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Fetal growth restriction (FGR) leading to low birth weight (LBW) is a major cause of neonatal
morbidity and mortality worldwide. Normal placental development involves a series of highly
regulated processes involving a multitude of hormones, transcription factors, and cell lin-
eages. Failure to achieve this leads to placental dysfunction and related placental diseases
such as pre-clampsia and FGR. Early recognition of at-risk pregnancies is important be-
cause careful maternal and fetal surveillance can potentially prevent adverse maternal and
perinatal outcomes by judicious pregnancy surveillance and careful timing of birth. Given
the association between a variety of circulating maternal biomarkers, adverse pregnancy,
and perinatal outcomes, screening tests based on these biomarkers, incorporating mater-
nal characteristics, fetal biophysical or circulatory variables have been developed. However,
their clinical utility has yet to be proven. Of the current biomarkers, placental growth fac-
tor and soluble fms-like tyrosine kinase 1 appear to have the most promise for placental
dysfunction and predictive utility for FGR.

Introduction
A small for gestational age (SGA) infant is variably defined as one with an estimated fetal weight (EFW)
or birthweight (BW) less than the 10th centile for gestation [1–3]. Globally, almost 21 million infants are
born SGA each year, the majority in low-income and middle-income countries [4]. These infants are at
higher risk of morbidity and mortality particularly if they are born preterm [5] and are also more likely
to develop chronic health complications through childhood and in adulthood [6].

Although SGA and fetal growth restriction (FGR) are often used interchangeably, FGR is defined as
an infant that has not achieved its genetic growth potential [7]; however, as this is inherently unknown,
it is impossible to determine if any infant has indeed achieved that potential prenatally. Importantly, not
all infants with FGR will be SGA and not all SGA infants will have FGR. Regardless of this caveat, many
SGA/FGR liveborn infants will have low birth weight (LBW) defined as a BW <2500 g irrespective of
gestational age. Worldwide, LBW is an important public health indicator, especially in settings where
accurate gestational age assessment is not possible and prenatal assessment of fetal size or growth is not
available [5,8].

Normal placental development [9] involves a combination of highly regulated processes requiring
a plethora of angiogenic growth factors, hormones, transcription factors, cytokines and cell adhe-
sion molecules [10]. Failure to establish a high capacitance, low pressure maternal fetal vascular inter-
face [9] leads to placental dysfunction and is causally related to several obstetric syndromes includ-
ing pre-eclampsia and FGR [11]. Although there is considerable overlap between the pathogenesis of
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Figure 1. Circulating maternal biomarkers derived from the placenta that are associated in placental dysfunction

A summary of various hormonal factors, polypeptides, glycoproteins, angiogenic factors, and nucleic acids, which are associated

in placental dysfunction and pathophysiology of FGR.

pre-eclampsia and FGR, the relationship between the extent of failure of spiral artery conversion, gestation at onset,
type of disease, maternal and infant phenotype as well as clinical outcomes remains poorly understood [12–14].

The challenge obstetricians face is identifying the truly growth restricted fetus regardless of size, as these are the
infants that are most at risk of adverse outcomes. Because placental dysfunction leading to inadequate nutrient and
oxygen transfer [15] accounts for the majority of SGA/FGR infants [16,17], many investigators have focused atten-
tion on circulating biomarkers indicative of aberrant placental function [18–20]. As there is currently no treatment
for placental dysfunction, early recognition of at-risk pregnancies is important because careful maternal and fetal
surveillance can be instituted and adverse outcomes potentially prevented by judicious timing of birth [21–23]. The
aim of this narrative review is to provide an overview of available evidence regarding circulating biomarkers associ-
ated with placental dysfunction and to discuss their clinical utility for the prediction of FGR. A comprehensive review
of PubMed, Cochrane Library, and CINAHL was performed to identify appropriate publications between 1995 and
October 2022 relevant to this review.

Circulating biomarkers are broadly classified into: (1) hormonal factors, polypeptides, and glycoproteins; (2) an-
giogenic factors; and (3) cell-free nucleic acids [12,24] (Figure 1). Some of these biomarkers are potentially expressed
as a consequence of epigenetic changes during placental development [25–28].

Hormonal factors, polypeptides, and glycoproteins
Table 1 lists various placental hormones, polypeptides, and glycoproteins associated with placental dysfunction
and their potential roles for screening and diagnosis of FGR. These include beta-human chorionic gonadotrophin
(β-hCG), pregnancy-associated plasma protein-A (PAPP-A), A Disintegrin and Metalloprotease 12 (ADAM12),
placental protein 13 (PP13), alpha-fetoprotein (AFP), inhibin A, activin A, follistatin, placental growth hormone
(PGH), neural cell adhesion molecule (N-CAM), fibroblast growth factor (FGF), Insulin-like growth factor-I (IGF-I),
Insulin-like growth factor binding proteins-1, -3, -4 (IGFBP-1, IGFBP-3, and IGFBP-4), and serine protease inhibitor
Kunitz type 1 (SPINT1).

