
Review Article

Emerging approaches to measure photosynthesis
from the leaf to the ecosystem
Matthew H. Siebers1,2,3,*, Nuria Gomez-Casanovas2,3,*, Peng Fu2,3, Katherine Meacham-Hensold2,3,
Caitlin E. Moore4,5,6 and Carl J. Bernacchi1,2,3,4,5
1United States Department of Agriculture, Global Change and Photosynthesis Research Unit, Agricultural Research Service, Urbana, IL 61801, U.S.A.; 2Carl R. Woese Institute for
Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A.; 3Departments of Plant Biology and Crop Sciences, University of Illinois at Urbana-
Champaign, Urbana, IL 61801, U.S.A.; 4Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A.;
5Institute for Sustainability, Energy & Environment, University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A.; 6School of Agriculture and Environment, The University
of Western Australia, Crawley, WA 6009, Australia

Correspondence: Carl Bernacchi (carl.bernacchi@usda.gov)

Measuring photosynthesis is critical for quantifying and modeling leaf to regional scale
productivity of managed and natural ecosystems. This review explores existing and novel
advances in photosynthesis measurements that are certain to provide innovative direc-
tions in plant science research. First, we address gas exchange approaches from leaf to
ecosystem scales. Leaf level gas exchange is a mature method but recent improvements
to the user interface and environmental controls of commercial systems have resulted in
faster and higher quality data collection. Canopy chamber and micrometeorological
methods have also become more standardized tools and have an advanced understand-
ing of ecosystem functioning under a changing environment and through long time series
data coupled with community data sharing. Second, we review proximal and remote
sensing approaches to measure photosynthesis, including hyperspectral reflectance- and
fluorescence-based techniques. These techniques have long been used with aircraft and
orbiting satellites, but lower-cost sensors and improved statistical analyses are allowing
these techniques to become applicable at smaller scales to quantify changes in the
underlying biochemistry of photosynthesis. Within the past decade measurements of
chlorophyll fluorescence from earth-orbiting satellites have measured Solar Induced
Fluorescence (SIF) enabling estimates of global ecosystem productivity. Finally, we high-
light that stronger interactions of scientists across disciplines will benefit our capacity to
accurately estimate productivity at regional and global scales. Applying the multiple tech-
niques outlined in this review at scales from the leaf to the globe are likely to advance
understanding of plant functioning from the organelle to the ecosystem.

Introduction
The terrestrial biosphere consists of an assemblage of diverse ecosystems. Its complexity is illustrated
with a diversity of plants with distinct canopy structures subject to changing environmental condi-
tions. Life on earth relies on the energy captured by these ecosystems through photosynthesis, which
accounts for the single largest flux associated with the global carbon cycle [1]. Photosynthesis varies
among plant functional types (e.g. C3 vs. C4) and over a wide range of spatial and temporal scales
associated with changes in light, temperature, water and nutrients [2,3]. Global climate change driven
by anthropogenic activities is having profound impacts on terrestrial ecosystems, with global tempera-
tures rising faster than worst-case predictions [4]. Increasing agricultural demands associated with a
growing population requires a doubling of crop yields by 2050 to keep up with demands [5], yet
current rates of improvement fall short of this goal [6,7], which is likely to suffer with continued
global warming [8–11].
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Photosynthesis is a highly complex and relatively inefficient process, yet it is a critical component of the bio-
sphere. Understanding photosynthetic responses over a range of spatial and temporal scales is needed to under-
stand current and to predict future global carbon cycling. This understanding will also lead to improving
photosynthesis, which can lead to higher productivity to meet growing agricultural demands [12,13]. These goals
can only be achieved through the ability to measure photosynthesis over time and space, yet photosynthesis is diffi-
cult to measure directly. This is due to the multiple processes that are represented by the exchange of CO2 between
plants/ecosystems and the surrounding air. For example, at the leaf scale CO2 is removed from the air by photosyn-
thesis but this is partially countered by photorespiration and respiration, both of which release CO2 [14,15]. The
combined fluxes of these three processes represents net carbon assimilation (A) and partitioning this net flux into
the component fluxes is challenging [16]. Scaling beyond the leaf only presents additional challenges. At canopy or
ecosystem scales, respiration from non-photosynthetic tissues and heterotrophic organisms also release CO2, which
combined with A provide measures of Net Ecosystem Exchange (NEE; Table 1). In this review, we outline the
current and emerging approaches to measure photosynthesis at multiple scales and address the challenges and
opportunities at each scale (Figure 1). We begin with a focus on the well-established and widely used gas exchange
techniques and follow with more recent approaches made available through recent technological advances.

