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Genes under control of super-enhancers are expressed at extremely high levels and are
frequently associated with nuclear speckles. Recent data suggest that the high concen-
tration of unphosphorylated RNA polymerase II (Pol II) and Mediator recruited to super-
enhancers create phase-separated condensates. Transcription initiates within or at the
surface of these phase-separated droplets and the phosphorylation of Pol II, associated
with transcription initiation and elongation, dissociates Pol II from these domains leading
to engagement with nuclear speckles, which are enriched with RNA processing factors.
The transitioning of Pol II from transcription initiation domains to RNA processing
domains effectively co-ordinates transcription and processing of highly expressed RNAs
which are then rapidly exported into the cytoplasm.

Introduction
The nucleus is structured and contains membrane-less organelles (MLOs) and chromatin that is orga-
nized into active or inactive compartments, which are separated by chromosomal boundaries [1–3].
There is increasing evidence that super-enhancer controlled, highly expressed genes are transcribed in
the context of transcription hubs, transcription factories, or phase-separated domains [4–6].
Furthermore, nuclear speckles, domains that are enriched with components of transcription and RNA
processing machineries, were shown to associate with highly transcribed genes [7]. In this review/
perspective, we discuss the evidence for transcription factories and/or super-enhancer mediated phase-
separated transcription initiation domains and describe a co-ordinated association with nuclear speck-
les that ensures rapid processing and export of highly expressed RNA. In the following, we present the
components and characteristics of the relevant nuclear MLOs and discuss the co-operation of distinct
phase-separated domains in transcription, processing, and RNA export.

Phase separation and nuclear domains
Liquid–liquid phase separation (LLPS) is characterized by the formation of spherical domains that
deform in flow and exhibit wetting, dripping, and fusion [8–10]. LLPS is mediated by proteins and
RNA that engage in multiple weak interactions via charged or aromatic residues [11]. Macromolecular
crowding contributes to colloidal phase separation and generation of biomolecular condensates
[12,13]. Proteins containing intrinsically disordered regions (IDRs) and lacking extensive secondary
structure (low complexity domains, LCDs) engage in a multitude of interactions that keep phase-
separated domains dynamic and liquid-like [8–10]. Among the first examples of phase separation in
biological systems was the description of condensate formation by RNA binding proteins [8,14].
Indeed, most nuclear MLOs contain RNAs, which have been shown to induce LLPS and to regulate
the viscosity of these domains [10]. For example, the formation of the nucleolus, a domain specialized
in the assembly and maturation of ribosomal subunits, is induced by ribosomal RNA (rRNA)
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[1,15,16]. RNA may be engaged in base-pairing interactions and in interactions with IDRs of RNA binding
proteins thus generating mesh-like domains that concentrate and slow down the mobility/diffusion of compo-
nents that specify the function of distinct MLOs [3,9]. It seems that unstructured RNA preferentially engages in
LLPS, and often RNA helicases are involved in the formation of MLOs [11,17]. RNA helicase Ddx4 containing
droplets, like germ granules or P-granules, concentrate single-stranded RNA and DNA but exclude double-
stranded DNA [18]. In Drosophila embryos, the formation of histone locus bodies (HLBs), which mediate the
expression of histone gene loci, depends on the promoters of the H3 and H4 histone genes [19]. Thus, the
seeding mechanisms for at least a subset of nuclear LLPS domains appear to involve specific DNA elements
that promote transcription, the active process of transcription, and nascent RNA generated from these specific
gene loci.
Post-translational modifications including serine/threonine phosphorylation, arginine methylation, and lysine

acetylation regulate the formation and/or maintenance of LLPS domains [17,20]. For instance, acetylation of
the Ddx3 IDR, a component of stress granules, impairs LLPS, which may be due to reduced RNA binding [21].
MLOs contain constitutive molecules, which are required for the formation and maintenance of MLOs and
client molecules, which move in and out of LLPS domains [17]. Post-translational modifications appear to
regulate both classes of LLPS domain associated proteins.
The formation of MLOs allows and stimulates reactions that would otherwise be inefficient [10,13].

