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Automated acquisition of plant eco-phenotypic information can serve as a decision-
making basis for precision agricultural management and can also provide detailed
insights into plant growth status, pest management, water and fertilizer management
for plant breeders and plant physiologists. Because the microscopic components and
macroscopic morphology of plants will be affected by the ecological environment,
research on plant eco-phenotyping is more meaningful than the study of single-plant
phenotyping. To achieve high-throughput acquisition of phenotyping information, the
combination of high-precision sensors and intelligent robotic platforms have become
an emerging research focus. Robotic platforms and automated systems are the import-
ant carriers of phenotyping monitoring sensors that enable large-scale screening.
Through the diverse design and flexible systems, an efficient operation can be
achieved across a range of experimental and field platforms. The combination of robot
technology and plant phenotyping monitoring tools provides the data to inform novel
artificial intelligence (AI) approaches that will provide steppingstones for new research
breakthroughs. Therefore, this article introduces robotics and eco-phenotyping and
examines research significant to this novel domain of plant eco-phenotyping. Given
the monitoring scenarios of phenotyping information at different scales, the used intel-
ligent robot technology, efficient automation platform, and advanced sensor equipment
are summarized in detail. We further discuss the challenges posed to current research
as well as the future developmental trends in the application of robot technology and
plant eco-phenotyping. These include the use of collected data for AI applications and
high-bandwidth data transfer, and large well-structured (meta) data storage approaches
in plant sciences and agriculture.

Introduction
Measuring plants with sensors, plant phenotyping, was originally defined in the field of crop breeding
as the biological traits, structure, size, color, and other expressions in vitro determined by the genotype
and the environment [1]. With the continuous development of digital phenotyping research, the con-
ceptual category has been linked to the fields of biochemistry, molecular biology, and behavior [2–6].
However, both the micro-level and macro-level plant phenotyping information have an inseparable
relationship with the ecological environment. Individual plant development is also influenced by inter-
actions with (neighboring) plants, microbes, other organisms, and a more realistic examination of
plant performance should therefore include the effect of biotic interactions on the plant phenotype.
Examples include studying the role of the plant microbiome; the bacterial and fungal populations that
colonize plants both above- and belowground. Plants in the ecological environment have various ways
to respond to changes. Phenotyping changes are a concrete manifestation of the response of plants to
the environment [7]. To deepen the relationship between phenotyping information and ecological
environment and make it more targeted, researchers from the Netherlands Plant Eco- phenotyping
Centre (NPEC) first proposed the term eco-phenotyping and defined it as plant phenotyping under
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ecologically relevant conditions. Ecological conditions mainly include biotic (microbiome interactions, competi-
tion, disease) and abiotic factors (light quantity and quality, nutrients, temperature, moisture, soil pH, and
atmospheric CO2 level) [8]. In response to the concept of eco-phenotyping, they are also carrying out a series
of eco-phenotyping facility construction plans, as shown in Figure 1. The metadata information precisely
describing environmental information is also critical to link between observed phenotypic variation and geno-
typic variation versus environmental differences.
There are many kinds of potential plant phenotyping parameters, and the efficient acquisition of these phe-

notyping parameters can provide effective information to support agricultural production management.
Traditional monitoring methods mostly rely on manual measurements, which shows a low accuracy, poor effi-
ciency, and limited acquisition of additional metadata, making it difficult to meet the demand of modern big
data applications [10,11]. To improve the efficiency of obtaining plant phenotyping information, a range of
robotic platforms has been used in plant phenotyping monitoring research. These robot platforms have the
characteristics of flexible movement and a high degree of automation. Such systems can replace many human
inspection tasks to achieve semi-automatic or even fully automatic operations. The combination of robotic plat-
forms and high-precision phenotyping monitoring sensors (various RGB, multi- and hyperspectral cameras,
3D-sensors [12], etc.) has further advanced the ability to enhance the complete study of plant for eco-
phenotyping. In addition, Artificial Intelligence (AI) technologies, such as deep learning, big data mining, and
machine learning, provide the means to process and interpret plant data which was collected via high- through-
put devices [13–16].
This article provides an overview of the application of existing robot technology in plant eco- phenotyping

monitoring. We conclude with a discussion of potential bottlenecks and shortcomings of current research
efforts by summarizing the role of the current application. Agricultural robot technology is rapidly developing,
and its combined application with AI technology and 5G communication technology opens up a vast range of
possibilities. A major challenge in the research field will provide the insight on how to best take advantage of
emerging technological possibilities within the agri-food and research settings.