Gas exchange
The fundamentals of gas exchange at any scale are relatively similar and require the ability to measure gas con-
centrations in air surrounding and the flow rate in which the air interacts with photosynthetic tissue. In add-
ition to these measurements, numerous assumptions, corrections, and parameterizations are required to fully
exploit the power of this technique [16,17]. Gas exchange methods have been applied at scales ranging from
the organelle (e.g. [18,19]) to the whole ecosystem/region [20] to provide a basic understanding of how leaves,
plants, and ecosystems function and respond to their environment (Figure 1). Historically, gas exchange mea-
surements were limited to enclosed sampling chambers, ranging from sections of leaves to whole plant can-
opies, where the rate of CO2 exchange was measured over time. With the advent of micrometeorological
techniques, gas exchange measurements at large scales (e.g. whole ecosystems) were developed that removed
the need for enclosures (Table 2). Despite errors, uncertainties and challenges associated with gas exchange, the
various techniques are the current ‘gold standard’ by which emerging techniques are compared. This section
provides an overview of gas exchange measurements at the leaf to ecosystem scales as a baseline in the under-
standing of emerging techniques.

Table 1 Terminology associated with photosynthesis at both the leaf and ecosystem levels

Term Definition

Gross photosynthesis The total CO2 fixed through carboxylation within the leaf chloroplasts.

Apparent photosynthesis CO2 assimilated through carboxylation minus photorespiration, a process that involves the oxygenation of
Rubisco. The term apparent photosynthesis excludes respiration.

Net Carbon Assimilation (A) Gross photosynthesis, minus photorespiration and respiration

Gross Primary Productivity
(GPP)

Ecosystem and canopy scale apparent photosynthesis.

Net Primary Productivity (NPP) Ecosystem and canopy scale apparent photosynthesis minus plant respiration, which includes the CO2 emitted by
both above- and root components (autotrophic respiration, Ra).
NPP is defined with the following equation: NPP =GPP–Ra

Net Ecosystem CO2 Exchange
(NEE)

Ecosystem net exchange of CO2 between an ecosystem and the atmosphere over a given time wich can be from
hours to years.
NEE can be measured using the eddy covariance (EC) as well as biometric methods.
The eddy covariance method measures continuous NEE fluxes over time and it is the net balance between GPP
and ecosystem respiration (Reco). Reco is the sum of Ra and soil microbial respiration in aerobic conditions
(heterotrophic respiration, Rh).
Biometric methods estimate NEE according to the following equation: NEE = NPP–Rh [116]

In general, photosynthesis is defined as the process why which plants capture light energy and atmospheric CO2 to synthesize complex carbohydrates. Photosynthesis
supports the production of food, fiber, wood, grain fed to livestock, and fuel for humanity and regulates the concentration of CO2 in the atmosphere. Quantifying global
terrestrial photosynthesis is essential to understanding the global CO2 cycle in a changing environment and the climate system.
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Leaf scale gas exchange
Knowledge of leaf photosynthetic physiology stems from the development and application of leaf-level gas
exchange systems [16]. Gas exchange technology has matured to the point where commercial gas exchange
systems are widely available from many vendors. In addition to providing the key variables necessary to assess
leaf scale carbon assimilation, these systems now provide the opportunity to precisely control the environmen-
tal conditions surrounding the photosynthetic tissue and to measure more than just carbon assimilation,
including but not limited to transpiration, intercellular CO2 concentrations, and stomatal conductance. Gas
exchange techniques have been used for decades and most recent advancements have focused on improvements
in accuracy, precision, usability, environmental control, and reduction in time to stable measurements. Despite
the ease with which leaf level gas exchange can be measured, the importance of understanding gas exchange
theory to ensure proper measurement and analysis cannot be overstated.
Gas exchange systems are the most commonly utilized technique for leaf scale photosynthetic measurements.

While systems provide measures of A, various techniques can be applied to separate fluxes of photosynthesis,
photorespiration, and respiration. However, many challenges exist with gas exchange that limit the wide appli-
cation of the technique. These include cost, usability, data processing requirements, and time needed for ensur-
ing quality measurements. Off-the-shelf gas exchange systems cost tens of thousands of dollars and require

Figure 1. Depiction of techniques and example data for gas exchange (A–C) and proximal/remote sensing (D–F) techniques used to

measure photosynthesis.

