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Diabetes increases the prevalence of heart failure by 6–8-fold, independent of other co-
morbidities such as hypertension and coronary artery disease, a phenomenon termed dia-
betic cardiomyopathy. Several key signalling pathways have been identified that drive the
pathological changes associated with diabetes-induced heart failure. This has led to the
development of multiple pharmacological agents that are currently available for clinical use.
While fairly effective at delaying disease progression, these treatments do not reverse the
cardiac damage associated with diabetes. One potential alternative avenue for targeting
diabetes-induced heart failure is the use of adeno-associated viral vector (AAV) gene ther-
apy, which has shown great versatility in a multitude of disease settings. AAV gene therapy
has the potential to target specific cells or tissues, has a low host immune response and
has the possibility to represent a lifelong cure, not possible with current conventional phar-
macotherapies. In this review, we will assess the therapeutic potential of AAV gene therapy
as a treatment for diabetic cardiomyopathy.

Diabetic cardiomyopathy
Diabetes is a major health problem worldwide, responsible for approximately 5 million deaths in 2017,
with an increasing incidence expected to reach 693 million by the year 2045 [1]. One of the leading causes
of death (approximately 50%) in people with diabetes is cardiovascular disease. In particular, the preva-
lence of heart failure in diabetic patients is reportedly increased by 6–8-fold in the 45- to 65-year-old
age-group compared with non-diabetic individuals [2]. Moreover, diabetes alone can accelerate the de-
velopment of heart failure in individuals with pre-existing cardiac pathologies (such as myocardial in-
farction), resulting in poorer prognosis compared with non-diabetic individuals [3]. The accompany-
ing abnormalities in cardiac structure and function are collectively termed ‘diabetic cardiomyopathy’ or
diabetes-associated heart failure, originally defined as cardiomyopathy not directly attributable to hyper-
tension or coronary disease. This phenomenon has been known for at least 5-decades [4–7]; however,
diabetic cardiomyopathy still remains the subject of intense research to understand the key causal sig-
nalling pathways to target for future therapeutic development.

Key signalling pathways implicated in diabetes-induced cardiac
dysfunction and remodelling
To date, several contributing mechanisms have been implicated in the development of diabetic car-
diomyopathy, each of which has an impact on cardiac function and pathological cardiac remodelling
(summarised in Figure 1). For instance, long-term hyperglycaemia is associated with chronic systemic
low-grade inflammation. Impaired glucose handling leads to the activation of pro-inflammatory factors
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Figure 1. Overview of dysregulated major signalling pathways dysregulated in diabetic cardiomyopathy

Diabetes-induced molecular impairments lead to cardiac remodelling, inflammation, oxidative stress and impaired calcium han-

dling, contributing to cardiac dysfunction that initially develops as diastolic dysfunction. Over time, impairment of endothelial and

smooth muscle cells in the vasculature can lead to reduced coronary microvascular blood flow, as a result of this microvascular dys-

function. The dysfunction in the vasculature and the myocardium can eventually lead to LV systolic dysfunction; Akt, protein kinase

B; CTGF, connective tissue growth factor; eNOS, endothelial nitric oxide synthase; HBP, hexosamine biosynthesis pathway; LV, left

ventricular; NFκB, nuclear factor-κB; Nox, NADPH oxidase; PI3K, phosphoinositide-3 kinase; PKC, protein kinase-C; PLN, phos-

pholamban; ROS, reactive oxygen species; SERCA2a, sarcoplasmic/endoplasmic reticulum ATPase- Ca2+; TGF-β, transforming

growth factor-β; TNFα, tumour necrosis factor-α (see text for references).

such as nuclear-factor-κB (NF-κB) and tumour necrosis factor-α (TNF-α) that have been linked to insulin resistance
and an array of pathological consequences of diabetes [8,9]. This is paired with excessive reactive oxygen species
(ROS) production in the myocardium, via the dedicated ROS-producing enzyme, NADPH oxidase (Nox), and as a
result of mitochondrial electron transport chain uncoupling [7]. Excessive ROS, their dysregulation and/or impaired
antioxidant defences result in oxidative stress, a key hallmark observed in the diabetic heart [10]. Diabetes-induced
impairments in Ca2+ handling can impact cardiomyocyte function, prolonging relaxation and impairing contractile
function [11]. In preclinical animal models of both type-1 and type-2 diabetes, a reduction in the expression and
activity of the Ca2+ handling protein, sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA2a), and/or an in-
crease in its regulator, phospholamban (Pln), impairs cardiac function [12]. Likewise, these Ca2+ handling proteins
have been shown to undergo post-translational modification in the setting of hyperglycaemia, altering their cellu-
lar function. O-GlcNAcylation is one such example, where a rapid and dynamic attachment of the sugar moiety,
O-GlcNAc, to nuclear and cytoplasmic proteins at serine (Ser) or threonine (Thr) residues, results in altered function
of a broad range of proteins [13]. In the cardiovascular system, SERCA2a, protein-kinase C, endothelial nitric oxide
synthase (eNOS) and phosphoinositide-3 kinase (PI3K) are all O-GlcNAc modified [14]. For example, in mice with
diabetic cardiomyopathy, left ventricular (LV) diastolic dysfunction develops in conjunction with elevated levels of
global cardiac protein O-GlcNAcylation [15]. This occurs in conjunction with the inhibition of pro-survival kinase
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Akt, leading to an increase in apoptosis in the diabetic heart [16]. Although programmed cell death rarely occurs in
the healthy myocardium (as cardiomyocytes rarely proliferate in adult cardiac muscle), it is a feature of the diabetic
heart and end-stage heart failure [17]. This is driven by diabetes-induced activation of cell death factors, including
caspase-3 and caspase-9 [18]. Over time, excessive cell death can cause tissue damage and scar formation. The de-
position of extracellular matrix consists predominantly of collagen produced by activated fibroblasts cells (known as
myofibroblasts) that stimulate transforming growth factor-β (TGF-β) and connective tissue growth factor (CTGF)
to activate cell surface receptors and their response to cytokines [19,20]. Maladaptive remodelling eventually leads to
a clinically observable phenotype, characterised by cardiac fibrosis and LV diastolic dysfunction that eventually leads
to systolic dysfunction [21]. In addition to the direct cardiac effects, diabetes can cause microvascular dysfunction
via impairment in endothelial and smooth muscles cells, impacting coronary and myocardial blood flow [7]. This
vascular dysfunction may often not be evident until later in the disease progression, with initial inflammatory infil-
tration of the microvascular that lead to vascular remodelling and perivascular fibrosis [22]. This further contributes
to increased thickness of the arterioles with a reduction in the number of capillaries and arterioles [23]. Similarly,
pre-clinical models of type-1 diabetes have been demonstrated to have a similar phenotype, in addition to the re-
duction of important angiogenic growth factors such as the vascular endothelial growth factor (VEGF) [24]. These
signalling responses contribute to the overall pathophysiology of diabetic cardiomyopathy and have been compre-
hensively reviewed recently [7].