Moreover, MLOs sequester and protect critical molecules from undergoing reactions that are not favorable
[10,13]. The concentration of specific molecules or combination of molecules within MLOs provides an
optimal environment for complex and linked reactions. Previous studies have shown that PEG-based coacer-
vates, which form colloid-rich viscous liquid phases, increased association of RNA polymerase with DNA and
enhanced transcription rate up to 6-fold [22]. Thus, the coacervate matrix or the MLO environment could act
as scaffolds that spatially organize enzymatic cascades and thus promote processivity and connectivity of
enzymatic reactions.

Super-enhancer associated transcription initiation domains
Super-enhancers are powerful gene regulatory elements that mediate extremely high expression of target genes
[23–26]. These complex activating DNA sequences are often composed of multiple DNase I hypersensitive sites
(HSs) or extended accessible regions enriched with active chromatin marks [monomethylated histone 3 lysine 4
(H3K4me), and acetylated H3 at K27 (H3K27ac)], Mediator complex, and Pol II [4,26]. One of the
best-characterized super-enhancer is the β-globin locus control region (LCR) which promotes orchestrated
expression of β-type globin genes during development and differentiation of erythroid cells [27–30]. Originally,
the LCR has been defined as a regulatory element capable of promoting transcription of linked genes in a copy-
number dependent and position-independent manner in transgenic assays [29,30]. This is a somewhat artificial
definition and the LCR appears to be functionally indistinguishable from super-enhancers. The β-globin LCR
contains multiple HSs that operate together to mediate extremely high levels of globin gene expression. The
LCR HSs are bound by a large number of ubiquitously expressed and tissue-restricted transcription factors, and
were among the first enhancer elements shown to recruit Pol II and to transcribe non-coding RNA, now
referred to as enhancer RNA (eRNA) [31–34]. It has been proposed that the LCR HSs constitute the primary
sites for Pol II transcription complex recruitment and assembly and that elongation-competent Pol II com-
plexes are transferred to strong basal promoter elements associated with the β-type globin gene promoters
during transient looping interactions [32,33,35–37].
Recent evidence suggests that the large number of Mediator and Pol II transcription complexes recruited to

super-enhancer associated HSs generate phase-separated domains [4,38]. The Mediator associated protein Brd4
contains an IDR and is able to induce phase separation [4]. Likewise, the C-terminal domain (CTD) of Pol II
has also been shown to form phase-separated droplets [39]. The Pol II CTD consists of a heptapeptide that is
repeated more than 50 times in mammalian cells [40]. The CTD heptapeptide contains three serine residues
that are subject to phosphorylation during the transcription cycle [41]. The unphosphorylated form of Pol II is
first recruited to transcription start sites and interacts with components of the basal transcription machinery
[42,43]. Phosphorylation of the CTD on serine-5 by the CDK7 subunit of TFIIH disrupts these interactions
and promotes transcription initiation [41,42]. Initial transcription is unstable and often aborted, particularly at
enhancers [44,45]. Once a stable elongation complex forms, transcription is paused by negative elongation
factors DSIF (DRB sensitivity inhibitory factor) and NELF (negative elongation factor) to allow capping of the
50 end of the nascent transcript [46]. Next, the CDK9 kinase associated with transcription elongation factor
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pTEFb phosphorylates the serine-2 residue of the Pol II CTD as well as DSIF and NELF [46]. These phosphor-
ylation events remove NELF and convert DSIF into a positive transcription elongation factor.
Several observations suggest that the phosphorylation of Pol II dissociates it from LLPS transcription initi-

ation domains formed by super-enhancers [47]. Kwon et al. [48] demonstrated that proteins with LCDs,
including the FET proteins FUS, EWS, and TAF15, form hydrogels that associate with the unphosphorylated
but not with the phosphorylated form of Pol II. The authors proposed that the promoter and unphosphory-
lated Pol II is bound to a polymer (hydrogel) and that phosphorylation of Pol II allows escape from the
promoter-associated hydrogel. More recently, Boehning et al. [39] analyzed phase separation properties of the
Pol II CTD and found that upon phosphorylation Pol II disengages from phase-separated droplets. Finally,
Guo et al. [49] analyzed the association of Pol II with Mediator condensates and with splicing factor SRSF1/
SRSF2 condensates. The authors found that the unphosphorylated Pol II preferentially associates with Mediator
droplets while the serine-2 phosphorylated Pol II preferentially associates with SRSF condensates.
Together these data suggest that Pol II is recruited to super-enhancers in the context of phase-separated