(A) Leaf-level gas exchange with one measured representative photosynthetic CO2 response curve. (B) Canopy photosynthesis chamber situated

over a soybean field with representative diurnal Net Ecosystem Productivity (NEP) data (Image Credit: Anthony DiGrado). (C) Ecosystem-scale eddy

covariance system situated over sorghum with representative Net Ecosystem Exchange (NEE; negative values signify downward flux from

atmosphere toward land surface) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). (D) leaf hyperspectral point

sensor being used on the model crop tobacco and representative spectral reflectance measurements. (E) A hyperspectral imaging sensor

measuring plots of the model crop tobacco and an example hypercube showing the visible surface and spectral information for each pixel with

depth of image. (F) aircraft and satellite depicted over the earth surface and a map of GPP (public domain image courtesy of GeoEye/NASA

SeaWIFS project). Other than where indicated, all images were taken by authors.
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frequent maintenance that challenges their widespread use. Most gas exchange systems limit the area of meas-
urement to, at most, several cm2, which presents issues related to scaling photosynthesis beyond a small section
of one leaf. Typical measurements of in situ gas exchange require a minimum of 2–3 min to allow for both the
system and the leaf to stabilize. Using these systems to measure beyond a simple survey of gas exchange, for
example to measure light response or CO2 response curves of A, requires substantially more time for each leaf.
Recent techniques that exploit improved instrument precision can reduce the time for some measurements but
generally at the expense of accuracy, and often require more advanced post-processing [21].

Canopy and ecosystem scale gas exchange
Scaling gas exchange measurements to the canopy or whole ecosystem presents significantly more challenges
than at the leaf level, yet there are also more options (Table 2). Canopy chambers work in much the same way
as leaf chambers, although at a larger scale. The general principle follows that of leaf-level measurements,
although chambers are required to be much larger to encompass multiple plants and the potential is greater for
errors associated with leaks or pressure fluctuations [17]. Canopy chambers have been extensively used to
measure CO2 fluxes for a wide range of vegetation types and their strengths lie in their ability to address
small-scale spatial variability (Table 2). Furthermore, canopy chambers have been used both as a measurement
and treatment system in global change studies to impose treatments as open-top chambers and acting as
sample chambers when enclosed (e.g. [22]). Canopy chambers, however, can be limited in sampling frequency
and spatial integration (Table 2) while also having a profound impact on the canopy microclimate.

Table 2 Advantages and disadvantages of the canopy and eddy covariance methods to measure CO2 fluxes and estimate GPP at the
ecosystem scale

Eddy covariance method Automated chamber methods Manual chamber methods

Ecosystem Short and tall vegetation Short and tall vegetation Short and tall vegetation

Temporal
sampling
frequency

Continuous real-time measurements Continuous measurements Measurements often made at weekly
to monthly intervals for the growing
season or an entire year, and over a
specific period of the day believed to
be representative of the daily CO2

flux.

CO2 data as well as other data crucial
to compute fluxes are obtained at high
frequency (at or above 10 Hz)

Spatial
integration

Integrates large spatial areas, called
the flux footprint, between hundred
meters to several kilometers

Several meters per chamber Hundred meters as they are portable
Scale up necessary Scale up necessary

Accuracy Most accurate when the atmospheric
conditions (wind, temperature,
humidity, CO2) are favorable,
vegetation is homogeneous and
sensors are installed on flat terrain for
an extended distance upwind.

Soil and vegetation disturbance
possible

Soil and vegetation disturbance
possible

Significant alteration of canopy
microclimate from enclosure

Significant alteration of canopy
microclimate from enclosure

Gap filling to
obtain annual
CO2 fluxes

Gap filling necessary due to the
malfunctioning of sensors, power
failures, harsh environmental
conditions, sensor calibration, lack of
turbulence, when wind is coming from
an undesirable direction.

Gap filling necessary due to the
malfunctioning sensors, power
failures, harsh environmental
conditions, sensor calibration, lack of
turbulence, when wind is coming from
an undesirable direction.

Gap filling necessary as
measurements are not continuous

Logistical effort Considerable, especially in remote
sites and in hostile environments.