Current treatments for the diabetic heart
Although the pathophysiology of diabetic cardiomyopathy is well-established, effective treatment options approved
for clinical use are limited. Early studies indicated that lower glycated haemoglobin (a surrogate measure of long-term
blood glucose) is associated with a lower incidence of cardiovascular disease in diabetic patients [25]. However, when
this is applied to high-risk diabetic patients, the opposite occurs; it worsens the outcome of cardiovascular events [26].
Thus, lowering blood glucose alone is often not sufficient to prevent the development of diabetic cardiomyopathy.

Currently in the clinic, several different pharmacological agents are routinely used to manage diabetic cardiomy-
opathy. First-line treatments include those targeting glucose control as well as those targeting cardiovascular pathol-
ogy. This includes for example renin–angiotensin system inhibitors (angiotensin converting-enzyme inhibitors, ACEi,
and angiotensin receptor blockers) and metformin, which have been shown to be safe and to delay cardiac disease
progression in diabetic patients, at least to some extent [27,28]. Thiazolidinediones (TZDs), a class of drug effective in
lowering blood glucose levels, have been shown clinically to increase the incidence of hospitalisation due to heart fail-
ure, thus rendering them unsuitable as a treatment for diabetic cardiomyopathy [29]. More recently, treatments that
modulate blood glucose levels via the incretin system have shown some efficacy in terms of cardiovascular outcomes.
Although the incretin system potentiators, dipeptidyl peptidase-4 (DPP4) inhibitors, are associated with a neutral
or increased risk of developing heart failure in the clinic, new-generation incretin system mimetics (glucagon-like
peptide-1 (GLP-1) receptor agonists) have demonstrated favourable cardiovascular outcomes with a good safety pro-
file [30,31]. Sodium-glucose co-transporter-2 (SGLT-2) inhibitors, initially indicated specifically for the management
of type-2 diabetes, have demonstrated a marked beneficial effect in terms of cardiovascular complications in the set-
ting of diabetes [32,33]. The beneficial effects of SGLT2 inhibitors were observed as a result of the now mandated
requirement for clinical investigation of cardiovascular outcomes in diabetic drugs [34]. Whilst SGLT2 inhibitors re-
duce cardiovascular risk, mechanistic insights into how they impact heart failure in T2D is lacking [7,35]. Further,
one recent clinical trial on SGLT-2 inhibitors suggests these beneficial effects may extend to patients with heart failure
irrespective of diabetes, suggesting a mechanism independent of blood glucose-lowering [36]. For a small number of
patients, risk of adverse outcomes (e.g. increased risk of amputation, genital infections or worsening kidney function)
may preclude their suitability [37,38]. For the majority of diabetic patients, these newer glucose-lowering agents have
proven to be favourable for limiting the risk of heart failure hospitalisation. There remain some patients however who
will still require alternative therapeutic options to address the underlying triggers of, or reverse the cardiac damage
associated with, diabetes. As the body of evidence continues to grow with respect to the treatment of diabetic car-
diomyopathy (whether via SGLT2 inhibition or other approaches), this will also influence the need for more targeted
approach for future interventions. One such potential avenue of treatment, which may also provide a longer-term
treatment solution, is the use of adeno-associated viral vector-mediated (AAV) gene therapy.
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AAV-based therapeutics represent a new frontier in clinical
medicine
Treatment options for cardiovascular diseases have advanced significantly in recent years, as a result of improved
understanding of the molecular pathways involved in cardiac damage [39,40]. In particular, the use of gene therapy
has proven to be one of the most promising avenues to treat various types of diseases, including heart failure [40].
Aimed at the correction of key pathologies, gene therapy involves the delivery of therapeutic genes of interest to a
specific tissue target. Successful incorporation of the delivered gene allows the endogenous cell machinery to produce
the specific encoded protein [41,42]. The success of gene therapy depends heavily on the efficient transfer of the
genetic material to the tissue of interest, which is facilitated by different delivery strategies. Early delivery methods
included the use of naked plasmid DNA, liposomal DNA complexes, polymer-carrying DNA and oligonucleotides
[43]. Delivery of naked plasmids to tissues, however, does not provide sufficient transfection into the tissue of interest
[44,45]. Furthermore, rapid systemic degradation of plasmids and poor cellular entry are other limitations [40,46,47].
In contrast, non-pathogenic viral approaches have been shown to be a more superior method as the vector for gene
delivery [45,46]. Notably, AAVs have been demonstrated to exhibit the best risk-benefit profile and will be the focus
for the remainder of this review.