domains and that phosphorylation of the Pol II CTD initiates transcription, simultaneously disengaging Pol II
from these domains (Figure 1). This model is related to but deviates from the transcription factory model pro-
posed by Cook and co-workers [50]. According to the transcription factory model, Pol II clusters in the
nucleus and genes are recruited to and reeled through these clusters during transcription elongation. This
process, as discussed by Cook and Marenduzzo [51], would leave the growing RNA un-entwined in contrast
with a tracking and rotating polymerase. The Cook laboratory provided evidence supporting a reeling mechan-
ism by inducing transcription of a very long gene (221 kb) and monitoring promoter position and ongoing
transcription by RNA-FISH using high-resolution microscopy [52]. In contrast with these findings, the
Grosveld laboratory provided evidence, using an mCherry-CDK9 (CTD serine-2 kinase) fusion protein, that

Figure 1. Transcription factory versus super-enhancer mediated phase-separated transcription initiation domains.

(A) Transcription factory showing association of enhancer (light blue) and target gene (blue) with Pol II clusters as well as

reeling of the gene through the immobilized Pol II cluster. (B) Super-enhancer associated HSs (enhancer) recruit co-activators,

e.g. Mediator, and Pol II, which initiates transcription of eRNA. Mediator, the Pol II CTD and perhaps eRNA form

phase-separated domains that transiently interact with target genes. Pol II is transferred to the gene promoters and

transcription initiation and phosphorylation of the CTD (indicated as ‘P’ in the figure) disengages Pol II from the transcription

domain.
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transcription elongation occurs away from transcription factories [53]. We will revisit this issue later when we
discuss the coordination of transcription with RNA processing.

Nuclear speckles and RNA processing
Most nuclear MLOs are enriched with proteins that specify their functions, e.g. ribosome assembly (Nucleolus),
spliceosome assembly (Cajal Bodies), and histone mRNA processing (Histone Locus Bodies) [1]. In contrast with
other nuclear MLOs, the function of nuclear speckles, also referred to as interchromatin granule clusters or SC35
domains, is not completely understood [54,55]. The inhibition of transcription increased the size of nuclear
speckles, which led to the proposal that they represent storage sites for the mRNA processing and splicing
machinery. Consistent with this model are observations showing that nuclear speckles are devoid of DNA and
active transcription [56]. However, there is increasing evidence for the notion that speckles co-ordinate transcrip-
tion, processing, and export of highly expressed mRNAs [7,55]. Early studies have shown clusters of hyperpho-
sphorylated Pol II and BrU labeled transcripts associate with nuclear speckles [57,58]. Moreover, during the early
stages of human cytomegalovirus (HCMV) infection, the viral genomes associate with speckles and the immedi-
ate early (IE) viral RNA is accumulated in these domains [59]. Maul and co-workers [59] introduced the concept
of ‘immediate transcript environment’, postulating that the HCMV IE protein IE86 functions as a nucleator of a
‘cloud’, which may now be viewed as being caused by transcription-associated LLPS. The IE86 induced ‘cloud’ is
formed around HCMV input DNA, is positioned between ND10/PML nuclear bodies and nuclear speckles, and
is enriched with transcription factors, thus creating favorable conditions for IE transcription. IE transcripts are
among a few HCMV transcripts that are extensively spliced, suggesting that RNA processing (including splicing),
at least partially, occurs in nuclear speckles, which contain all components required for these processes. In add-
ition, the association with nuclear speckles elevates the export of these IE transcripts (see below).
Recent evidence suggests that gene-rich chromosomal domains with high level of transcription are associated

with nuclear speckles [7,55]. Nuclear speckles contain the long non-coding RNA (lncRNA) Malat-1 (NEAT2),
snRNAs, as well as polyA-RNA and are enriched with RNA processing proteins including Son and SC35 [60].
High-resolution RNA-FISH and immunofluorescence microscopy revealed that Malat-1 is located at the per-
iphery of nuclear speckles while the processing factors Son and SC35 are located within the core [60].
Three groups recently investigated the association of genomic loci with nuclear speckles using novel high