Considerable, especially if appropriate
spatial replication is desirable

High personnel effort especially if
several instruments are deployed at
once to minimize confounding effects
resulting from hourly variability

Cost High due to the cost of fast response
instruments

High due to the number of
instruments needed for appropriate
spatial replication

Lower costs but require more
person-hours to collect data

The global eddy covariance network, called FLUXNET (https://fluxnet.org/about/), includes measurement sites linked across regional networks in North, Central and South
America, Europe, Asia, Africa, and Australia.
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Micrometeorological approaches to gas exchange lack the need for chambers but require large spatial areas
(>4 Ha) and a sensor suite that can measure the upward/downward movement of air coupled with the gas con-
centrations in the air [20]. The dominant micrometeorological technique, eddy covariance (EC), provides near-
continuous measurements of NEE integrated over large spatial areas, called the flux footprint, with minimal dis-
turbance (Table 2) [20]. Air flow over a canopy consists of numerous rotating eddies. Measuring the speed and
CO2 concentrations of the eddies moving air upward and downward, provides the basic data needed to calculate
fluxes of the footprint, which varies with wind speed and direction [23]. EC requires several important considera-
tions to ensure the NEE data are robust and reliable [24], including ensuring sufficient atmospheric turbulence
[23], applying corrections to exclude data fluxes extending beyond the area of measurements [25,26], and ensur-
ing all measured fluxes follow the laws of thermodynamics [27,28] (Table 3). Because of inevitable gaps in data
collection associated with field instrumentation, gap filling strategies are used to complete the time-series of flux
data (Table 4). In addition to NEE, EC can apply to any measurable component of the atmosphere provided high
temporal resolution sensors (≥10 Hz) exist (e.g. water vapor, methane, etc.). A global EC flux network, called
FLUXNET, provides data from over 900 sites globally, allowing for a link between ecosystem and global NEE.
This network provides unprecedented insights into environmental and biological drivers of ecosystem NEE
[3,20,29–33]. Among other purposes, the long-term measurements of NEE from this network have improved
understanding of ecosystem responses to climate and land-use change [34], and the data are essential to validate
remote sensing and modeling products that scale to regions and the globe [35,36].
Whether using chamber-based or micrometeorological approaches, measured NEE provides an opportunity

to explore changes in ecosystem-scale gas exchange at high temporal frequency. Photosynthesis at the ecosystem
scale is generally defined as gross primary productivity (GPP), which is only one component of NEE. GPP is
derived as the difference between measured NEE and modeled ecosystem respiration (ER; Table 5). Obtaining
GPP from NEE involves modeling ER using temperature and light response functions; a process typically
referred to as flux partitioning [24,32,37,38]. Flux partitioning allows for the investigation over time of GPP

Table 3 Challenges for obtaining robust estimates of net ecosystem exchange (NEE), and thus gross primary productivity (GPP), from
eddy covariance (EC) flux towers used for assessing ecosystem-scale photosynthesis, and description of how scientists working in the
field of micrometeorology address these challenges to reduce uncertainty in NEE measurements and GPP estimates [24]

The obstacle The cause The remedy

Missing raw
data

Power failure, instrument malfunction, communication issues Gap fill meteorological variables and use these as divers to
build a complete NEE timeseries [41,117]

Atmospheric
turbulence

Periods of low atmospheric turbulence reduce the
dominance of vertical turbulent transfer, thus violating the
assumptions of eddy covariance theory.

Calculate a turbulence threshold (u*) and apply it to flux
data to exclude data below the u* limit
-Moving Point Threshold (MPT)
-Change Point Detection (CPD) [23,118]

Footprint filters The measurement area of the flux instruments changes with
turbulence. As atmospheric conditions become stable, the
area the flux instruments sample from becomes larger. This
can extend beyond the ecosystem of interest and bias flux
measurements

Apply a footprint exclusion filter [25,26]

Canopy storage If turbulent mixing is reduced, fluxes can build up within the
canopy of interest and result in underestimation of fluxes

Install a profile system to quantify at multiple depths
through the canopy [119]

Gap filling
uncertainty

Uncertainty in the fluxes due to random errors occurring
during measurement and modeling errors during gap filling

Calculate random and model error to provide an estimate of
flux uncertainty [120,121]

Partitioning
methods

Uncertainty arising due to the flux partitioning model used to
estimate GPP

Partition with multiple methods and provide model fit
statistics with GPP estimate [117]

Energy balance
closure

Based on surface energy balance theory. Net radiation (Rn)
minus ground heat flux (G) should be equal to the sum of
sensible (H) and latent (LE) heat flux. When this is not the
case, there in greater uncertainty in the fluxes.