Brief introduction to AAV principles
Derived from the Parvoviridae family, AAVs are non-enveloped single-stranded DNA vectors, with a favourable
safety profile and the capability of achieving persistent transgene expression in a wide range of target tissues, includ-
ing cardiac tissue [48]. AAVs are relatively small (20 nm) and therefore limited in their packaging capacity of only
around 4.7 kb [47]. Yet one of the most attractive features of AAV vectors is the continued expression of the trans-
gene for a prolonged period of time [40,49], despite the extrachromosomal location of the vector [47]. However, the
infrequent integration of the vector means that transduction must occur in cells that either do not replicate or do
so very slowly [47]. Cardiomyocytes are an excellent example of cells that are considered the most compatible for
use of AAV gene therapy, as cardiomyocyte turnover is negligible in adults [50]. For in vivo gene delivery, recom-
binant AAVs (rAAV) are commonly used, which have the same sequence and structure as a wild-type AAV, but are
devoid of all AAV-protein coding sequences [51]. AAVs enter the cell via glycosylated cell surface receptors, trig-
gering clathrin-mediated endocytosis (Figure 2) [51]. Utilising the cytoskeletal network AAVs advance through the
cytosol, undergoing conformational modification in response to a change in pH [51]. AAVs are then released by the
endosome, where they enter the nucleus and release their content. The viral inverted terminal repeats (ITRs) present
in the rAAV genome can drive inter- or intra-molecular recombination to form circularised episomal genomes that
can persist in the nucleus. Vector genomes can also undergo integration into the host genome at very low frequen-
cies; however, this is a very rare occurrence unlike both lentiviral and retroviral that can randomly integrate into the
host genome to disrupt normal gene function [52]. Moreover, compared with adenoviruses which were a popular
vector choice in the early 2000s, AAVs has been shown to be excellent to evade the innate immune system [53] and
considered highly safe and potent compared with other vectors.

AAV design for cardiac-targeted transduction
To achieve efficient cardiac transduction, multiple factors must be considered, including the identification of naturally
cardiotropic AAVs. Currently, more than 100 serotypes of wild-type AAVs have been reported, each with distinct
tissue tropism, as determined by their capsid protein structures [41,54]. Among these serotypes, AAV1, AAV6, AAV8
and AAV9 have been identified as the most cardiotropic serotypes for systemic delivery [55]. It is also important to
note that these serotypes target other organs, including the liver for AAV9 and both the lung and skeletal muscle for
AAV6 [55]. These have led to various efforts that include the generation of chimeric AAVs by shuffling from various
subtypes to improve transduction efficacy and transgene expression [56].

In addition to identifying the most effective cardiotropic/organ-specific serotype, promoter selection is another
major element to consider. The combination of both allow the mediation of AAV expression and enable the con-
trol of gene transcription that is delivered [57]. Promoters are usually located upstream of the gene of interest and
are 100–1000 base pairs in length. This can either stimulate or repress transcription initiation at the transcription
start site, mediated by the RNA polymerase II in the core promoter. One of the most commonly used promoters,
cytomegalovirus (CMV), can achieve both strong and robust transgene expression [58]. Inducible promoters such as
the tetracycline and doxycycline systems have also been used to manipulate transgene expression in preclinical stud-
ies [59,60]. For cardiac transduction, cardiac-specific promoters such as α-myosin heavy chain (αMHC), troponin
and myosin light chain (MLC) have been commonly used to drive expression throughout the heart, including in the
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Figure 2. Principles of AAV-mediated gene therapy

Adeno-associated virus (AAV) binds to the host glycosylated cell surface receptor to trigger clathrin-mediated endocytosis inter-

nalization. The AAV then moves through the cytosol via the cytoskeletal network. Conformational changes are then triggered by

pH changes in the cellular environment, leading to endosomal release. The AAV undergoes transport to the nucleus, releasing its

cargo, where it is then transcribed into double-stranded DNA for transcription, or undergoes integration to the host genome (which

rarely occurs). Messenger RNA produced from transcription of the cargo leads to its translation to the protein-of-interest outside

of the nucleus. Production of this protein-of-interest then enables the cardioprotective effects that are observed in response to

AAV-mediated gene therapy.

ventricles and atria [61–64]. Interestingly, the combination of AAV6 (which has strong skeletal muscle tropism) and
a CMV promoter favours cardiac muscle transduction, through a mechanism that is not well understood [65]. More
recently, atrial natriuretic factor (ANF) has been suggested to confer atrial-specific transduction, without observable
transduction in the ventricles [66]. Therefore, promotor selection is an important consideration in AAV design, where
further research will likely improve our ability to limit expression to individual organs, compartments or even cell
types.
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AAV-based therapies for diabetic cardiomyopathy
The increased use of AAV gene therapy in the biomedical field has led to an intensified effort to identify novel potential
treatments for diabetic cardiomyopathy. This can be done by targeting the underlying mechanism of the cardiac
pathology, not possible using conventional pharmacotherapies. Below we discuss recent findings that aim to treat
diabetic cardiomyopathy and other cardiovascular diseases (Table 1).

Calcium cycling/handling-targeted AAVs
The S100 calcium-binding protein A1 (S100A1) is involved in all Ca2+-dependent target protein interactions and has
recently been discovered to play a critical role in heart failure [67]. S100A1 acts upstream of SERCA2a to modulate a
wide range of cellular effects. The protein interacts with Pln to increase the activity of SERCA2a and regulates ryan-
odine receptor-2 (Ryr2) function, during both systole and diastole [68]. In the setting of heart failure (where S100A1
is down-regulated), its restoration via rAAV6-S100A1 in rats restored cardiac function and improve Ca2+ handling
via a SERCA2a-dependent mechanism [69]. Similar improvements were also observed in large animal models of my-
ocardial infarction that was administered with rAAV9-S100A1 [60]. Moreover, administration of S100A1 AAV has
also been proven to be safe as demonstrated in a study conducted in pigs [71]. Equally, another SERCA2a modulator,
small ubiquitin-related modifier-1 (SUMO-1) stabilised cellular activity through post-translational modification of
both mouse and human proteins [72]. SUMO-1 binds to a broad range of proteins at their lysine residues, result-
ing in SUMOylation of the protein. In the setting of heart failure (where levels of both SUMO-1 and SUMOylation
are diminished), administration of AAV9-SUMO1 in mice increases survival rate and improved cardiac function
[72]. This has been confirmed in a porcine model of heart failure, where administration of AAV1-SUMO1 increased
specificity protein-1 (Sp-1) SUMOylation, improving cardiac function and stabilisation of LV volumes [73]. In a sep-
arate study, another upstream regulator of SERCA2a, inhibitor-1 (I-1), was demonstrated to be cardioprotective in a
porcine model of heart failure [64]. I-1 reduced the activity of protein phosphatase-1, an upstream regulator of the
SERCA2a-Pln complex and has been shown to decline with heart failure [74,75]. Administration of constitutively
active (I-1c)-AAV to both ischaemic and non-ischaemic heart failure in pigs improved cardiac function (systolic and
diastolic), in conjunction with increased Pln phosphorylation, leading to enhanced SERCA2a activity [64,65]. In ad-
dition to cardiac targeted gene therapy, administration of liver targeted AAV8-Urocortin2 or Urocortin-3 improved
cardiac function in the failing murine heart [77]. The approach is unique, as the product of the liver targeted gene
therapy does not directly produce the beneficial effects, but rather through the activation of corticotropin-releasing
hormone receptor 2 (CRH2) by Urocortin. The activation of CRH2 exerts extensive cardioprotective activity, in-
cluding increasing calcium handling proteins such as SERCA2a and troponin in the heart [78,79]. In addition to its
cardioprotective effects, Urocortin-2 (but not Urocortin-3) gene transfer reduces blood glucose levels and increases
glucose clearance, indicating its potential as an ideal candidate for the treatment of diabetic cardiomyopathy [77].
Thus, these studies demonstrate the central role of SERCA2a in maintaining cardiac contractility suggesting its suit-
ability as a therapeutic target for heart failure or diabetic cardiomyopathy. However, direct targeting of other calcium
handling approaches using AAV (such as Ryr2 and Pln) should also be considered as a potential therapeutic target to
improve cardiac function.