throughput technologies [7]. The Belmont laboratory used tyramide signal amplification followed by high
throughput sequencing to identify genomic loci that are in close proximity to nuclear speckles [61]. In these
studies, the authors used a horse-radish peroxidase conjugated antibody specific for the Son protein, which is
highly enriched in nuclear speckles, to generate diffusible biotin tyramide. The biotin tyramide covalently
associates with proteins, RNA, and DNA. After streptavidin pull-down, the DNA was subjected to sequencing.
The data demonstrate that transcription ‘hot zones,’ characterized by the most highly expressed genes, as well
as housekeeping genes, genes exhibiting low transcriptional pausing, and genes under the control of super-
enhancers, localize to the nuclear interior and come in close proximity to nuclear speckles. Previous studies
established that the genome is organized into topologically associating domains (TADs) with A-TADs repre-
senting active chromatin regions, while B-TADS containing repressed gene loci [55,62,63]. A-TADs are further
divided into Type I and Type II compartments, with Type I A-TADs encompassing the most transcriptionally
active chromatin regions [7,55,62,63]. Chen et al. [61] found that Type I A-TADs are particularly close to the
nuclear speckles. The observation that genes with low transcription pausing rates are in close proximity to
nuclear speckles is consistent with enrichment of proteins regulating the pause/release of Pol II, e.g. pTEFb and
CDK12, in these domains [64–66].
Studies by the Guttman laboratory support the findings that highly transcribed genomic regions are associated

with nuclear speckles [67]. The authors used a novel technology called SPRITE (split pool recognition of inter-
actions by tag extension) which is a proximity ligation-independent approach for identifying chromosomal
interactions. The technique is similar to chromatin conformation capture (3C) approaches but instead of prox-
imity ligation, short barcodes are ligated to DNA or RNA fragments of cross-linked chromatin that is fractio-
nated into 96 well plates. The process of fractionation and barcode ligation is repeated multiple times and at
the end, the DNA is subjected to sequencing. Interacting (cross-linked) DNA or DNA/RNA fragments contain
the same combination of barcodes. The study revealed that highly active gene loci frequently associate with spli-
ceosomal RNA and Malat-1 suggesting proximity to nuclear speckles, which is enriched with these RNA
species [60]. Interactions of highly active gene loci with nuclear speckles were verified by DNA-FISH and SC35
immunofluorescence microscopy. An additional interesting observation resulting from the study by Quinodoz
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et al. [67] was that the density of Pol II transcription events, rather than high transcription activity of individual
genes, determined close association with nuclear speckles.
The third study by Chen et al. [68] used a novel method to map associations between specific RNAs and

genomic loci (MARGI, mapping of RNA-genome interactions). MARGI includes cross-linking of RNA and
DNA followed by chromatin fragmentation, proximity ligation, and high throughput sequencing. The authors
focused on nuclear speckle associated RNA (nsaRNA) including snRNA and Malat-1, and compared the results
with those obtained from CDK9 ChIP-seq experiments. The data are consistent with the other studies showing
that nuclear speckles are mostly associated with highly transcribed gene loci in A-TAD compartments. In
summary, it appears that although splicing occurs co-transcriptionally throughout the nucleoplasm, highly tran-
scribed genomic regions are associated with nuclear speckles to guarantee rapid and efficient RNA processing.

Nuclear speckles and RNA export
In addition to being enriched with RNA processing factors, nuclear speckles also contain proteins that regulate
RNA export. In yeast, Yra1, Sub2 and the THO complex couple RNA processing and nuclear export [69]. The
corresponding complex in humans is called TREX, which is recruited to active genes and appears to travel
along with elongating Pol II [70,71], consistent with its binding to the ser2/ser5 phosphorylated Pol II CTD.
Recent data demonstrate that recruitment of TREX is regulated by transcription, 50 capping, pre mRNA spli-
cing, and m6A RNA modification [72]. Interestingly, several reports demonstrate direct interactions between
the Mediator complex and Trex2 [73,74] linking enhancer regulated transcription initiation with nuclear
export. Intronless mRNAs have been shown to transit through nuclear speckles in a manner regulated by spli-
cing enhancer elements but independent of transcription [75]. This transit through speckles has been associated
with a quality control step that prepares mRNAs for nuclear export. Within the speckles, the intronless
mRNAs interact with TREX, which is required for the subsequent release of the mRNAs from the speckles.
The nuclear mRNA export receptor NXF1, a nuclear pore component, mediates the association of TREX with
nuclear speckles [75]. NXF1 co-ordinates the polyadenylation of mRNAs with nuclear export and down-
regulation of NFX1 leads to the accumulation of Pol II at the 30 end of genes [76]. Thus, at least a subset of
RNAs are being processed and prepared for nuclear export within the nuclear speckle compartment.