Calculate the linear regression to obtain the difference
between available energy (Rn-G) and energy used in the
fluxes (H + LE). The energy used in fluxes is often corrected
using the slope of this linear relationship. [27,28]

Some of these challenges include ensuring sufficient atmospheric turbulent conditions are met [23], applying footprint corrections to exclude data when a significant portion
of fluxes occur outside the ecosystem region of interest [25,26], and quantifying energy balance closure at the site [27,28]. Improving the robustness of NEE estimates from
flux towers is an area of active research in the flux community, and one which will lead to greater understanding of ecosystem photosynthesis across a diversity of biomes.
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and ER in response to a variety of conditions [39–41]. A challenge with flux partitioning is introduced by the
inhibitory effect of light on leaf respiration rates, known as the Kok effect [42]. In the light, autotrophic respir-
ation can be significantly lower than at night resulting in GPP estimation errors when ignored [43].
Recent micrometeorological approaches have attempted to measure GPP using a sulfur-containing analog of

CO2, carbonyl sulfide (COS) that acts as natural ‘tracer’ molecule for GPP. This molecule enters a leaf in the
same manner as CO2 and is broken down by the enzyme carbonic anhydrase. Because of this, COS ‘uptake’

Table 4 Description of common methods to fill missing half-hour values in CO2 records and performance to obtain accurate annual CO2

sums (i.e. sum of half-hour CO2 fluxes over a year)

Gap filling method Description
Reliability of annual sum of the net CO2

exchange

Mean Diurnal Variation
(MDV) [122,123]

Half-hour CO2 gaps are replaced by the mean for that half-hour
time period based on adjacent days.

Good

Look-up Tables (LUT)
[122,123]

Half-hour CO2 gaps are filled using tables created for each site
based on the environmental variables associated with the missing
data. These meteorological variables are gross radiation, air
temperature and vapor pressure deficit, which are known to
regulate CO2 fluxes. Gaps are filled with available CO2 data when
this set of environmental variables are similar for the missing
half-hour CO2 flux and the available CO2 data

Good

Marginal Distribution
Sampling (MDS)
[122,123]

Half-hour CO2 gaps are filled by a half-hour CO2 values with similar
meteorological conditions in the temporal vicinity of the gap to be
filled. This method is a moving LUT technique that exploits the
temporal auto-correlation structure of CO2 fluxes.

Good

Combination of MDS and
MDV [124]

When meteorological variables regulating CO2 fluxes are available,
the half-hour CO2 gap is filled using the MDS method with a
moveable time window. When meteorological variables are not
available, the missing value is filled using the MDV method with a
short window size (i.e. the same day) and the window size can
increase until the value can be filled.

Good

Non-linear regressions
[122,123]

Half-hour CO2 gaps are filled using the relationships between
available CO2 fluxes and associated controlling environmental
factors during the period of missing fluxes.

Good performance in general, although
outliers can contribute to a high bias in
predicted fluxes

Artificial Neural networks
[123]

Half-hour CO2 gaps are filled using non-linear relationships between
meteorological variables and available CO2 fluxes. The network is
trained by presenting it with sets of regulating meteorological
variables and available CO2 data to predict missing data.

Good performance particularly when data
can be smoothed over trained networks

Good reliability of annual sum of the net CO2 exchange refers to methods that ranked the best based on a several statistical metrics to predict annual fluxes as reported in
References [122,123]. These statistical metrics include Root Mean Square Error, Bias Error and the annual CO2 flux sum among others and were evaluated by comparing
the filled NEE data with the observed values.

Table 5 Partitioning methods to estimate Gross Primary Productivity (GPP) and ecosystem respiration (Reco)

Partitioning method Description

Night-time method
[124]

This method uses night-time NEE to estimate the basal Reco at 15 Celsius and the sensitivity of respiration to
temperature. These parameters are then combined to estimate daytime Reco. GPP is estimated summing daytime Reco
and daytime NEE values.

Day-time method [38] This method uses daytime NEE to parameterize a light response curve, to calculate GPP. The fitted curve is used to
estimate the basal Reco at 15 Celsius, and combined with a temperature response function, to estimate Reco.

Both methods assume that any difference between daytime and nighttime Reco is due to temperature alone.
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should scale with GPP, removing the need for partitioning NEE into the GPP and respiration components [44].
Studies using this method are showing promising insights with GPP estimated using CO2 vs. COS measure-
ments agreeing within 15% in forests and crops [45]. Another study that investigated variability in COS uptake
and release in forests found agreement to within 3.5% between the two methods when GPP was high [46].
These results suggest an opportunity to use indirect methods for assessing GPP at larger scales, although recent
work also suggests that photosynthetic tissues are not the only sink for COS [46–48].

