK and PI3K/mTOR examples, many analogous findings reinforce a continuum of

shared signaling between tumor cells and the immune system that extends to additional oncogenic pathways

Table 1. The immunological effects of immune-checkpoint blockade in combination with small molecule tumor-targeted drugs

Combination
inhibitor class

Exemplar combination partners and
furthest clinical development status of
combination Proposed immunological mechanisms and key references

KRAS/MAPK
pathway

RAF/MEK (Ph3 — NCT02967692)
Sotorasib (Ph2 — NCT04185883)

Enhancement of MHC-I antigen presentation.
Suppression of CD73 and PDL-1 expression.

MTOR/PI3K pathway Everolimus (MTOR allosteric) (Ph1b —

NCT03095274; NCT02890069)
Vistusertib (preclinical)
Idelalisib, AZD8835 (preclinical)

Promote antigen-presenting cell immunometabolism.
Enhance T-effector/memory survival.

EGFR Erlotinib, Gefitinib Osimertinib (Ph1/2 —

NCT02039674; NCT02454933)
Preclinical combinatorial synergy with anti-PD1, direct mechanistic
link unclear [31].
Resulted in potentially elevated interstitial lung disease [15].

ALK Crizotinib (Ph1/2 — NCT02393625) Crizotinib promotes immunogenic cell death of cancer cells [32].
Severe hepatic toxicities reported in early phase clinical trials [33].

FGFR Erdafitinib (Preclinical) FGFR pathway inhibition showed combination benefit with anti-PD1
in a preclinical mFGFR2 driven autochthonous lung cancer model,
associated with increased T-cell infiltration [34].
Precise mechanistic links with the immune system are unknown.

CDK4/6 Abemaciclib (Preclinical) Activation of endogenous retrovirus enhances immunogenicity, and
suppression of Treg proliferaton [35].

IGF1R PQ401 and genetic knockout - Preclinical IGF/IGF1R pathway antagonists show combination benefit with
anti-PD1. Mechanistic links to ICB are unknown [36].

Poly-specific tyrosine
kinase (TKI)

Axitinib, Cabozantinib, Lenvatinib (approved —

NCT02853331, NCT03141177,
NCT02501096)

Modulation of the tumor microenvironment and enhancement of
immunogenic cell death (increased interferon signaling, promote NK
cell killing and reduced suppressive macrophage activity) [37–39].

DNA-damage
response

PARP inhibitors; Olaparib, Rucaparib (Ph3 —

NCT03737643, NCT01968213)
Immunogenic cell killing releases innate-immune agonists (e.g.
STING) [40].

Epigenetic BET (Ph2 — NCT04471974)
HDACi (Ph1/2 — NCT02805660)
EZH2 (Ph1/2 — NCT03854474)

Suppression of PDL-1 [41].
Modulation of transcriptome changes the peptide repertoire to
enhance tumor immunogenicity [42].

iAP antagonists Xevinapant (Ph1/2 — NCT04122625) Lowering apoptotic threshold and sensitization to immune-mediated
killing [43]
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(Table 1). Synergies between ICB and broadly active tumor targeting agents such as poly-specific tyrosine
kinase inhibitors and DNA-damage pathway inhibitors are of significant interest due to their wide-clinical rele-
vance [14]. Notably, not all combinations will be clinically feasible, exemplified by challenges in combining
ICB with EGFR inhibitors that led to potentially increased incidence of interstitial lung disease [15]. Careful
consideration of combinatorial mechanisms, overlapping biomarkers, and optimization of dose/scheduling
should be prioritized to maximize the probability for these combinations to translate clinically. Given that
oncogenic signaling can directly control the immunogenicity of a tumor, combination studies in the relevant
genetic context represents a focused patient selection paradigm, as exemplified by KRAS/MAPK. In contrast, it
is notable that direct immune-intrinsic potentiation would not preclude the extension of a novel combination
beyond conventional oncogene-dependent patient populations, as may be the case for PI3K/MTOR inhibitors.
Deep understanding of the cellular and molecular combinatorial mechanisms is critical before patient selection
can be considered.

Figure 1. Mechanisms of immune-evasion by tumors and opportunities for novel therapeutic development with tumor-targeted therapies.