βhCG, PAPP-A, and ADAM12
Lower concentrations of circulating maternal βhCG, PAPP-A, and ADAM12 measured at 11–14 weeks of gestation
have been reported in women with SGA/FGR infants [29–33]. Pihl et al. observed that first trimester maternal serum
concentrations of βhCG, PAPP-A, and ADAM12 in women with SGA infants (defined as BW <5th centile) were
significantly lower compared with matched controls (βhCG: 0.74 vs. 1.04 multiples of median (MoM), PAPP-A: 0.64
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Table 1 Circulating maternal biomarkers associated with FGR

Biomarkers Functions
Maternal levels in FGR
pregnancies Key references

Hormonal factors, polypeptides, and glycoproteins

Activin A Regulation of endometrial receptivity, implantation of embryo, and trophoblast
development

Unchanged [51]

Raised [50]

ADAM12a Promotion of cell migration and trophoblast invasion Reduced [29,31,32,35,37]

AFPb Function in human placenta is unclear Raised in first and second
trimester

[34,46,47]

Reduced in third trimester [48]

β-HCGc Promotion of progesterone production by corpus luteal cells and maintenance
of endometrial lining. Promotion of angiogenesis, immunosuppression, and
growth of fetus organs

Reduced in first trimester [30,32,37]

Unchanged in second
trimester

[34]

Follistatin Inhibits the biological activity of Activin A. Inhibits follicular development in
ovary by antagonizing follicle-stimulating hormone

Reduced [50,51]

Inhibin A Regulation of implantation and differentiation of developing embryo Unchanged [51–53]

Raised [50]

IGF-Id Promotion of transplacental nutrient transfer to the fetus Reduced [58,61]

IGFBP-1e Regulation of implantation and endometrial growth Reduced [58,59]

IGFBP-3e Modulation of IGF-I effect in transplacental nutrient transfer Unchanged [58]

IGFBP-4e Regulation of IGF bioavailability Raised [60]

N-CAMf Cell signaling, adhesion, proliferation, and differentiation in fetal development.
Maintenance of tissue integrity and regeneration of neural and non-neural
tissues during early development of fetus

Increased [61]

PGHg Regulation of placental and fetal growth. Stimulation of IGF-I secretion Unchanged [57]

PP13h Regulation of implantation and placental vascular development Unchanged [33,37,40–42,150]

Reduced [43]

PAPP-Ai Interaction with IGF and regulation of trophoblast and fetal growth Reduced [19,29,30,32,34,37]

SPINT1j Mediates secretion of trophoblast degradative enzymes that regulate invasion
and remodeling of endometrial spiral arteries

Reduced [68–70]

Angiogenic factors

PlGFk Angiogenic factor expressed in villous syncytiotrophoblast to promote
development and maturation of placental vascular system

Reduced
[37,48,76,79,80,86,91,92,94–98,107,151–157]

Increased [158,159]

Unchanged [160,161]

sFlt-1l Antiangiogenic protein that antagonizes the actions of vascular endothelial
growth factor and placental growth factor

Increased
[48,80,86,91,92,94–98,152–154,156–158,162–166]

Reduced [151,166,159]

Unchanged [107,155,160,167]

VEGF-Am Promotes placental vasculogenesis and angiogenesis throughout pregnancy
by promoting formation of angioblasts and mesenchymal villi

Increased [158]

sEngn Inhibits transforming growth factor beta (TGF-β)-mediated cell signaling and
endothelial function

Increased [111,112,166,168]

Unchanged [113,158]

FGFo Regulates placental growth, differentiation, and angiogenesis Increased [61]

Reduced [63]

aA Disintegrin and Metalloprotease 12.
bAlpha-fetoprotein.
cBeta-human chorionic gonadotrophin.
dInsulin-like growth factor-I.
eInsulin-like growth factor binding proteins-1, -3, and -4.
fNeural cell adhesion molecule.
gPlacental growth hormone.
hPlacental protein 13.
IPregnancy-associated plasma protein-A.
jSerine protease inhibitor Kunitz type 1.
kPlacental growth factor.
lSoluble fms-like tyrosine kinase 1.
mVascular endothelial growth factor-A.
nSoluble endoglin.
oFibroblast growth factor.
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vs. 1.02 MoM and ADAM12: 0.74 vs. 0.97 MoM). CombiningβhCG and PAPP-A yielded a detection rate of 26% with
a false-positive rate (FPR) of 5% for an SGA infant. However, the addition of ADAM12 only very modestly improved
the detection rate by a further 2% [32]. In another study, Poon et al. found that first trimester βhCG and PAPP-A
concentrations in combination with maternal characteristics and fetal nuchal translucency measurement predicted
birth of an SGA infant [30]. Maternal βhCG and PAPP-A MoM were significantly lower in SGA pregnancies, and
combining maternal factors, nuchal translucency thickness, PAPP-A, and free βhCG concentrations resulted in the
highest area under receiver-operating curve (AUROC) of 0.747 (95% CI: 0.735–0.760) and a detection rate of 37% for
a FPR of 10% [30]. In contrast, however, a screening test later in pregnancy using a similar combination of biomarkers,
maternal factors, and fetal biometry at 19–24 weeks of gestation performed poorly for the prediction of an SGA infant
[34].