Growth factor-targeted AAVs
Gene therapeutic approaches targeting growth factors, particularly to induce new blood vessel formation, has been
previously explored to treat several cardiovascular diseases. The VEGF family, consisting of VEGF-A, -B, -C, -D and
-E, are among the most powerful regulators of blood vessel growth [80]. In particular, VEGF-B has been associated
with enhancing cardiac angiogenesis with specific effects on metabolism, cell survival and apoptosis [80]. Previous
reports demonstrated that administration of cardiac-specific AAV9-VEGF-B in an aortic constriction mouse model
modulated the angiogenic response, increasing proliferation and thereby attenuating systolic function [81]. These
findings were corroborated in a canine model of dilated cardiomyopathy, where both LV diastolic and systolic func-
tion were preserved, in addition to increases in cardiomyocyte antioxidant defence [82]. Nerve growth factor (NGF)
is another growth modulator which is implicated in the promotion of angiogenesis, similar to VEGF-B [83]. Secreted
by glycoproteins, NGF elicits its biological effects mainly by binding to high-affinity tropomyosin-related receptor A,
leading to inactivation of the forkhead box-O-transcription factor (Foxo) pathway [84]. Overexpression of NGF using
gene therapy in mice after myocardial infarction increased both cell survival and cardiac perfusion [85]. Likewise,
systemic delivery of human AAV9-NGF prevented cardiomyopathy in diabetic mice, while limiting LV diastolic dys-
function [86]. Similarly, Yes-associated protein (YAP), which has a vital role in regulating embryonic cardiomyocyte
proliferation, has attracted interest as a potential mechanism to enhance heart regeneration. By introducing AAV9
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Table 1 List of gene therapies investigated in preclinical and clinical studies

Target Mechanism of action
Vector
serotype

Dose (vector
genomes)

Study
phase Model Indication Delivery method References

Preclinical studies

S100A1 Increased calcium
handling protein

rAAV6 2.5 × 1011 vg Small animal Rodents Ischaemic heart failure
(myocardial infarction)

Coronary perfusion [69]

AAV9 1.5 × 1013 vg Large animal Porcine Ischaemic heart failure
(myocardial infarction)

Retrograde coronary
injection

[70]

AAV6 1.5 × 1013 vg Large animal Porcine Ischaemic heart failure
(myocardial infarction

Retrograde coronary
injection

[71]

SUMO-1 Increased calcium
handling protein

rAAV9 5 × 1010 vg Small animal Rodents Heart failure transverse
aortic constriction

Tail vein injection [72]

AAV1 5 × 1012 vg
1 × 1013 vg

Large animal Porcine Ischaemic heart failure
(myocardial infarction)

Antegrade intracoronary
infusion

[73]

I-1 Increased calcium
handling protein

AAV9 2.8×1012 vg Small animal Rodents Heart failure transverse
aortic constriction

Tail vein injection [75]

BNP1161 3 × 1012 vg
1 × 1013 vg

Large animal Porcine Ischaemic heart failure
(myocardial infarction)

Intracoronary infusion [74]

BNP1161 1 × 1013 vg
1 × 1014 vg

Large animal Porcine Non-ischaemic HF (volume
overload HF)

Intracoronary injection [76]

Urocortin Increase calcium protein
handling

AAV8 5 × 1011 vg Small animal Rodents Ischaemic heart failure
(myocardial infarction)

Jugular vein injection [78]

AAV8 5×1011 vg Small animal Rodents Cryoinjury myocardial
infarction model

Jugular vein injection [79]

VEGF-B Increased angiogenesis AAV9 1 × 1010 vg Small animal Rodent Heart failure transverse
aortic constriction

Direct myocardial injection [81]

AAV9 1 × 1013 vg
2 × 1013 vg
5 × 1013 vg

Large animal Canine Non-ischaemic dilated
cardiomyopathy

Intracoronary infusion [82]

NGF Increased angiogenesis AAV22

AAV93
1 × 1011 vg
1.5 × 1012 vg

Small animal Rodents Diabetic cardiomyopathy Direct myocardial injection2

and tail vein injection3
[86]

YAP Cardiac regeneration AAV9 N/A Small animal Rodents Myocardial infarction Direct myocardial injection [87]

FGF-2
sTGFβ2

Growth modulators AAV8 1 × 1010 vg
1 × 1011 vg

Small animal Rodents Heart failure ascending
aortic constriction

Retro orbital injection [88]

SOD Increase antioxidant
defence

AAV 2.5 × 1010 vg
5 × 1010 vg
2.5 × 1012 vg

Small animal Rodents Ischaemia reperfusion injury Direct myocardial injection [90]