Figure 1. Visualization of the six modules in the Netherlands Plant Eco-phenotyping Centre (NPEC) [9].
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Sensors and sensing technologies in eco-phenotyping
Phenotyping monitoring sensors and related sensing technologies are an important basis for plant eco-
phenotyping. In recent years, with the development of ground feature spectral monitoring technology, spectral
monitoring equipment has been utilized more in plant eco-phenotyping applications and have realized real-
time, non-destructive, rapid, and efficient plant phenotyping monitoring [17–20]. According to different
perception principles, these sensors mainly have ground feature spectrometers, spectral imaging sensors, and
other imaging spectrometers, as shown in Figure 2.
Ground feature spectrometers can use photodiodes, optical fibers, and other photoelectric sensing devices to

collect the spectral reflectance of the crop canopy at specific wavelengths and calculate some vegetation indices
to achieve phenotyping parameters inversion. Since the beginning of the research on the ground feature spec-
trometer, some commercial instruments that provide accurate results have been widely used [21–30]. Spectral
imaging sensors can be used to obtain spectroscopic images of a specific waveband that contain more informa-
tion than a ground feature spectrometer, the basic workflow in imaging sensor-based plant phenotyping is
shown in Figure 3. According to the difference of the spectral band of the acquired image, spectral imaging
sensors include RGB cameras, multi-spectral cameras, hyperspectral cameras, fluorescence cameras, thermal
cameras, etc. [31–37].
In addition to spectral imaging, non-spectral imaging technologies such as Light Detection And Ranging

(LiDAR), Computed Tomography (CT), Positron Emission Tomography (PET), Magnetic Resonance Imaging
(MRI), and related equipment have also gradually gained popularity for the acquisition of phenotyping infor-
mation [39–43]. Regarding the specific imaging principle and the acquired phenotyping parameters, Lei Li
et al. [44] have published more detailed results. Artificial Neural Networks (ANN), Support Vector Machine
(SVM), Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), and other AI algorithms
have been widely used in the study of phenotyping information acquisition as well as analyses such as pheno-
typing parameters measurement, feature recognition, and disease detection [45–50].

Construction of indoor robotic and eco-phenotyping
platforms
Plant eco-phenotyping monitoring scenarios can be divided into two major categories that are eco-phenotyping
in the indoor environment and eco-phenotyping in the open field. As ecological factors are relatively control-
lable within indoor settings, eco-phenotyping monitoring was first applied within indoor environments.
Relying on the effective combination of robotics and automatic environmental control technology, the

Figure 2. The figure of robotic platforms, phenotyping sensors, and phenotyping parameters used in plant

eco-phenotyping.
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high-throughput phenotyping monitoring platform TraitMillTM was introduced [51]. It’s used in the
plant-to-sensor working mode, which can automatically obtain the phenotyping information of potted plants
in the greenhouse. Since then, scientific research institutions across the world have successfully launched a
range of phenotyping platforms for indoor phenotyping information acquisition [52,53]. However, most of
these automated robotic platforms focus on the observation of plant macroscopic phenotyping parameters,
such as plant height, leaf area, leaf color, etc. With the further development of plant science and electronic
technology, research and exploration of plant phenotyping have gradually developed to the micro-scale [54].
According to the different observation scales of phenotyping information [55,56], the current indoor plant eco-
phenotyping monitoring platforms can be divided into four monitoring levels: Greenhouse-level,
Chamber-level, Mesocosm-level, and Microcosm-level.
Greenhouse-level plant eco-phenotyping mainly relies on the plant-to-sensor model or sensor- to-plant

model [57]. With the former model, the plant moves to the sensor test point for observation through an auto-
matic transmission mechanism [58–60]. The latter realizes the observation of different plants by moving the
position of the sensors [61,62]. Although their goals are realized in two different ways, these are still considered
as reliable approaches in automatic monitoring through robotic technology. Gravimetric systems have shown
the capacity to observe plant performance and behavior from a different angle by analyzing water usage, evap-
oration rate, and related parameters. Such approaches can provide an insight about more subtle plant pheno-
typic traits and examine responses to imposed stresses such as drought and salinity [63]. As compared with
other scales indoor plant eco-phenotyping, Greenhouse-level systems provide sufficient planting dimensions to