Other studies have shown that although there is good correlation between first trimester maternal serum ADAM12
concentrations with BW centile, it performs poorly as a standalone screening test [29]. A more recent study evalu-
ated maternal plasma ADAM12 late in the third trimester (36 weeks) and despite finding significantly lower me-
dian concentrations in women with SGA infants compared with controls [14115 pg/ml (Interquartile range (IQR):
11510–16592 pg/ml) vs. 16582 pg/ml (IQR: 13658–20322 pg/ml)], it was not suitable as a screening test [35].

A systematic review and meta-analysis (32 studies; 175240 pregnancies) assessing the predictive utility of first
trimester maternal serum PAPP-A concentrations for birth of an SGA infant, revealed poor predictive value with low
positive (PLR) and negative (NLR) likelihood ratios for BW < 10th centile: PLR 1.96 (95% CI: 1.58–2.43), NLR 0.93
(95% CI: 0.89–0.98); BW < 5th centile: PLR 2.65 (95% CI: 2.35–2.99), NLR 0.85 (95% CI: 0.74–0.98) [36], suggesting
that PAPP-A was not suitable as a standalone biomarker to predict SGA infants [19,36]. In another case–control
study at 11–13 weeks of gestation, a combination of uterine artery pulsatility index (UtA-PI), maternal mean arterial
pressure (MAP), and serum concentrations of PAPP-A, βhCG, PlGF, PP13, ADAM12 and fetal nuchal translucency
thickness, yielded a detection rate of 73% and 46% for birth of a preterm and term SGA infant, respectively [37].

PP13 and AFP
PP13 is a glycan-binding protein mainly expressed in syncytiotrophoblast and secreted into the maternal circulation
via exosomes or microvesicles [38]. Although an earlier observational study showed an association between low first
trimester PP13 concentrations in maternal serum and FGR [39], subsequent studies [33,40] found limited predictive
utility with no significant differences in median PP13 MoM levels in FGR-affected pregnancies even when combined
with other first trimester screening markers such as PAPP-A [33] and ADAM12 [40]. Another study also showed that
median PP13 concentrations in the first trimester of women with SGA infants (BW < 3rd, < 5th, and < 10th centiles)
were not significantly lower than the control arms (0.978, 1.058, 1.051, and 1.083 MoM (controls) for each BW centiles,
respectively) [41]. These findings were further corroborated in another study [42], which also failed to demonstrate
the utility of PP13 for prediction of FGR [41]. In another study, median first trimester PP13 concentrations were
significantly lower in FGR pregnancies compared with controls (86.6 vs. 132.5 pg/ml) but the overall sensitivity for
the prediction of FGR was low at 33% at a specificity rate of 90% [43]. Two systematic reviews of first trimester serum
PP13 in combination with maternal characteristics for the prediction of SGA infants reported low sensitivity of 32%
(95% CI: 18–48%) [44] and 36% (95% CI: 33–41%) [45], respectively. The overall evidence thus far suggests that PP13
has limited clinical utility for predicting FGR.

In a study of 9715 singleton pregnancies (including 481 SGA infants with BW < 5th percentile), higher mean log10
MoM value of maternal serum AFP at 19–24 weeks of gestation was seen in the SGA cohort. When AFP levels were
combined with maternal factors, fetal biometry, and maternal PlGF concentrations, detection rates of 100%, 76%,
and 38% were achieved for SGA infants delivered at <32, 32–36, and ≥37 weeks gestation, respectively [34]. The
addition of UtA-PI measurement further improved detection rates of SGA infants to 78% at 32–36 weeks and 42% at
>37 weeks, respectively [46]. Another retrospective study [47] showed that while elevated serum AFP concentrations
(≥2.5 MoM) in the first trimester was associated with birth of an SGA infant, its predictive utility for SGA and FGR
was low with an AUROC of <0.6 [47]. Similarly, other studies have also demonstrated that although third trimester
AFP concentrations are significantly lower in women with SGA infants, the overall detection rate using this biomarker
is low at 26%, and even when it is combined with maternal PlGF concentrations detection rates only modestly increase
to 32% [48]. A recent meta-analysis (39 cohort studies; 93968 women) reported that the relative risk (RR) for birth
of an SGA infant in women with elevated AFP concentrations was increased (RR: 2.02, 95% CI: 1.75–2.33) and this
risk was higher when ultrasound evidence of SGA was present (RR: 5.28, 95% CI: 3.46–8.06) [49].
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Inhibin A, activin A, and follistatin
Maternal serum concentrations of activin A, inhibin A, and the activin:follistatin ratio in the third trimester have
been reported to be significantly increased in FGR pregnancies compared with controls [50]. However, in another
study, there was no difference in activin A or inhibin A concentrations in normotensive women with SGA infants
compared with controls [51]. A study by Miranda et al. [52] showed that although mean inhibin A concentrations
were significantly higher in women with SGA infants, a multivariable integrative model of maternal characteristics,
fetoplacental ultrasound, and maternal biochemical markers only modestly improved the detection of SGA/FGR cases
at 32–36 weeks’ gestation when compared with screening based on EFW centiles alone. Other studies [53] have also
shown that the clinical utility of activin A, inhibin A, and follistatin as predictors for SGA/FGR is poor.