CTRP3 Limit ROS and
inflammation

AAV 5×1011 vg Small animal Rodents Diabetic Cardiomyopathy Tail vein injection [91]

HO-1 ROS scavenger and
anti-inflammatory

AAV2 2×1011 vg Small animal Rodents Ischaemic heart failure
(myocardial infarction)

Direct myocardial injection [92]

AAV6 1 × 1013 vg Large animal Porcine Ischaemic heart failure
(myocardial infarction)

Retro infusion into the
ventricular vein

[93]

BFIB4 Increased longevity factors
and anti-inflammatory

AAV9 1 × 1012 vg Small animal Rodents Diabetic cardiomyopathy Tail vein injection [94]

RNR Increase pro-survival
protein (via increased
energy synthesis)

rAAV6 2.5 × 1013 vrg Small animal Rodents Ischaemic heart failure
(myocardial infarction)

i.v. injection via retro-orbital
sinus route

[96]

AAV6 1 × 1012 vrg
5 × 1012 vrg
1 × 1013 vrg

Large animal Porcine Ischaemic heart failure
(myocardial infarction)

Antegrade Intracoronary
infusion

[97]

Continued over
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Table 1 List of gene therapies investigated in preclinical and clinical studies (Continued)

Target Mechanism of action
Vector
serotype

Dose (vector
genomes)

Study
phase Model Indication Delivery method References

βARKct Inhibition of β-adrenergic AAV6 1 × 1013 vg Large animal Porcine Ischaemic heart failure
(myocardial infarction)

Retrograde injection into
coronary veins

[99]

O-GlcNAcylation Alteration of cardiac
O-GlcNAc balance

AAV6 2 × 1011 vg
1 × 1012 vg

Small animal Rodents Diabetic cardiomyopathy Tail vein injection [103,104]

PIM-1 Increased pro-survival
kinase

AAV9 1 × 1010 vg
5 × 1010 vg

Small animal Rodents Diabetic cardiomyopathy Tail vein injection [106]

PI3K(p110α) Increase pro-survival
kinase and reduce ROS

AAV6 2 × 1011 vg Small animal Rodents Diabetic cardiomyopathy Tail vein injection [108,109]

miRNA-1 mRNA regulator AAV9 5 × 1011 vg Small animal Rodents Heart failure ascending
aortic constriction

Tail vein injection [111]

miRNA-21 mRNA regulator through
gelsolin inhibition

AAV9 N/A Small animal Rodents Diabetic cardiomyopathy Tail vein injection [112]

miRNA-30c mRNA regulator to
increase PPARα

AAV9 1 × 1011 vg Small animal Rodents Diabetic cardiomyopathy Tail vein injection [113]

miRNA-320 mRNA regulator to
increase CD36 expression

AAV9 1 × 1011 vg Small animal Rodents Diabetic cardiomyopathy N/A [114]

Clinical Studies

SERCA2a Increased calcium
handling protein

AAV1 1 × 1013 vg Phase 2b Human Heart failure Intracoronary infusion [117]

Adenylyl Cyclase 6 Increased calcium
handling and pro-survival
kinase

Adv 3.2 × 109 vg
3.2 × 1010 vg
1 × 1011 vg
3.2 × 1011 vg
1 × 1012 vg

Phase 2b Human Heart failure Intracoronary injection [118]

Summary of studies that have used AAV gene therapy to target different types of heart failure in preclinical and clinical studies. Vectors: 1Chimeric AAV between AAV2
and AAV8 2First intervention 3Second intervention. AAV, adeno-associated viral; Adv, adenoviral; βARKct; β-adrenergic receptor kinase 1 (carboxy terminus); BFIB,
bactericidal/permeability-increasing fold-containing family B member 4; CTRP3, C1q/tumour necrosis factor-related protein; FGF, fibroblast growth factor-2; HO-1, heme
oxygenase-1; miRNA, micro RNA; NGF, nerve growth factor; PI3K(p110α), phosphoinositide 3- kinase (p110α); PIM-1, pro-viral integration site for Moloney murine leukaemia
virus; RNR, ribonucleotide reductase;S100A1, S100 calcium-binding protein A1; SERCA2a; sarcoplasmic/endoplasmic reticulum ATPase-2SOD, superoxide dismutase;
sTGFβ2, soluble transforming growth factor- β2; SUMO-1, small ubiquitin-related modifier-1; I-1, constitutively active inhibitor-1; VEGF-B, vascular endothelial growth factor
B; YAP, yes-associated protein 1.
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carrying a human YAP sequence, contractile function and cell survival were enhanced in mice following myocardial
infarction [87]. More recently, a therapeutic gene approach combining two genes (fibroblast growth factor-2 (FGF-2)
and soluble transforming growth factor-β-2 (sTGFβ2)) simultaneously in an AAV8 vector limits both obesity and
type-2 diabetes phenotypes, and has separately been shown to improve cardiac contraction induced by aortic con-
striction [88]. These reports highlight the major advantage of utilising AAV to deliver growth factors and modulators
to the heart where there is a lack of cell regeneration and replication. This is especially important as off-target or
systemic delivery can lead to uncontrollable cancerous growth in other unwanted tissues. Thus, the application of
pin-point growth factor delivery using AAV may also favour other organ diseases that require enhance angiogenesis.