Key mechanisms involved in immune evasion or resistance are shown, in addition to clinical inhibitors that can modulate the pathways (depicted in

red or teal text). A common involvement of antigen presentation, immune-checkpoint, IFNγ, TNF, cytolytic and autophagy pathways has been

observed in functional genomics screens, which are typically associated with cell-mediated immunity. Not all pathways or targets are druggable

with available inhibitors, which provides a roadmap for future drug discovery efforts.
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Tumor-intrinsic resistance to immune-mediated killing
Complimentary to harnessing tumor-targeted therapies to augment immunity, studies are uncovering the sig-
naling pathways contributing to immune-evasion in tumors.
Mutation of the interferon gamma (IFNγ) signaling pathway represents a major mechanism of clinical ICB

resistance [16,17]. IFNγ is a T-cell-derived cytokine that signals through the JAK/STAT pathway to directly
restrict tumor growth, and indirectly promote upregulation of MHC-I-dependent antigen presentation. The
important role for IFNγ is recapitulated in preclinical CRISPR screens performed with both human and mouse
melanoma cells co-cultured with antigen specific T-cells, where IFNγ pathway attenuation promoted tumor
persistence [18,19]. Similarly, an in vivo CRISPR screen using the B16 mouse model revealed IFNγ pathway
enriched hits in tumors resistant to anti-PD-1 [20]. These studies identified well-known IFNγ pathway
members including Jak1/2, Stat1 and Ifngr1/Ifngr2 as resistance hits, in addition to newly identified negative
regulators such as PTPN2 and APLNR which might represent novel therapeutic targets [18–20].
Systematic exploration of IFNγ-independent mechanisms of immune-evasion revealed an important role for

the proinflammatory/cytotoxic cytokine TNF, which promotes bystander killing of tumors by T and NK-cells
[21]. The TNF pathway exhibits complex feedback dynamics, and the ablation of negative pathway regulators
Traf2 and Birc2 lowered the threshold of tumor cell apoptosis by TNF [22]. Historically, TNF administration
resulted in unacceptable toxicities when delivered systemically in the clinic, despite exhibiting broad efficacy in
preclinical tumor models [23]. An ability to selectively sensitize tumors to TNF-mediated killing would open
up intriguing possibilities to widen the therapeutic index for TNF agonist therapies.
Beyond conventional cytotoxic effector signaling, perhaps a more unexpected role for autophagy has emerged.

CRISPR-mediated knockout of autophagy pathway genes including Atg12 enhanced cytotoxic killing of a broad
panel of syngeneic mouse tumors [24]. Two additional studies corroborate these findings, implicating additional
autophagy pathway members Atg5 and Rb1cc1 in immune resistance [25,26]. Autophagy is a cellular recycling
process, which physiologically dampens intracellular damage to mitigate cell stress [27]. The exact mechanism
through which autophagy promotes immune-evasion remains to be elucidated, however, autophagic flux reportedly
limits TNF-mediated tumor cell apoptosis through regulation of the FADD/caspase-8 complex [26], and reduces
antigen presentation via NBR1-mediated lysosomal degradation of MHC-I in pancreatic cancer [28]. Autophagy
may, therefore, represent an emergent point of integration between tumor cell stress and immune cross-talk.
Collectively, it is becoming clear that the immune system exerts strong selective pressures on tumor cells and

immune resistance is associated with a novel spectrum of cancer dependencies (Figure 1). Whilst functional genom-
ics screens have started to reveal common immunomodulatory nodes that are broadly important in cancer, we must
still consider that the oncogenic context is key. There remains an opportunity for functional genomics screening to
better inform on diverse resistance mechanisms in systems harboring discrete, clinically relevant oncogenic drivers.

Conclusions
Since the first approvals of ICB, remarkable progress has been made to understand immune-resistance mechan-
isms. A unifying theme has emerged whereby classical oncogenic driver genes or pathways exhibit unexpected
roles to promote immunosuppressive profiles. With hindsight, this may seem intuitive, given that
immune-evasion is a central hallmark of oncogenesis [29]. Nonetheless, these findings are conceptually discrete
from a purely immune-editing paradigm, where immune escape by tumors is driven solely by passive selective
pressures conferred by immune cells [30]. Leveraging existing tumor-targeted therapies dosed and scheduled in
a way to mitigate for deleterious effects on immune cells will maximize the therapeutic potential for such com-
binations in the near-term.
A second major theme is that whilst immune-evasion might be driven by core oncogenic signaling, the

downstream functional dependencies and resistance pathways diverge. Tumor-intrinsic evasion mechanisms are
best revealed under conditions that mimic immunological pressure, which is an area that has only recently
received attention by the research community. Many of the emergent immunological resistance pathways are
classically involved in cell-mediated immunity, however, with the newfound power of functional genomics, key
signaling nodes are being deciphered. These efforts reveal a deep array of novel drug targets that will drive a
subsequent wave of innovation to tackle ICB resistance.
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