PGH, IGF-I, IGFBP, N-CAM, and FGF
PGH is mainly expressed by syncytiotrophoblast and stimulates gluconeogenesis and anabolic pathways to support
the growing fetoplacental unit [54]. Earlier observational studies reported an association between low maternal serum
PGH concentrations in the second and third trimesters and birth of an SGA infant [55,56]. However, in a later study
[57], first trimester median maternal serum PGH concentrations in SGA pregnancies were not different to controls
(0.95 MoM, 95% CI: 0.60–1.30 vs. 1.00 MoM, 95% CI: 0.70–1.30) and there was no association with BW centile.

Another study reported that although median maternal serum concentrations of IGF-I (61.8 ng/ml, IQR: 43.4–93.4
vs. 94.9 ng/ml, IQR: 56.7–131.2), IGFBP-1 (58.2 ng/ml, IQR: 39.8–84.9 vs. 81.4 ng/ml, IQR: 57.3–105.5), and IGFBP-3
(54.5 ng/ml, IQR: 45.6–61.5 vs. 55.4 ng/ml, IQR: 47.4–64.9) were significantly lower in women with SGA infants
compared with controls [58], after multiple regression analyses and adjustment for maternal characteristics, these
biomarkers were ultimately not useful for the prediction of SGA. Similarly, in another study, although a significant
negative correlation between log IGFBP-1 and BW standard deviation score was noted, after adjusting for mater-
nal body mass index, the relationship became nonsignificant [59]. IGFBP-4 is highly expressed by extravillous tro-
phoblasts at the maternal–fetal interface [60] and circulating maternal IGFBP-4 concentrations in early pregnancy
have been reported to be significantly higher in women with FGR infants (defined as BW < 5th centile) compared
with controls [Odds ratio (OR) 22.3, (95% CI: 2.7–181.5)] with 93% positive predictive value (PPV) [60]. Current
evidence, however, does not support the use of PGH, IGF-I, or IGFBP as reliable markers for the prenatal prediction
of FGR [57–60].

A small observational study [61] reported an association between increased placental expression of N-CAM and
FGF in cytotrophoblasts of pregnancies complicated by SGA (N-CAM immunoreactive cells median [range]: 26.0
[8–110] vs. 15.0 [8–29] (control group) and FGF: 45.0 [18–36] vs. 14.5 [5–26]). Another study showed that FGF-21
concentrations were significantly increased in amniotic fluid of SGA/FGR fetuses [62]. However, Hill et al. found that
although maternal serum immunoreactive FGF-2 concentrations were lower in SGA pregnancies as compared with
controls, the differences were not statistically significant [63]. The available evidence so far for the use of N-CAM
and FGF for prediction of SGA/FGR is limited, and thus they should not be used in clinical practice until more data
are available.

A systematic review and meta-analysis (103 studies; 432621 women) evaluating first trimester biomarkers
(PAPP-A, βhCG, PlGF, and PP13) for the prediction of SGA reported low overall predictive accuracy [45]. Another
review of AFP,βhCG, unconjugated estriol, PAPP-A, and inhibin A measured before 25 weeks gestation also reported
poor predictive utility for SGA for all analytes [64]. However, high AFP andβhCG concentrations (>2 or >2.5 MoM)
combined, appears to have better predictive utility for SGA infants (PLR: 6.18; 95% CI: 1.84–20.85) compared with
unconjugated estriol, PAPP-A, and inhibin A [64,65]. Overall, however, the predictive value of AFP, βhCG, uncon-
jugated estriol, PAPP-A, and inhibin A as biomarkers for SGA/FGR is low, either separately or in combination or
incorporating maternal characteristics or ultrasound fetal biophysical variables [36,44,45,64–66].

SPINT1
SPINT1 is a circulating protein highly expressed by villous cytotrophoblasts. It is involved in the conversion of ma-
ternal spiral arteries into low pressure, high capacitance vessels by modulating trophoblast secretion of proteolytic
enzymes (serine proteinases, metalloproteinases, and collagenases) that regulate transformation of spiral arteries in
normal placentation [67]. In vitro and animal studies suggest that SPINT1 is modulated by hypoxia and decreased
in FGR placentae. In a study of 2003 women [68] at 36 weeks’ gestation, a strong association between low plasma
SPINT1 concentrations and SGA (defined as <10th centile) was seen. Using a SPINT1 cutoff threshold of <0.63
MoM, the risk of delivering an SGA infant with BW <3rd, <5th, and <10th centile was 14.1%, 19.7%, and 28.2%,
respectively [68]. A recent cohort study [69] found maternal plasma SPINT1 concentrations were significantly lower
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at 20 weeks gestation in women who subsequently delivered an SGA infant; however, the AUROC was modest at 0.62
for BW <3rd centile and 0.56 for BW <19th centile, respectively. Murphy et al. [70] reported reduced plasma SPINT1
concentration in women with pre-eclampsia who subsequently delivered an SGA infant (median [IQR]: 18857 pg/ml
[10782–29890] in SGA vs. 40168 pg/ml [22172342–75] in controls). Another study by Murphy et al. [67] found an
association between elevated plasma serine protease inhibitor Kunitz type 2 (SPINT2), which is functionally related
to SPINT1 in pregnancies complicated by pre-eclampsia and/or SGA. However, the evidence for SPINT1 as a suitable
biomarker to predict SGA/FGR is limited, and more evidence is required to validate its clinical utility.