AAVs targeting oxidative stress and inflammation pathways
Increased production of ROS has been shown to cause cellular damage and contribute to the pathology of diabetic
cardiomyopathy. One way to limit this is to target superoxide dismutase (SOD), a family of metalloenzymes that
scavenge superoxide radicals and convert them to oxygen and hydrogen peroxide. Early studies indicate that the
administration of the SOD gene via adenovirus protects from myocardial infarction [89]. A subsequent study re-
vealed a similar outcome with the administration of rAAV-Ec-SOD, where it protected against damage associated
with ischaemic–reperfusion injury such as cardiac infarction and dysfunction [90]. However, more recent efforts seem
to target the increase in ROS further upstream, leading to the modulation of inflammatory pathways. For instance,
administration of rAAV-C1q/tumour necrosis factor-related proteins (CTRPs), a key metabolic regulator of the di-
abetic heart, demonstrated reduced ROS-producing enzyme activity (Nox and p67 phox) and increase SOD, while
also attenuating cardiac inflammation (via reduced TNF-α) [91]. Similarly, targeting the enzyme, heme oxygenase-1
(HO-1), which catalyses the degradation of heme-producing biliverdin (ROS scavenger) and carbon monoxide, has
been demonstrated to limit inflammation [92]. Indeed, the administration of rAAV6-human-HO-1 to pigs prior
to myocardial ischaemia reperfusion demonstrates reductions in both infarct size and extent of LV systolic dys-
function compared to the control group [93]. This improvement was attributed to reduced inflammatory activa-
tion of endothelial cells and the recruitment of leukocytes, exacerbating cardiac damage [93]. Likewise, the delivery
of longevity-associated variant (LAV) of bactericidal/permeability-increasing fold-containing family B member 4
(BPIFB4) attenuates diabetes-induced cardiac dysfunction through anti-inflammatory action [94]. LAV-BFIB4 allele
was demonstrated to be highly prevalent in long-living individuals with higher circulating BPIB4 levels with increased
eNOS and mononuclear cells [95]. A recent study looking at liver targeted (thyroxine-binding globulin) administra-
tion AAV9-LAV-BFIB4 demonstrated improvement in cardiac function and remodelling in diabetic mice [94]. These
beneficial effects have been attributed to increasing circulating BFIB4 that increases stromal-derived factor-1 (SDF)-1
release, that in turn, activate CXC chemokine receptor type 4 (CXCR-4) [94]. Despite the positive outcomes demon-
strated by these studies, it is important to note that some of these studies are still in the early stages and future work
looking into the use of AAV gene therapies to limit ROS production (e.g., knockdown of Nox subunits) or increase
antioxidant enzymes (e.g., increase in SOD) in the diabetic heart are still required.

Myofilament/contractile function targeted AAVs
Cardiac manipulation to increase myofilament cross-bridge binding and cycling was investigated to improve car-
diac function by increasing naturally occurring nucleotide, 2-deoxyadenosine triphosphate (dATP) [96]. Production
of dATP is mainly maintained by ribonucleotide reductase (RNR), by converting adenosine diphosphate (ADP) to
deoxy-adenosine diphosphate (dADP), leading to the final production of dATP. Targeting RNR with the administra-
tion of Rrm-1 and Rrm-2 genes (which encodes RNR) using an AAV approach improved LV systolic and diastolic
function in rodent and porcine models of myocardial infarction [96,97]. This cardioprotective effect was further con-
firmed in Duchenne Muscular Dystrophy mice, where similar cardiac improvements were observed [98]. Similarly,
inhibition of β-adrenergic receptor kinase (βARK), which is increased in heart failure, displays beneficial effects
in the heart. Indeed, administration of AAV6-βARKct (the peptide responsible for βARK inhibition) showed im-
provements in LV haemodynamic and contractile function were evident in a pig model of myocardial infarction [99].
This was also observed in cardiomyocytes obtained from failing human hearts, where there is improved contractile
function and increased adenylyl cyclase activity in response to AAV6-βARKct, indicating improved β-adrenergic
receptor activity, a major regulator of cardiac contractility [100]. Further, studies investigating the toxicity and safety
of AAV6-βARKct in sheep reported no toxic effects on major organ function, with robust cardiac gene expression
[101], suggesting that this treatment may be close to clinical translation.

© 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons
Attribution License 4.0 (CC BY).
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AAVs targeting post-translational modification mechanisms
Post-translational modification, a chemical process that occurs following protein biosynthesis, is an important com-
ponent to cell signalling and function including the heart. Some of these modifications include phosphorylation,
acetylation, nitrosylation, alkylation and glycosylation. One that is particularly attractive to target in the context of
diabetes and its complications is O-GlcNAcylation, a modification that is glucose-driven and has been implicated
in the development of diabetic cardiomyopathy [13]. Two enzymes regulate this post-translational modification:
O-GlcNAc transferase (OGT), which facilitates the addition of the O-GlcNAc sugar moiety to Ser and Thr residues,
and O-GlcNAc-ase (OGA), which facilitates its removal [102]. Our laboratory has shown that administration of
rAAV6 carrying a human isoform of OGA attenuated cardiac dysfunction and remodelling in mice with established
diabetic cardiomyopathy [103,104]. In contrast, administration of rAAV6 carrying a human isoform of OGT induces
cardiac dysfunction and remodelling in wild-type non-diabetic mice [103,104] This suggests that regulation of this
particular post-translational modification is a critical regulator of the structural and functional phenotype of the
heart, and might be key in the setting of cardiomyopathy, both with and without diabetes.

AAVs targeting cardiac apoptosis
Cardiac apoptosis is a common feature of the diabetic heart and end-stage heart failure in both clinical and preclini-
cal contexts [7]. The pro-viral integration site for Moloney murine leukaemia virus (PIM-1) has been identified as a
promotor of cardiomyocyte survival in response to cell stress [105]. Increased cardiac expression of PIM-1 via AAV9
delivery increased proliferation of cardiac progenitor cells and improved cardiac contractility, with evidence of in-
creased SERCA2a activity [106]. Likewise, the lipid kinase PI3K(p110α) responsible for membrane trafficking, cell
growth and cell survival, has also been shown to be cardioprotective in multiple cardiac disorders. Administration of
rAAV6-caPI3K gene therapy was demonstrated to diminish cardiac dysfunction following acute pressure-overload
hypertrophy [107]. In a chronic disease such as diabetes, we have shown that administration of rAAV6-caPI3K gene
therapy to mice with type-1 diabetes-induced diastolic dysfunction, attenuated cardiac dysfunction and oxidative
stress [108]. Equally, in a preclinical model of type-2 diabetes we have also demonstrated that rAAV6-caPI3K admin-
istration delivers similar cardiac improvements [109].