Remote and proximal sensing
Obtaining photosynthetic carbon uptake measurements using gas exchange systems is laborious resulting in
efforts to replace this technique with other high-throughput methods. There exists a rapid growth in plant pheno-
typing greenhouses with the goal of automated measurement capabilities [49] at scales ranging from leaf to globe
(Figure 1). Even with the most modern technologies, direct monitoring of leaf or plant level gas exchange would
require substantial effort and resources. Thus, there are emerging technologies that provide means to infer plant
responses to their growth environments that overcome the limitation of gas exchange [50–53]. Commercial
sensors are available that provide information about plant canopy architecture and volume, which is important to
infer growth over time [54], yet disentangling the underlying factors that lead to this growth requires physiological
understanding. In the field, plot-level estimations of photosynthetic traits have been successfully estimated using a
variety of platforms [55–57]. However, there needs to be improvements to the precision, accuracy, repeatability,
and data pipeline before we can use these methods to estimate photosynthesis. Nonetheless, these new methods
have a large potential impact on leaf to canopy understanding of plant physiology, ecosystem functioning and
improving breeding efforts to maximize crop yields. In this section, we will discuss emerging technologies to
monitor photosynthesis using spectral reflectance or fluorescence techniques. We will first outline the tools used
for these approaches followed by a description of how these tools are being used.

Hyperspectral approaches to measure photosynthesis
Hyperspectral analysis is a non-destructive means of analysis that uses light reflected from vegetation to infer
leaf, plant, canopy, or ecosystem performance. At the leaf and single-plant level, spectral sensors funnel light
reflected from vegetation through a holographic diffraction grating, which separates light by wavelength across
the electromagnetic spectrum [58]. Hyperspectral imaging data is in three ‘cubed’ dimensions with spectral
wavelength (z) across spatial co-ordinates (x,y). Depending on the size of a single-pixel hyperspectral cameras
can image vegetation from the whole plant to ecosystem scale [58].
Reflected light has become a powerful tool to characterize plant traits, including photosynthesis, given the

varying response of light to leaf structure and pigment content at different wavelengths. In the near infrared
(770–1300 nm), differences in chlorophyll and plant nitrogen content indicate a variety of vegetation stressors
such as nutrient deficiency [59,60], plant disease status [61,62], and ozone damage [63], while the short wave
infrared (SWIR1; 1300–2500 nm) indicates plant water status based traits [64,65]. In the past, discrete spectral
reflectance indices were used as proxies for crop status [66]. However, computational and technological
advances make it possible to derive photosynthetic capacities (maximum rate of carboxylation for C3 and C4
plants, Vcmax and Vmax, respectively; and maximum rate of electron transport, Jmax) and make predictions
about photosynthetic performance scaling from the leaf [67–71] to the plot [72,73] and ecosystem scales [74].
One significant advance is the commercial availability of high-resolution fiber optic leaf clip-attachments.

Hyperspectral radiometers typically contain a radiometrically calibrated light source and standardized white
and dark reference panels for calibration. Leaf-level reflective intensity is compared with the reference material.
Computer models (discussed later) are then used to correlate portions of the leaf’s reflective spectrum with
traditional measurements of gas exchange. Hyperspectral data can provide significant information about leaf
photosynthesis at a fraction of the time compared with gas exchange [67–71,75]. These measurements can offer
insight for upscaling to the plot level using field push carts [76] or drones mounted with hyperspectral cameras
for breeding and research trials.
In addition to the hyperspectral methods mentioned above, recently handheld multispectral tools (e.g. FluroPen,

Photo Systems Instruments, Drásov, Czech Republic; MultispeQ, PHOTOSYNQ INC. East Lancing MI, U.S.A.;
and LI-600, LiCOR Biosciences Lincoln NE, U.S.A.) are used to monitor fluorescence and other parameters asso-
ciated with leaves. Compared with hyperspectral leaf clips or fluorescence chambers sold with gas exchange units,
these leaf tools can be used to more quickly and inexpensively screen for the vitality of photosynthetic systems
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under biotic and abiotic stresses (e.g. [77]). Furthermore, these tools provide opportunity, in some cases, to specify
wavebands of interest for specific phenotypes that can extend beyond photosynthetic measurements.
Inspired by the successful leaf-level estimations of photosynthetic capacities, hyperspectral imaging (HSI)