Angiogenic factors
Table 1 presents angiogenic biomarkers associated with SGA or FGR. Both vascular endothelial growth factor (VEGF)
and placental growth factor (PlGF) play an important role in facilitating angiogenesis in placenta and transforming
spiral arteries into low resistance capacitance vessels [71–73]. Failure of remodeling of spiral arteries by extravillous
trophoblast is seen in placentae from pregnancies complicated by pre-eclampsia or FGR and when there is an im-
balance of proangiogenic (PlGF) and antiangiogenic factors [soluble fms-like tyrosine kinase 1 (sFlt-1)] [72]. Indeed
the 2021 International Society for the Study of Hypertension in Pregnancy (ISSHP) [74] now includes angiogenic
factors as a criterion to define uteroplacental dysfunction (placental abruption, PlGF <5th centile for gestational age
or sFlt-1/PlGF ratio >38, FGR, abnormal umbilical artery Doppler waveform analysis or intrauterine fetal death).

PlGF, sFlt-1, and sFlt-1/PlGF ratio
In a recent publication, Gaccioli et al. [75] showed that although the sFlt-1/PlGF ratio was increased in both
pre-eclampsia and FGR in both placenta and maternal serum, in pre-eclampsia the sFlt-1/PlGF ratio was strongly
associated with placental sFlt-1 concentrations (r=0.45; P<0.0001) but not placental PlGF concentrations (r=−0.17;
P=0.16). In FGR pregnancies, however, the sFlt-1/PlGF ratio was strongly associated with placental PlGF concentra-
tions (r=−0.35; P=0.02) but not placental sFlt-1 concentrations (r=0.04; P=0.81) suggesting that in pre-eclampsia
the elevated sFlt-1/PlGF ratio is primarily driven by increased placental sFlt-1, whereas in FGR, it is mainly due to
decreased placental PlGF.

In a prospective cohort study [76], low plasma PlGF (<5th percentile for gestational age) identified FGR infants and
significant placental dysfunction on histopathological examination with sensitivity of 98.2% (95% CI: 90.5–99.9) and
PPV of 58.5% (95% CI: 47.9–68.6), respectively. Low maternal PlGF outperformed gestational age, fetal abdominal
circumference, and umbilical artery Doppler resistance indices in predicting FGR secondary to placental dysfunction.
In another study, high sFlt-1 expression was present in 28% of placental tissue from pregnancies complicated by
SGA/FGR without pre-eclampsia and in this group, 90% had abnormal umbilical Doppler and lower mean BW [77].

The sFlt-1/PlGF ratio is inversely correlated with BW [78,79] and a high ratio is present in pregnancies complicated
by FGR [80]. Furthermore, although the sFlt-1/PlGF ratio is elevated regardless of the gestation at which FGR is
diagnosed, early-onset FGR is associated with higher ratios compared with late-onset FGR, suggesting a possible
lesser degree of placental dysfunction in the latter group [78,81]. A high sFlt-1/PlGF ratio also predicts a shorter
time to delivery interval, which in turn is even more strongly correlated with the magnitude of daily increase of the
ratio [82]. A recent study by Mitlid-Mork et al. [83] showed that compared with controls, women with pregnancies
complicated by placental syndromes (pre-eclampsia and/or FGR) median maternal concentrations of PlGF (104 vs.
165 pg/ml) were significantly lower while sFlt-1 (6927 vs. 4371 pg/ml) and the sFlt-1/PlGF ratio (73.1 vs. 28.4) were
significantly higher. In another study that evaluated 120 cases of early-onset FGR, 75% had an sFlt-1/PlGF ratio ≥85
with an associated probability of delivery within 1 week of diagnosis of 36%. In contrast, a ratio of <85 was associated
with a >70% probability of prolongation of pregnancy for >4 weeks [84]. A more recent study of early-onset FGR
demonstrated a negative predictive value (NPV) (using an sFlt-1/PlGF cutoff threshold of 38) of 100% (95% CI:
0.92–1.00) for delivery within 2 weeks of diagnosis and a NPV of 50% for delivery within 1 week if the ratio was >85
[85]. Gaccioli et al. [86] reported that using an EFW of <10th centile for gestation and sFlt-1/PlGF ratio of >5.78
at 28 weeks resulted in a PLR of 41.1 (95% CI: 23.0–73.6) and PPV of 21.3% (95% CI: 11.6–35.8) for preterm birth
of an SGA infant. Using a higher threshold sFlt-1/PlGF ratio of >38 at 36 weeks resulted in a PLR of 17.5 (95% CI:
11.8–25.9) for subsequent birth of an SGA infant associated with either maternal pre-eclampsia or perinatal morbidity
or mortality [86]. Other observational studies have also reported similar associations between a high sFlt-1/PlGF ratio
with SGA/FGR and a shorter duration to delivery interval [87,88]. A recent systematic review and meta-analysis (33
studies; 9426 women) showed that while PlGF, sFlt-1, and the sFlt-1/PlGF ratio showed promise for the prediction
of adverse maternal and perinatal outcomes including SGA/FGR and time to delivery, PlGF was equivalent to the
sFlt-1/PlGF ratio for predictive utility [89].
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In a prospective study of 3953 singleton pregnancies at 35–37 weeks of gestation, Valino et al. showed that predic-
tion of SGA (detection rate: 62.8%) was best achieved by maternal serum PlGF, ultrasound EFW, and UtA-PI [90].
However, compared with maternal serum PlGF, sFlt-1 does not provide significant independent prediction of SGA
[90,91]. Another study by Valino et al. that screened 8268 singleton pregnancies at an earlier gestation of 30–34 weeks
demonstrated that prediction of SGA using EFW, PlGF, sFlt-1, UtA-PI, umbilical artery pulsatility index, and middle
cerebral artery pulsatility index resulted in a detection rates of 88% and 51% for birth of a preterm and term SGA
infant, respectively [92].