Figure 3. The basic workflow in imaging sensor-based plant phenotyping [38].
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allow the acquisition of phenotyping information throughout the full lifecycle of the plant. This can facilitate a
range of studies in plant breeding, growth monitoring, and pest monitoring studies, with the distinct advantage
of allowing examination of late growth-stage elements of plant phenotype such as maturation characteristics.
A number of mobile robot platforms and manipulator structures have been designed to accommodate a range
of crops and these platforms use phenotyping monitoring sensors to analyze the phenotyping information.
while these platforms are also developed to measure ripeness levels of fruits for automated for picking and
classification [64–66].
Chamber-level eco-phenotyping is similar to Greenhouse-level systems concerning phenotype monitoring

sensors, automation technology, and robot technology [67,68]. They, however, differ in cultivation area and
monitoring scale. While Greenhouse-level systems cover a large area but often fail to achieve accurate control
of most ecological factors. Chamber-level systems use relatively small rooms that can achieve accurate control
of temperature, water, CO2, light conditions, disease infection, and other biological and abiotic stresses. This
allows for more accurate quantification of the plant eco-phenotyping traits that appear in response to highly
specified and controlled environmental conditions [69,70]. To this day, there have been many successful pro-
jects utilizing Chamber-level plant eco-phenotyping based on high- precision and high-throughput robot plat-
forms, such as the WIWAM XY plant phenotyping system [71], as shown in Figure 4.
Mesocosm-level ecological phenotypic studies help to simulate the ecological environment and facilitate

microbial community studies, allowing both internal and external biological properties to be measured without
penetrating the ground. By studying physiological responses exhibited by plants when the plants were interact-
ing with either conspecific or interspecific neighbors, the ecological footprint of cropping systems provide
insight into the development of more eco-friendly cropping strategies [73]. Rhizotrons are one of the earliest
non-destructive underground Mesocosm-level platforms. Limited by the available sensor technology, early rhi-
zotron facilities typically used cellars or underground corridors with transparent glass on both sides.
Researchers can walk through the facilities and directly observe the root phenotyping and soil conditions
in-depth underground [74]. However, these underground facilities are expensive, difficult to maintain, destruc-
tive to soil structure, and not conducive to large-scale use [75]. The further development of sensor technology,
improvement of agricultural cultivation techniques, and advances in soil sensors with high integration have all
facilitated the engineering of small volume systems with a high degree of accuracy — so-called mini-rhizotrons
[76]. Researchers can monitor root phenotypes and soil information more accurately by embedding sensors in
the soil. Thanks to the advanced sensor technology, the researchers can achieve higher monitoring efficiency
and cost reduction. Ecotrons represent another type of Mesocosm-level platform that attempt to simulate an
even larger scope of environmental integration. Ecotrons refer to replicated, enclosed experimental systems that
aim to replicate realistic environmental conditions both above- and belowground, while also measuring a range
of ecosystem processes. In addition to monitoring soil and plant root phenotypes, Ecotrons can also simulate
various natural environmental conditions to not only better monitor the influence of different ecological envir-
onment factors on plant phenotypic information, but also to track the impact of such factors across a range of
ecosystem parameters [77,78], Econtrons systems used in current research are shown in Figure 5.
Eco-phenotyping studies at the cellular and molecular levels can provide researchers with insights about the

mechanical relationship between ecology and phenotype. For this reason, phenotyping information monitoring

Figure 4. WIWAM XY plant system (https://www.wiwam.be/phenotyping-systems/wiwam- xy/) [72].

© 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and the Royal Society of Biology and distributed under the Creative Commons

Attribution License 4.0 (CC BY).

293

Emerging Topics in Life Sciences (2021) 5 289–300
https://doi.org/10.1042/ETLS20200275

D
ow

nloaded from
 http://port.silverchair.com

/em
ergtoplifesci/article-pdf/5/2/289/912770/etls-2020-0275c.pdf by guest on 25 April 2024

https://www.wiwam.be/phenotyping-systems/wiwam-
https://www.wiwam.be/phenotyping-systems/wiwam-
https://www.wiwam.be/phenotyping-systems/wiwam-
https://www.wiwam.be/phenotyping-systems/wiwam-
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


at the Microcosm-level has emerged as a research hotspot in recent years [79]. A range of approaches has been
utilized to gain fine-scale information related to plant physiological responses to environmental conditions. For
instance, Magnetic Resonance Imaging (MRI) has been used to obtain structural information related to physio-
logical processes in plants [80]. Targeted cell and plant organ structure analysis have been conducted by using
Photoacoustic Tomography (PAT) [81], and High-speed Confocal Microscopy and High-content Screening
Systems have been used to study the genetic mechanism of plant disease resistance [82–84].