techniques are increasingly applied to canopy-scale measurements [73,78]. Imaging hyperspectral spectrometers
provide more spatial information than a leaf-clip portable radiometer. Because of this, these sensors are being
utilized to reveal variability in photosynthetic traits of interest across leaves, plants, and/or over large geo-
graphic areas [72,74]. These HSI sensors can scan individual plants in a few seconds [79] or provide analysis
spanning several km2 if mounted on aircraft or Earth-orbiting satellites [80,81]. Compared with point-based
portable radiometers, these HSI sensors result in the accumulation of large amounts of data that need to be
processed in an innovative way.
To link reflectance spectra to photosynthetic physiological parameters, data processing pipelines must be

tailored to specific sensing platforms. These data pipelines are critical to applications such as field phenotyp-
ing in a high-throughput manner. For leaf-level estimations of photosynthetic variables using reflectance
spectra, great efforts have been made to select statistical techniques that can provide the best predictive power
[75]. Partial Least Square Regression (PLSR) [82] is currently the most common technique used to relate
reflectance spectra to photosynthesis associated parameters [68,71] due to its ability to reduce tens to hun-
dreds of spectral bands to just a few orthogonal principle components (also known as latent variables). There
are also other machine learning algorithms such as Artificial Neural Network (ANN)-based regression and
Least Absolute Shrinkage and Selection Operator (LASSO) that have been used to estimate photosynthesis
[83]. The availability of these machine learning and empirical algorithms also poses a dilemma regarding the
most effective approach. Collectively harnessing the strengths of individual empirical or machine learning
algorithms through regression stacking shows promise [72] although further studies are needed to test its
effectiveness across more plant species. For estimations of photosynthesis using reflectance spectra at the plot
and ecosystem levels, further data processing steps are necessary to account for spurious variations in reflect-
ance caused by sun-target-sensor geometry, canopy structure, leaf scattering, atmospheric contaminations, and
background soil [75]. These steps are required to ensure that only reflectance data associated with photosyn-
thesis are used for estimations. Although Radiative Transfer Models (RTMs) such as PROSAIL [84] are devel-
oped to remove those spurious variations, few of them can be directly used in the proximal sensing setting
[85]. However, these RTMs provide an alternative way to reduce hyperspectral data into several meaningful
leaf traits, such as chlorophyll concentration, that can serve as a proxy for photosynthesis. For example,
RTMs-inverted traits were shown to explain up to 60% of variation in photosynthetic physiology in a crop
species [72].
Remote-sensing products that measure GPP are traditionally based on the Light-Use Efficiency (LUE)

concept of ecosystem modeling [86] and empirical models that rely on the relationships between remote
sensing-derived variables and GPP [87–90]. These methods provide reasonable estimates of GPP compared
with measured EC fluxes, however, new emerging spectral sensing technologies including Solar-Induced chloro-
phyll Fluorescence (SIF) are providing potential for estimating GPP at the ecosystem scale [91–93]. A fraction
of solar radiation absorbed by chlorophyll is emitted as fluorescence, hence SIF is more physiologically based
than other traditional remote sensing products [94] as it is a direct product of the photosynthetic process [95–
97]. While pulse amplitude modulated chlorophyll fluorescence has long been used to measure photochemical
efficiencies and heat dissipation in individual leaves [98], this should not be confused with SIF, which relies on
measuring of the radiance chlorophyll fluorescence from an ecosystem.
Passive SIF measurements were first applied at the satellite scale (Table 6) [99] to assess regional and global

scale patterns of SIF alongside GPP [91–93] and is now being implemented at flux towers across multiple eco-
system types to determine the physiological and structural relationship between SIF and photosynthesis at this
scale [100–103]. Likewise, the near-infrared radiance of vegetation index (NIRv) has shown promising accuracy
at detecting photosynthetic variability at the hourly scale over crop and forest system [104,105]. Therefore, both
SIF and NIRv should enable real-time monitoring of productivity and stress.
The relationship between SIF and GPP is primarily dominated by absorbed photosynthetic active radiation