AAVs targeting micro RNAs (miRNA)
Micro RNAs (miRNA) are small, non-coding RNAs that function via base-pairing with complementary sequences
and messenger RNA molecules. These can regulate multiple different genes at the post-transcriptional level, in
both healthy and disease settings [110]. Indeed, diabetes-induced oxidative stress, hypertrophy and cardiac fibrosis
have been shown to be associated with changes in several miRNAs, including miRNA-1, miRNA-133a, miRNA-373,
miRNA-378, miRNA-23b, miRNA-181 and miRNA-195 [110]. Thus, there is an increased interest in targeting miRNA
for the treatment of diabetic cardiomyopathy. One mode of delivery that has been widely used for cardiac miRNA
studies is the use of AAV as a vehicle, due to its versatility and capability to transduce cardiac tissue. For instance
restoration of miR-1 using AAV9 improved fractional shortening, attenuated cardiac remodelling and improved Ca2+

cycling in rats with aortic banding [111]. In the setting of diabetic cardiomyopathy, delivery of cardiac-targeted
AAV9 carrying miRNA-21 has been shown to attenuate diabetes-induced cardiomyocyte hypertrophy and dias-
tolic dysfunction, via gelsolin inhibition, an important cardiac transcription cofactor [112]. Similarly, administra-
tion of rAAV9-miRNA-30c has also been demonstrated to limit diabetes-induced cardiac dysfunction and remod-
elling in T2D db/db mice [113]. This has been attributed to an increase in peroxisome proliferator-activated receptor
(PPAR)-α transcriptional activity that modulates oxidative stress, lipid accumulation, ATP production and apoptosis
in the diabetic heart [113]. In contrast with the cardioprotective effects demonstrated for the above miRNAs, an in-
crease in miRNA-320 has been shown to be detrimental in the setting of diabetic cardiomyopathy [114]. Delivery of
rAAV-miRNA-320 exacerbates cardiac remodelling and dysfunction in T2D mice, whereas inhibition of miRNA-320
attenuated these cardiac parameters [114]. These studies indicate that regulation of miRNA in the diabetic heart is
complex and will benefit from further investigation.

Clinical translation of AAV-based therapeutics
The Calcium Upregulation by Percutaneous Administration of Gene Therapy in Patients with Cardiac Disease (CU-
PID) trial was the first human study that investigated the use of AAV for heart failure by targeting impaired Ca2+

handling utilising SERCA2a-AAV gene therapy [115]. This treatment aimed to treat heart failure through an in-
crease in SERCA2a protein (responsible for regulating calcium reuptake following contraction) [40]. Results from
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both Phase 1 and Phase 2 clinical trials were promising, demonstrating no or few side effects in the small patient co-
hort [50,116]. However, the results of the Phase 2b clinical trial were neutral, as the administration of SERCA2a-AAV
did not achieve improvement in primary end point in both recurring (i.e. admission to hospital due to heart failure)
and terminal events (i.e. death) [117]. However, a clinical trial using adenylyl cyclase-6 gene delivery in heart failure
patients demonstrated favourable outcomes in terms of improving LV ejection fraction and LV-dP/dt [118]. The im-
provement has been attributed to an increase in SERCA2a, Akt and phospholamban following treatment [119,120].
Currently, a Phase 3 clinical trial is being planned and reassessed for commencement to investigate the effects of
intracoronary administration of Ad5 CMV hAC6 (RT-100) or placebo in 536 HFrEF (Heart Failure with reduced
Ejection Fraction) patients (FLOURISH Trial) ([121]- Clinical Trials.gov NCT03360448). More recently I-1c-AAV
gene therapy (a protein phosphatase-1 inhibitor), which demonstrated success in preclinical studies, has progressed
to a Phase 1 clinical trial, to investigate the safety profile of NAN-101 (BNP116.sc-CMVi1c) in patients with heart
failure (Clinical Trials.gov NCT04179643, start date 20 November 2019). Thus, these studies highlight that therapeu-
tic gene approaches are in the pipeline for the treatment of heart-related diseases (Figure 3), which have proven to
offer clear promise at least in the preclinical stage.

Challenges and hurdles posed by AAV-mediated gene
delivery approaches
Over the last few decades, the field of gene therapy has advanced significantly in terms of vector design and biology.
Although the findings of the first gene therapy for heart failure was negative [117], leading gene technology experts
have pointed out that further optimisation is still required to translate AAV use from bench to bedside [122]. Findings
from the CUPID trial highlighted poor uptake of the AAV vector into the hearts of patients [117]. Other factors,
including the presence of neutralising antibodies, have been considered a hurdle, where even at low concentration can
inactivate AAV activity and block transduction to target tissue [123]. However, new strategies have been developed to
tackle this limitation. Formation of synthetic AAVs through structural guided evolution and generation of chimeric
AAV via fusion of wild-type AAV have been some of the few technologies that have in the developmental pipeline
[124,125]. Recent findings have also highlighted the potential for toxic effects of AAVs in non-human primates [126].
Administration of a high dose AAV (2 × 1014 vg/kg) demonstrated severe hepatotoxicity, with side effects evident
in the dorsal root ganglia [126]. These findings have been debated in the field of gene therapy and argued to be a
variant-specific effect; in this case AAVhu68 (an AAV9 variant) was used, a variant that has not been used in the
clinic [127]. Moreover, the dose that was administered was very high compared with that which is currently being
used in the clinic (e.g. 1.5 × 1011 vg based on the current, clinically approved therapy for retinal dystrophy, voretigene
neparvovec-rzyl). Despite these findings, a gene therapy product, Gendicine (recombinant human p53 adenoviral),
to treat squamous cell carcinoma, was approved for clinical use in China over a decade ago [128]. There have been
no adverse events reported and this therapy has continued to demonstrate an exemplary safety profile in the clinic
[128].