A recent systematic review and meta-analysis (eight studies; 5450 women) [93] evaluating the diagnostic capac-
ity of the sFlt-1/PlGF ratio for FGR showed that a ratio of >33 was predictive for FGR, [Sensitivity 63% (95% CI:
54–71), specificity 84%, (95% CI: 83–85)] but had a low PLR of 3.55 (95% CI: 1.98–6.34). A higher ratio of ≥85 re-
sulted in higher sensitivity 79% (95% CI: 66–89) but with similarly low PLR of 3.23 (95% CI: 0.94–11.11). Given the
clear correlation of elevated sFlt-1 and sFlt-1/PlGF ratio with placental dysfunction and SGA/FGR infants both in
early [94–96] and late gestation [86,97,98], there is increasing evidence supporting their use together with maternal
characteristics and fetal biophysical ultrasound parameters in screening tests for SGA/FGR [22,24,99,100]. A high
sFlt-1/PlGF ratio also appears to be predictive of adverse neonatal outcomes (admission to neonatal intensive care
unit, severe respiratory disorders, and necrotizing enterocolitis) in SGA neonates [101,102]. There is some evidence
however that fetal sex may also influence the sFlt-1/PlGF ratio. In a recent study, normotensive women with male fe-
tuses had significantly higher sFlt-1 concentrations and sFlt-1/PlGF ratio compared with normotensive women with
a female fetus. However, this difference was not observed in pregnant women with hypertensive disorders [103]. In
another study, the sFlt-1/SPINT1 ratio was significantly raised in pregnancies with pre-eclampsia and/or SGA with
median ratios (IQR) of 1.4 [0.44–2.54] and 0.82 [0.28–1.39] for BW <3rd and 3rd–10th centiles, respectively [70].

Another retrospective cohort study [104] reported that a low sFlt-1/PlGF ratio of <23 ruled out early-onset
pre-eclampsia between 24- and 33+6-weeks’ gestation (NPV of 100%), while a ratio of >45 in combination with
N-terminal-pro b-type natriuretic peptide (NT-proBNP) concentrations of >174 pg/ml increased the PPV from
49.5% to 86% (95% CI: 79.2–92.6). The median concentrations of NT-proBNP were significantly higher in women
with pre-eclampsia (156.5 pg/ml, IQR: [78–343]) compared with those with isolated FGR (48 pg/ml, IQR: [24–59])
and normal pregnancy (47.5 pg/ml, IQR: [25–89]) [105].

In twin pregnancies, the sFlt-1/PlGF ratio measured in the second trimester is associated with increased odds for
FGR (OR: 39.6, 95% CI: 6.31–248.17) [106]. However, as a standalone marker, PlGF does not appear to be sufficiently
robust (sensitivity 27%) for the prediction of FGR for women with multiple pregnancy [107].

Soluble endoglin
Another placenta-derived antiangiogenic factor associated with placental dysfunction is soluble endoglin (sEng).
sEng is a soluble transforming growth factor-β (TGF-β) coreceptor, which has been shown to be elevated in sera of
women with pre-eclampsia and FGR [108–110]. An early small observational study (44 women) reported positive
correlation between sEng and sFlt-1 concentrations (Pearson 0.653; P<0.05) with significantly higher sEng concen-
trations in FGR pregnancies compared with controls. However, concentrations of sEng were lower in FGR compared
with pre-eclampsia pregnancies [111]. More recent study showed that sEng is strongly correlated with sFlt-1/PlGF
ratio with higher concentrations observed in FGR (OR: 2.28, 95% Cl: 1.55–3.4 and 2.38, 95% CI: 1.64–3.44 for sEng
and sFlt-1/PlGF, respectively) [112]. Another study, however, did not find any significant association between mater-
nal concentrations of sEng and time of delivery in pregnancies complicated by FGR [113]. The current evidence for
the utility of sEng for the prediction of SGA/FGR is limited.