Nuclear pore complex (NPC)
The nuclear pore is an integral part of the nuclear envelope and represents a large protein complex that med-
iates selective transport across nuclear membranes [77]. The NPC consists mainly of nucleoporins (Nups)
which are either stable components of the NPC or diffuse into the nucleoplasm and contact the NPC transi-
ently. Most Nups contain phenylalanine-glycine (FG) rich repeats which are intrinsically disordered and
capable of forming LLPS [78]. The FG domains are thought to be largely responsible for forming a selective
permeability barrier at the NPCs. This selectivity is at least in part due to interactions between the Nup FG
domains and nuclear export receptors like NXF1.
There is increasing evidence suggesting that highly expressed genes are located in close proximity to the

NPC [77]. This is somewhat counterintuitive to the view that activation of gene loci causes movement away
from the nuclear periphery to the nuclear interior. Most of the nuclear periphery associates with inactive chro-
matin through associations with the nuclear lamina [1]. This is not true for the NPC environment which fre-
quently associates with active chromatin. Pascual-Garcia et al. [79] demonstrated that Drosophila Nup98
associates with promoters and enhancers and induces looping between these elements. Furthermore, the looped
enhancer/promoter configurations were found in close proximity to NPCs. Likewise, Ibarra et al. [80] demon-
strated that in human cells Nup153 associates with super-enhancers at the nuclear periphery. Importantly,
Nup153 deficiency caused a reduction in the expression of super-enhancer controlled genes. Liu et al. [81] tar-
geted a biotinylatable inactive mutant of Cas9 to the human β-globin LCR in K562 cells to identify
LCR-associated proteins. Surprisingly, both Nup98 and Nup153 were found to associate with LCR HS sites.
Nup98 and Nup153 are part of the periphery of NPCs and are diffusible components known to associate with
genes in the nuclear interior [82]. Pascual-Garcia and Capelson [83] suggest that because of the FG domains,
Nup proteins could assist in forming phase-separated domains in the context of super-enhancers. It is not
known yet how the Nups are recruited to super-enhancers. Perhaps the proximity to the nuclear pore and the
presence of a large number of proteins with intrinsically disordered domains at super-enhancers could recruit
Nups, which could assist in phase separation and/or in facilitating nuclear export through mediating proximity
to nuclear speckles and NPCs.
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Distinct phase-separated nuclear domains co-ordinate
transcription, processing, and nuclear export of highly
expressed RNA
The recent data on phase-separated domains involved in transcription and RNA processing suggest a highly
co-ordinated effort to rapidly process and export abundant RNA generated from super-enhancer target genes.
The concept of nuclear phase separation and particularly super-enhancer mediated phase separation regulating
transcription initiation is novel and a subject of debate [84–86]. However, it is clear that super-enhancers gen-
erate domains enriched with co-activators, particularly Mediator, and Pol II. This may also apply to all other
components involved in the assembly of Pol II transcription complexes. It seems that after transcription initi-
ation, Pol II disengages from the super-enhancer domain/transcription factories and associates with nuclear
speckles [49,87]. At this stage, Pol II either tracks along the gene or Pol II stably associates with the periphery
of nuclear speckles and the DNA is reeled through the immobilized transcription elongation complex. The
second model is consistent with data from the Cook laboratory suggesting reeling of genes through immobilized
Pol II [52]. Many nuclear LLPS domains exclude double-stranded DNA suggesting that the DNA is recruited
to and remains at the periphery of the phase-separated transcription initiation and nuclear speckle domains.
Accordingly, Pol II does not have to enter another condensate after release from the super-enhancer/initiation
domain as discussed by Portz and Shorter [88].
We propose that Pol II is first recruited to and assembled into active transcription complexes at super-