The advantage of gene therapy over conventional pharmacological therapies is their potential to last for a prolonged
period, if not a lifetime [51]. As these therapies only need to be administered once, or up to a handful of times, the
cost per administration is likely to be eye-watering, as pharmaceutical companies look to recoup the funds invested in
research and development (ranging from US$500,000 to $2 million per course of treatment) [129]. The high price-tag
has been associated with low commercialisation of this therapy in the marketplace, as most of the currently approved
therapies target rare monogenic genetic defects that only occur in a small number of people. For example, Zolgensma,
a recently approved gene therapy treatment for spinal muscular atrophy (a disorder that affects 1 in 10,000 live births
www.rarediseases.org) costs US$2 million per treatment course [130]. Although not unique to AAV gene therapy, new
therapies had led pharmaceutical companies to devise innovative schemes to cover the costs of gene therapy, including
pay for performance; where payment is only made when maintenance or improvement of health is maintained over a
period of time. Additionally, subscription-based or money-back guarantees/rebate model is also another option that
had been recently adopted by health care providers throughout the world [129]. Nonetheless, like all technologies,
the cost of gene therapy will eventually reduce as research and development costs decrease over time, increasing
the feasibility of AAV gene delivery as a therapy from an economic perspective. Finally, the increasing evidence and
research in the treatment of diabetic cardiomyopathy may also influence the need for such targeted interventions.

© 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons
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Figure 3. Outline of reported AAV-based potential therapeutics for diabetic cardiomyopathy

Current AAV gene therapies reported to date to target multiple signalling pathways and molecules in cardiac tissue proposed

for the treatment of diabetic cardiomyopathy. ADP, adenosine diphosphate; βARKct; β-adrenergic receptor kinase 1 (carboxy

terminus); BPIFB4, bactericidal/permeability-increasing fold-containing family B member 4; CRH2, corticotrophin-releasing hor-

mone receptor-2; CTRP, C1q/tumour necrosis factor-related protein; dADP, deoxyadenosine diphosphate; dATP, 2-deoxyadeno-

sine triphosphate; FGF, fibroblast growth factor-2; GRK2; G protein-coupled receptor kinase-2; HO-1, heme oxygenase-1; I-1c,

constitutively active inhibitor-1; miRNA, micro RNA; NGF, nerve growth factor; OGA, O-GlcNAc-ase; OGT, O-GlcNAc-transferase;

PI3K(p110α), phosphoinositide 3- kinase (p110α); PIM-1, pro-viral integration site for Moloney murine leukaemia virus; PP1, pro-

tein phosphatase-1; RNR, ribonucleotide reductase; Ryr2, ryanodine receptor-2; S100A1, S100 calcium-binding protein A1; SDF-1,

stromal-derived factor-1; SOD, superoxide dismutase; Sp-1; specificity protein-1; sTGFβ2, soluble transforming growth factor-β2;

SUMO-1, small ubiquitin-related modifier-1; SERCA2a, sarcoplasmic/endoplasmic reticulum ATPase-2; VEGF-B, vascular endothe-

lial growth factor-B; YAP, yes-associated protein-1 (see text for references).

AAV-mediated gene delivery therapeutic approaches – are
we there yet?
The use of gene therapy has emerged to be one of the most versatile approaches in the biomedical field. It can be used
to manipulate targets of interest by either up-regulating or down-regulating the activity of the target gene or protein
in a tissue-specific manner, which is desirable to dissect specific pathways in different disease pathologies. Likewise,
the use of AAVs in the clinic is a viable therapeutic strategy to deliver beneficial genetic materials, in place or in
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Table 2 Current list of approved AAV gene therapy products for clinical use

Therapeutic
name

Year of
approval

Approving
agency Indication

Type of
therapy Vector Dose

Route of ad-
ministration Manufacturer

Glybera*

(alipogene
tiparvovec)

2012 EMA Lipoprotein
lipase deficiency

AAV gene
therapy

AAV1-LPL 1 × 1012 vg/kg
body weight

Intramuscular
injection

UniQure
(Amsterdam,
Netherlands)

Luxturna
(voretigene
neparvovec-rzyl)

2017/2018 FDA/EMA Retinal dystrophy
(biallelic RPE65
mutation)

AAV gene
therapy

AAV2-RPE65 1.5 × 1011

vg/eye
Subretinal
injection

Spark
Therapeutics, Inc
(Philadelphia,
Pennsylvania,
U.S.A.)

Zolgensma
(onasemnogene
aberparvovec
xioi)

2019 FDA Spinal muscular
atrophy

AAV gene
therapy

AAV9- SMN1 1.1 × 1014 vg/kg
body weight

Intravenous
infusion

AveXis Inc
(Chicago, Illinois,
U.S.A.)

EMA, European Marketing Authorization; FDA, Food and Drug Administration.
*prohibitive cost of regulatory body precluding commercial viability.

conjunction with pharmacological interventions. In addition, the advancement of gene therapeutics is highlighted
by the increase in clinical trials (364 clinical trials based on literature search for ‘cardiovascular diseases’ and ‘gene
therapy’ in www.clinicaltrials.gov as of June 2021). At time of writing, there were 3 AAV gene therapies (2 available in
the clinic and 1 (Glybera) withdrawn due to expensive regulatory costs and low revenues) that have been approved for
clinical use (Table 2). Indeed AAV gene technology has also been investigated as a COVID-19 vaccine and has been
shown to be stable at room temperature with a favourable safety profile compared to first-generation vaccine [131].
With this resurgence and our ever-increasing knowledge in the field, it will lead to reduced research and development
costs, coupled with innovative ways to recoup costs and increased level of industry-sponsored funding in the academic
sector can further expand the gene therapy developmental pipeline. Moreover, significant investment is being made to
optimise the protocols required for manufacturing vector stocks for clinical use, such that production can be scalable
and yield a vector at the highest possible titre [132].

As discussed here, AAV gene therapy for diabetic cardiomyopathy in the clinic is now getting closer to becoming a
reality. This can be attributed to a better understanding of the delivery vectors and promoters, their modes of delivery
and improved knowledge of the molecular targets. However, challenges to achieve efficient gene transduction remain
as the limiting factor for the translation of preclinical models to the clinic. In addition, the decision regarding which
molecular pathways are targeted is also critical to achieving successful gene therapy transduction and outcome. Nev-
ertheless, the capacity for gene therapy to cure human disease is now an established reality in multiple diseases. It is
now only a matter of time before one will be available for the treatment of diabetic cardiomyopathy, for which there
is currently no cure.
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