Cell-free fetal DNA
Circulating cell-free fetal DNA (cffDNA) is used for aneuploidy screening, determination of fetal red cell antigen
status, fetal sex, and screening for single-gene disorders [114–116]. cffDNA concentrations increase with gestational
age and significantly higher levels are seen pregnancies complicated by placental dysfunction [117,121]. The data
however from pregnancies complicated by FGR are conflicting, with some studies suggesting an increase [117–119]
in cffDNA concentrations while others showing a decrease [120–122] compared with controls.

Lower median cffDNA fractions were observed only in women with early but not late FGR [121,122], suggesting
that the lower fetal fraction could be the consequence of a smaller placental mass. However, other studies report that
cffDNA concentrations are increased in pregnancies complicated by FGR with abnormal umbilical artery Doppler
velocimetry raising the possibility that fetal DNA release is associated more with chronic fetal hypoxia than with
fetal size [123]. Caramelli et al. [118] reported a more than twofold increase in cffDNA concentration in pregnancies
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Table 2 Circulating miRNAs in FGR

miRNA type Expression in FGR/SGA References

miR-210 Increased [140]

miR-21 Increased [140]

miR-424 Increased [140]

miR-199a Increased [140]

miR-20b Decreased [137]

miR-942-5p Decreased [137]

miR-324-3p Decreased [137]

miR-127-3p Decreased [137]

miR-223-5p Decreased [137]

miR-17-5p Decreased [134]

miR-146a-5p Decreased [134]

miR-574-3p Decreased [134]

miR-221-3p Decreased [134]

miR-374a-5p Increased [136]

Let-7d-5p Increased [136]

miR-191-5p Increased [136]

miR-107 Decreased [136]

miR-30e-5p Decreased [136]

miR-4454+7975 Decreased [136]

miR-27b-3p Increased [138]

miR-16-5p Increased [138]

miR-103-3p Increased before 32 weeks of gestation
Decreased between 32 and 37 weeks of gestation

[138]

miR-107-3p Increased before 32 weeks of gestation
Decreased between 32 and 37 weeks of gestation

[138]

miR-346 Increased [139]

miR-582-3p Increased [139]

miR-16-5p Increased [135]

miR-20a-5p Increased [135]

miR-146a-5p Increased [135]

miR-155-5p Increased [135]

miR-181a-5p Increased [135]

miR-195-5p Increased [135]

miR-145-5p Increased [135]

miR-342-3p Increased [135]

miR-574-3p Increased [135]

miR-1-3p Increased [135]

miR-20b-5p Increased [135]

miR-126-3p Increased [135]

miR-130b-3p Increased [135]

miR-499a-5p Increased [135]

complicated by FGR and abnormal uterine artery Doppler waveforms when compared with controls [117]. In another
analysis, Smid et al. [119] showed that maternal plasma fetal DNA concentration in pregnancies complicated by FGR,
median cffDNA concentrations were higher compared with controls (308.1 vs. 74.8 g.e./ml).

Poon et al. [124] measured plasma cffDNA from 1949 singleton pregnancies at 11–13 weeks of gestation and found
that although concentrations were inversely related to maternal weight and UtA-PI, compared with controls, there
was no difference with pregnancies complicated by SGA/FGR [124]. Other observational studies have also reported
the lack of difference between cffDNA concentrations in FGR and control cohorts [125].

In a retrospective cohort study of 4317 singleton pregnancies [120], the fetal fraction was inversely correlated with
MAP, UtA-PI, and positively associated with maternal PAPP-A and PlGF concentrations. A lower fetal fraction was
associated with a higher risk of preterm FGR. Given the limited and inconsistent data regarding the relationship
between maternal cffDNA concentrations and SGA/FGR, its utility as a reliable predictive marker remains unclear
and further research is required [126–128].
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Table 3 Essential miRNAs in pre-eclampsia with or without FGR

Pre-eclampsia with FGR Pre-eclampsia without FGR

miR-210 miR-144

miR-17 miR-152

miR-16 miR-182

miR-21 miR-29a

miR-103 miR-29b

miR-181a miR-24

miR-130b-3p miR-26a

miR-155 miR-299

miR-181a miR-342-3p

miR-20a miR-215

miR-20b miR-650

miR-126 miR-423-5p

miR-519a miR-629-5p

miR-141 miR-18a

miR-194 miR-195

miR-520a-5p miR-376c

miR-525

miR-146a-5p

miR-221-3p

miR-574-3p

miR-346

miR-582-3p

miR-126

MicroRNAs
MicroRNAs (miRNAs) are small nonprotein-coding, single-stranded RNA molecules of up to 19–25 nucleotides.
They influence post-transcriptional gene expression and help regulate cell development, differentiation, proliferation,
and apoptosis [129,130]. Because they are relatively stable and resistant to degradation by temperature and pH changes
circulating miRNAs have potential as biomarkers for the prediction of adverse placenta-related outcomes [131].