enhancers and transferred to high-affinity Pol II promoters during transient interactions of gene promoters
with the phase-separated super-enhancer domain [37]. After transcription initiation at the promoter and as a
consequence of CTD phosphorylation, Pol II disengages from super-enhancers and associates with the periph-
ery of nuclear speckles. During transcription elongation, RNA is processed and transits through nuclear speck-
les to gain export competency. Close proximity to NPCs and association with nuclear mRNA export receptors
mediates rapid export into the cytoplasm (Figure 2).

Figure 2. Coordination of transcription, processing, and export of highly expressed RNA by super-enhancers, nuclear

speckles, and nuclear pore complexes.

Pol II disengaging from super-enhancers associates with nuclear speckles during transcription elongation. RNA is processed

and transits through the speckles to gain nuclear export competency. Association with RNA export receptors mediates rapid

export through NPCs.
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The proximity of highly expressed gene bodies to nuclear speckles also stimulates transcription elongation as
it was shown that SC35, mainly enriched in speckles, stimulates transcription elongation of specific genes [89].
Furthermore, a recent report by Kim et al. [90] demonstrates that nascent transcript levels of heat-shock
protein (HSP) A1B RNA increases upon interaction with nuclear speckles. This is consistent with data showing
an increased association of hsp90a and hsp70 gene loci with nuclear speckles after induction of heat shock [91].
Previous studies have shown that the active β-globin gene comes in close proximity to nuclear speckles [92].
Interestingly, both β-globin and α-globin loci were shown to frequently associate with the same speckles suggesting
coordination of processing of highly expressed globin RNAs. As discussed before, more recent studies also revealed
frequent associations of super-enhancer regulated gene loci with nuclear speckles [7]. The multiple HSs associated
with super-enhancers recruit Pol II and initiate transcription that often occurs bidirectionally. It is interesting to
view this in the context of another study showing that the density of transcription initiation events, rather than the
transcription activity of individual genes, mediates association with speckles [67]. The transcription at super-
enhancers could facilitate associations with nuclear speckles through frequent transcription initiation events.
Furthermore, enhancers and super-enhancers interact with nucleoporins which may contribute to their close prox-
imity to nuclear pores [77]. Thus, it appears that transcription, processing, and export or highly expressed RNA
are regulated by multiple LLPS nuclear domains that are in close proximity and are functionally interconnected.

Conclusions and open questions
There is increasing evidence for the formation of functionally specified phase-separated biological condensates
in the nucleus. Furthermore, some of these condensates are functionally interconnected, as discussed here for
transcription initiation, RNA processing, and RNA export phase-separated domains. The connection between
nuclear speckles and NPCs is speculative, but clearly, there is a connection between the processing of RNA and
the preparation for nuclear export. It seems that at least for highly expressed RNA, transcription, processing,
and export are highly co-ordinated. This process may have evolved to prevent the accumulation of highly
expressed RNA and/or to guarantee rapid processing and export. There is still much work to be done to clearly
establish the co-ordinated processes described here. For example, what is the spatial and functional relationship
between nuclear speckles and NPCs? What regulates the association of highly expressed genes with nuclear
speckles? What is the relationship between super-enhancer mediated phase separation and transcription factor-
ies? Answers to these questions will soon be forthcoming due to improved imaging technologies and new
sophisticated protocols aimed at mapping spatial relationships between DNA, RNA, and proteins.

Summary
• Mediator and RNA polymerase II interact with super-enhancers and contribute to the forma-

tion of phase separated domains.

• Transcription of super-enhancer target genes initiates within the context of the phase sepa-
rated domain.

• Phosphorylation of the RNA polymerase II C-terminal domain disengages the enzyme from
the super-enhancer domain and leads to association with nuclear speckles.

• Transcription elongation of super-enhancer target genes occurs at the periphery of nuclear
speckles and the RNA is processed and prepared for nuclear export within the nuclear
speckle domain.
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pool recognition of interactions by tag extension; TADs, topologically associating domains; TSA, tyramide signal
amplification.
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