Robotics and eco-phenotyping in open field settings
Unlike the plant eco-phenotyping in the indoor environment, the ecological conditions in the open field
cannot be accurately controlled, causing various interference factors. Outdoor settings generally have the advan-
tages of comprising a larger cultivable area where there is hardly any housing infrastructure. It is possible to
acquire phenotyping information of large-scale crop populations through remote sensing technology.
To improve the efficiency of obtaining plant phenotyping information in an open field, a range of robotic
platforms has been designed. According to the scale of information acquisition, these platforms can be divided
into proximal sensing platforms, low-altitude remote sensing platforms, and high-altitude remote sensing
platforms.
Proximal sensing platforms are mainly used for phenotyping monitoring sensors to obtain the phenotyping

information from an individual plant or groups of plants with above ground tissue of >3 m[78,85]. Proximal
sensing platforms enable to obtain high resolution information with a great level of precision. However, the test
efficiency is lower as compared to low-altitude and high-altitude remote sensing systems due to the small test
range. As a result of the different cultivation methods and growth characteristics of different plants, proximal
sensing platforms used in required customization, and development facilitated to the specific crop and uncer-
tain cropping system, to avoid the destruction of plants in the process of operation [52,86,87]. In addition,
proximal sensing platforms are often used in agricultural harvesting because of their proximity to the plants.
In addition to carrying phenotyping monitoring sensors, aforesaid systems can be equipped with agricultural
harvesting machinery such as manipulators and vibration rods [88,89].
Low-altitude remote sensing is mainly carried out through drone platforms or some robot platforms such as

Gantry or Crane with sufficient height and extension capabilities [90,91]. Compared with Proximal sensing
platforms, commercial drone technology has become more mature. Drone technology in general is a domain of

Figure 5. Ecotrons systems over the world [38,73].
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rapid advance, spurring on the development of a decent range of agricultural remote sensing drone products
[92,93]. In addition to advances in drone technology, it is equally important that development-oriented
research of new phenotyping monitoring sensors, novel analysis tools and in-depth analysis of acquired data is
achieved [45,50,94].
High-altitude remote sensing is often carried out by satellites or Unmanned Aerial Vehicle (UAV) platforms.

With the increasing demand for agricultural monitoring, the design of satellite sensors has been gaining signifi-
cant research attention. By analyzing medium resolution satellite images or high-resolution satellite images,
crop classification, crop phenotyping information, crop biophysical and chemical parameters can be effectively
extracted. The commonly used satellite series include the Sentinel-1/2 satellite, WorldView satellite, and
Landsat satellite, etc. [95–97]. For more detailed information for the specific application of satellite images, the
reader is referred to the recent overview on this subject published by Chongyuan Zhang [98].

Future perspectives
With the recent acceleration of agricultural modernization designed to meet increasing food demands, consid-
erable efforts and capital have been invested in the more systematic and precise development of modern crops
and cropping systems. To this end, precision eco-phenotyping systems offer a range of possibilities to stimulate
the necessary advances in these fields. The range and precision of sensor devices are developing rapidly, so as
the sophistication and applicability of robotic platforms. Together, these developments provide a quantum leap
in opportunities for the improvement of phenotyping and phenomics technologies. Phenotyping is the key to
understand how plants perform within a given ecological setting. The collection and analysis of phenotyping
data should ultimately support crop breeding, cultivation practice, and agricultural management. However,
there are still some obstacles in the current phenotyping and phenomics studies.
First of all, the existing technologies have been relied on a certain proven range of sensor devices to obtain a