The placenta expresses many generic as well as placenta-specific miRNAs, which influence angiogenesis as well
as trophoblast differentiation, proliferation, invasion, and migration [132]. Placentally derived miRNAs are exported
from syncytiotrophoblast cells into the maternal circulation via exosomes [133]. Table 2 [134–140] details currently
known circulating miRNAs associated with FGR.

miR-210, a hypoxia-induced miRNA is expressed in different subtypes of placental trophoblasts and its deficiency
is causally related to pre-eclampsia and placental adaptation to maternal hypoxia [141–143]. In pregnancies com-
plicated by FGR, decreased expression of some placenta-specific miRNAs (miR-21, miR-16, miR-516b, miR-518b,
miR-520h, miR-526b, miR-515-5p, miR-519d, and miR-1323) [144,145] have been reported. Table 3 lists the essen-
tial miRNAs in pre-eclampsia with or without FGR. miR-16 (OR: 4.13, 95% CI: 1.42–12.05) and miR-21 (OR: 2.43,
95% CI: 0.93–6.37), in particular, are strongly associated with birth of an SGA infant [144]. However, in another
study, although four specific miRNAs (has – miR-518b, has – miR-1323, has – miR-520h, and has – miR-519d) were
confirmed as FGR-associated, placenta-specific miRNAs, there was no difference in maternal plasma concentrations
between FGR and uncomplicated pregnancies [145].

Whitehead et al. [140] found three- to sixfold increased concentrations of miR-210, miR-424, miR-21, miR-199a,
and miR-20b in women with severe preterm FGR, which correlated with ultrasound Doppler velocimetry. On
the other hand, higher circulating maternal serum concentrations of miR-20b-5p, miR-324-3p, miR-223-5p, and
miR-127-3p in the second trimester were associated with lower odds of having an SGA infant [137]. Hromad-
nikova et al. [146] showed that in pregnancies complicated by FGR, significantly decreased concentrations of
seven miRNAs were seen: miR-100-5p, miR-125b-5p, miR-199a-5p, miR-17-5p, miR-146a-5p, miR-221-3p, and
miR-574-3p. Kim et al. [136] identified two unique miRNAs (hsa-miR374a-5p and hsa-let-7d-5p) that were ex-
pressed in significantly higher concentrations in plasma of women with SGA infants, indicating their potential
for early prediction of SGA/FGR. Another recent study by Hromadnikova et al. [135] assessed the association of
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29 cardiovascular disease-associated miRNAs in first trimester maternal blood samples and found that concentra-
tions of six miRNAs were significantly increased in SGA/FGR pregnancies: miR-16-5p, miR-20a-5p, miR-146a-5p,
miR-155-5p, miR-181a-5p, and miR-195-5p. A combination of four miRNAs (miR-1-3p, miR-20a-5p, miR-146a-5p,
and miR-181a-5p) detected almost 76% of SGA infants, while a combination of seven miRNAs (miR-16-5p,
miR-20a-5p, miR-145-5p, miR-146a-5p, miR-181a-5p, miR-342-3p, and miR-574-3p) detected approximately 43%
of FGR infants [135].

Tagliaferri et al. [138] evaluated a group of hypoxia-regulated miRNAs and found elevated circulating concentra-
tions of miR-16-5p, miR-103-3p, miR-107-3p, and miR-27b-3p in early FGR (<32 weeks of gestation), while reduced
concentrations of miR-103-3p and miR-107-3p were noted in late FGR (measured between 32 and 37 weeks of gesta-
tion). Kim et al. [136] assessed 50 miRNAs profiles across gestation in SGA (defined as BW < 5th percentile) pregnan-
cies and found significantly increased maternal plasma concentrations of miR-374a-5p, let-7d-5p, and miR-191-5p
and decreased concentrations of miR-107, miR-30e-5p and miR-4454+7975. Of these miRNAs, miR-374a-5p and
let-7d-5p showed reasonable predictive value for SGA when evaluated individually (AUROC: 0.71, 95% CI: 0.56–0.86
and 0.74, 95% CI: 0.55–0.93), respectively, with improvement when both were combined (AUROC 0.772, 95% CI:
0.601–0.943) [136]. Although there are some specific miRNAs that are associated with placental dysfunction, which
may have a role to play for either the prediction or diagnosis of FGR, their utility thus far, as reliable clinical biomarkers
is uncertain.

Conclusions
Early prenatal identification of infants at high risk of SGA/FGR or adverse perinatal outcomes such as stillbirth,
neonatal morbidity, and mortality is important because it potentially allows decisions regarding intensity of antenatal
surveillance, timing of birth, model of maternity care, parental counselling, and co-ordination of neonatal resources
to be made. Thus, the attraction of a simple and acceptable screening test early in pregnancy is obvious. However, there
are several circulating biomarkers that are clearly associated with adverse outcomes, none have yet, either alone or
in combination, been shown to be sufficiently reliable to be used in clinical practice [147]. Some, such as PlGF [148]
and sFlt-1 [149] show the most promise but require further validation to determine their screening performance.
More importantly, however, it is important to determine if a policy of screening for disorders related to placental
dysfunction results in improvements in clinical outcomes.
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