(APAR) [106,107], implying that the correlation between SIF and GPP is the highest when photosynthesis is
primarily light-limited [108,109]. However, GPP is also controlled by environmental factors other than light,
and recent insights suggest that SIF responded to environmental stresses in a similar way as GPP, encouraging
the application of SIF to estimate photosynthesis [94]. A relationship between SIF and GPP was similar among
ecosystems although the relationship was stronger for grasslands than forests, savannas and croplands, and for
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C4 grasslands and crops than C3 ecosystems [94]. This quasi-universal relationship indicates that SIF could be
a valuable tool for inferring GPP of the land surface. More collaborative studies between the EC and remote
sensing communities are needed to evaluate why the relationship between SIF and GPP varies among ecosys-
tems and under differing environmental conditions to improve the ability of SIF products to estimate ecosystem
GPP robustly to scale regionally and globally.
Much progress has been made to understand the relationship between SIF and GPP but many challenges

remain [109–111]. Higher spatial and temporal resolution SIF measurements are needed to coincide with the con-
tinuous GPP measurements [112]. Promising solutions to these challenges would be to develop remote sensing
approaches that can cross-calibrate and blend multi-source SIF and reflectance measurements for a consistent
record in both spatial and temporal domains. For example, combining satellite SIF with satellite reflectance was
used to generate a spatially and temporally continuous SIF dataset [113]. Another solution is to improve SIF
sensor designs to facilitate measurements at a much higher spatial and temporal resolutions. For example, the
Fluorescence Imaging Spectrometer (FLORIS) onboard the Fluorescence EXplorer (FLEX) satellite can provide
SIF at a better spatial resolution than its predecessors (Table 6) [114] and the newly launched Orbiting Carbon
Observatory 3 instrument (OCO-3) allow for more coverage globally at higher definition [115].

Conclusion
Interestingly, much of the work on remote sensing has initiated with large-scale measurements, yet there is a
tremendous need to increase throughput of measurements at leaf and plot scales, particularly for application in
high throughput phenotyping facilities. Whether these techniques are fully scalable remains uncertain, yet the
opportunity for multidisciplinary research has advanced the versatility of the tools outlined in this review
beyond their original users. Moving forward, simplifying data collection through ‘turn-key’ sensors and

Table 6 Spatial and temporal resolution major satellite sensors and platforms for Solar Induced Photosynthesis (SIF) estimations

Sensors/Satellites Status

Spatial
resolution
(km× km)

Temporal
resolution

Sampling
strategy

Spatial
coverage

Thermal and Near-infrared Sensor for
carbon Observations — Fourier
Transform Spectrometer (TNSO-FTS)/
Greenhouse Gases Observing Satellite
(GOSAT)

In operation since
2009

10 × 10 3 days Sparse Global

Global Ozone Monitoring Experiment–2
(GOME-2)/Metop satellites

In operation since
2007

80 × 40 (40 ×
401)

29 days Continuous Global

SCanning Imaging Absorption
SpectroMeter for Atmospheric
ChartographY (SCIMACHY)/Envisat
satellite

2002-2012 200 × 30 2 days Continuous Global

TROPOspheric Monitoring Instrument
(TROPOMI)/Sentinel- 5p

In operation since
2017

7 × 3 1 day Continuous Global

Orbiting Carbon Observatory 2
instrument/OCO-2

In operation since
2014

1.3 × 2.25 16 days Sparse Global

Orbiting Carbon Observatory 3
instrument/OCO-3

In operation since
2019 at International
Space Station

1.75 × 2.2 Not fixed Sparse Global

Fluorescence Imaging Spectrometer
(FLORIS)/Fluorescence Explorer (FLEX)

In planning for 2022 0.3 × 0.3 27 days Continuous Global

1The spatial resolution 40 by 40 km is available since July 2013 in Metop-A and B tandem operation;SIF measurement was first applied at the satellite scale [99] to assess
regional and global scale patterns of SIF alongside GPP [91–93]. Currently, it is being implemented at flux towers across multiple ecosystem types to determine the
physiological and structural relationship between SIF and photosynthesis at this scale [100–103]. For comparison, the EC method has a spatial resolution between hundred
meters and several kilometers, and a continuous temporal resolution (half-hour) with a fine spatial coverage at the ecosystem and landscape scales.
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standardizing data analysis pipelines for the variety of techniques outlined here are certain to advance under-
standing of plant function from molecular to global scale.

Summary
• Monitoring Photosynthesis at every scale, from leaf to ecosystem, is an important task given

the challenges of climate change and growing human populations.

• In the past 5 years there have been significant improvements to the technology and computa-
tional tools used to measure photosynthesis at every scale. And new facilities and equipment
are being used around the world to monitor photosynthesis.

• Hyperspectral imaging at the leaf, and canopy scale paired with improved computational mod-
eling allows for rapid estimates of important biochemical parameters.

• Micrometeorological approaches to estimate Gross Primary Productivity have been improved
by the uses of sulfur tracing elements.

• Monitoring Solar Induced Fluorescence is a promising satellite-based method that should
enable real-time monitoring of global ecosystem productivity.
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