variety of phenotyping information. However, efficient methods that combine different sensors and imaging
technologies into a practical application process are still developing. The analysis of different sensor data also
relies on different hardware devices, software systems, and analysis methods. Such complex operation process
slows down data acquisition and integration, leading to an information lag. In addition, even regarding the
application of the same sensor device, it is also difficult to combine the data obtained due to the different plat-
forms and different monitoring scales used, which highlights the need for international harmonization and
standardization [99]. The advent of the 5G or even 6G eras should facilitate the ability for rapid data transfer
and interconnectivity between platforms. High-throughput data no longer needs to be stored in on-site storage
devices but can be processed in cloud-based platforms in real-time. Breaking through the bottleneck of infor-
mation transfer, the operation process of data acquisition, transmission, and storage management can be sig-
nificantly simplified. The construction of a new data exchange platform also means that the global plant
eco-phenotyping data will be stored in a common same public domain. The further development of different
sensor data processing and analysis technology is also expected.
Secondly, AI technology is currently experiencing an unprecedented global research boom. Plant eco-

phenotyping is also one of the important fields of AI application. Whether it is through machine vision or
deep learning to process plant phenotyping information, or to apply these technologies to robotic platforms to
make them more intelligent, AI will further promote developments in phenotyping and phenomics [12]. In
current AI research, the researchers typically pay attention to constructing efficient AI systems for phenotyping
information acquisition. F Perez-Sanz et al. [38] gave a more detailed overview of the combined application of
AI technology and image acquisition technology in plant phenotyping and cited a large number of examples.
We suggest that the future application of AI technology should focus on cooperation and communication
between different systems. For example, with AI technology as a linking tool, phenotyping monitoring, plant
breeding, crop cultivation, and agricultural management can be brought together.
Thirdly, the collection of eco-phenotypic data, from both plants and their environments, offers the opportunity

to provide an actual feedback loop to virtual models of plants, cropping systems, and growth conditions. This
new n combination, also named digital twin, will require the combination of multiple areas of expertize [100].
Relevant models like the functional-structural plant (FSP) model [101,102] have been made to simulate individual
plants and their functioning (e.g. photosynthesis) as well as their 3D architectural development based on a set of
physical and physiological plant parameters. With eco-phenotypic data and automation, it is becoming feasible to
develop a very advanced digital twin concept, in which a simulation model predicts growth in 3D, yield, use of
nutrients, water, CO2, and energy for multiple crop varieties. Such analyses can also examine the profit and
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environmental impact by using real- time phenotypic measurements of the plants and environmental growing
conditions. Based on the predictions and data collected by the eco-phenotyping tools and robots, model para-
meters can be aligned with the sensor data, for instance, there might be a case for the new cultivar that gives a
different growth response to temperature or some other parameters. In this approach, growth management can
be optimized, and genotype selection can also be supported for breeding applications.
In conclusion, there are great new possibilities, and these require integrated approaches which demand to

apply biotic and abiotic factors around the plant into the experiments. Furthermore, the ambition should be
not only on measurement and sensors only, but eco-phenotyping should also take the responsibility to include
the associated data management aspects, and make sure the community gets full access to all data, parameters,
source code and metadata.

Summary
• Plant eco-phenotyping monitoring can effectively reveal the relationship between ecological

environmental factors and plant phenotyping performance. Robotic platforms have diverse
shapes, flexible movement, and efficient operations that can be used in different plant eco-
phenotyping settings and scenarios, thereby accelerating the modernization and digitalization
of plant eco-phenotyping monitoring.

• Due to the relatively controllable environmental factors, indoor plant eco-phenotyping and
robotic platforms preceded outdoor platforms. Through high-precision sensor equipment and
intelligent data analysis methods, the current research has a good understanding of indoor
plant macro and micro phenotyping changes.

• Outdoor plant eco-phenotyping is subject to less human intervention conditions, and the phe-
notyping changes of plant individuals and groups are closer to the natural conditions.
Simultaneously, outdoor conditions are more conducive to aerial robotic platforms, which can
obtain plant population data with a higher spatial resolution to observe the population effect
on the individual plant phenotyping.

• In the future construction of a plant eco-phenotyping and robotics, the design of robotic plat-
forms should be combined with AI technology, so that it has higher flexibility and versatility
and can adapt to the test of various plants. The data combination analysis method between
robotic platforms with different monitoring scales also needs to be developed. Ultimately, the
application of higher-speed communication technology in this field should not only brings
faster data transmission but also further promotes the construction of global plant eco-
phenotyping Internet of Things (IoT).
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