
Clinical Science (2023) 137 181–193
https://doi.org/10.1042/CS20220594

Received: 31 August 2022
Revised: 15 December 2022
Accepted: 11 January 2023

Accepted Manuscript online:
11 January 2023
Version of Record published:
27 January 2023

Research Article

Screening for in vitro systematic reviews: a
comparison of screening methods and training of a
machine learning classifier

Emma Wilson1, Florenz Cruz2, Duncan Maclean3, Joly Ghanawi4, Sarah K. McCann2, Paul M. Brennan1,
Jing Liao1, Emily S. Sena1 and Malcolm Macleod1

1Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, U.K.; 2Berlin Institute of Health at Charité-Universitätsmedizin Berlin, QUEST Center, Berlin, Germany;
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Objective: Existing strategies to identify relevant studies for systematic review may not per-
form equally well across research domains. We compare four approaches based on either
human or automated screening of either title and abstract or full text, and report the training
of a machine learning algorithm to identify in vitro studies from bibliographic records. Meth-
ods: We used a systematic review of oxygen–glucose deprivation (OGD) in PC-12 cells to
compare approaches. For human screening, two reviewers independently screened studies
based on title and abstract or full text, with disagreements reconciled by a third. For auto-
mated screening, we applied text mining to either title and abstract or full text. We trained
a machine learning algorithm with decisions from 2000 randomly selected PubMed Cen-
tral records enriched with a dataset of known in vitro studies. Results: Full-text approaches
performed best, with human (sensitivity: 0.990, specificity: 1.000 and precision: 0.994) out-
performing text mining (sensitivity: 0.972, specificity: 0.980 and precision: 0.764). For title
and abstract, text mining (sensitivity: 0.890, specificity: 0.995 and precision: 0.922) outper-
formed human screening (sensitivity: 0.862, specificity: 0.998 and precision: 0.975). At our
target sensitivity of 95% the algorithm performed with specificity of 0.850 and precision of
0.700. Conclusion: In this in vitro systematic review, human screening based on title and
abstract erroneously excluded 14% of relevant studies, perhaps because title and abstract
provide an incomplete description of methods used. Our algorithm might be used as a first
selection phase in in vitro systematic reviews to limit the extent of full text screening required.

Introduction
Experiments conducted in vitro play an invaluable role in the research pipeline. In vitro models, including
3D organoids, have recently attracted attention as methods which might reduce and eventually replace the
use of animals in research [1]. However, challenges in translating findings from in vitro research to the
clinic may hinder efforts to replace animal research. Poor reporting of measures to reduce the risk of bias
in in vitro studies may contribute to this translational challenge [2], and research which systematically
identifies such issues [3] may lead to improvements in the design, conduct and reporting of in vitro
research, and, thereby, their adoption as alternatives to animal research.

Systematic review is a research method used to summarise and critically appraise all available published
evidence related to a pre-defined research question [4]. The use of systematic review to evaluate evidence
from clinical trials has led to significant improvements in clinical trial design, conduct and reporting [5].
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The application of systematic review methodologies to in vivo animal studies has, similarly, identified opportunities
for improvement [6,7]. More recently, reviews of in vitro data have suggested similar problems may be prevalent
there [2,3,8].

Tools and guidance developed by Cochrane have contributed substantially to improving the methodological qual-
ity of clinical systematic reviews [9–12]. Similar guidance has been articulated for systematic reviews of animal studies
including a protocol template [13], the CAMARADES reporting quality checklist [14], the SYRCLE risk of bias check-
list [15], and the development of a Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA)
extension for such reviews is ongoing [16]. These adapted guidelines reflect important differences between clinical
and animal studies, including study size (many human patients per study versus few laboratory animals per study)
and heterogeneity between studies (lower in human than in animal studies).

It is possible that the methods used to plan and conduct in vitro systematic reviews must be further adapted. One
key feature is the process of searching and screening for relevant publications. In a typical systematic review of animal
data, search results from multiple databases are combined, duplicate citations are removed, and titles and abstracts are
screened for relevance. General guidance is that the screeners should, if anything, be over-inclusive at this stage (i.e.
perform with high sensitivity, perhaps at a cost in specificity [17,18]). This stage is followed by the full-text screening
to determine eligibility.

In a pilot systematic review of in vitro data conducted in 2019 (unpublished), we found an unexpectedly low yield
of included studies and hypothesised that title and abstract ([TiAb]) screening may not be sufficiently sensitive. Where
animals and in vitro experiments were reported in the same publication, we were concerned that a full summary of
in vitro methods and results may not always be included in the abstract. This would lead to studies being incorrectly
excluded at the [TiAb] screening phase. Further, as systematic searches are often conducted on [TiAb] text – espe-
cially where relevant field tags such as MeSH terms may not be available – relevant in vitro studies may not even be
identified in literature searches specifically designed to identify in vitro-related terms. These concerns are consistent
with a recent finding that, in studies where multiple outcomes were investigated, negative findings were less likely to
be included in the abstract text and, therefore, less likely to be included in systematic reviews [19]. In our view, for
the purposes of most systematic reviews, screening approaches should perform with a sensitivity of at least 95%, that
is, they should wrongly exclude fewer than 1 in 20 relevant studies.

One approach to this problem would be to conduct broader systematic searches to capture any article that might
contain an in vitro experiment and to screen studies for relevance on the basis of the full-text PDF article. However,
this would be significantly burdensome, in a context where a major limitation of current methodologies is the time
and effort required to complete a systematic review. This is especially true in preclinical systematic reviews, which
tend to screen and include a higher number of publications compared with clinical reviews.

Recently, automation tools have been developed to accelerate parts of the systematic review process including
screening [20–22], PICO extraction [23,24] and risk of bias assessment [25–27]. These tools allow researchers to
conduct reviews more quickly and without requiring as much human effort; we wondered if automation tools might
address the issue of incomplete [TiAb] descriptions.

Aims
Here, we compare the performance of four different screening methods – (i) human screening based on [TiAb] only,
(ii) human screening based on full text, (iii) automated screening based on [TiAb] only and (iv) automated screening
based on full text – in an exemplar systematic review of ischaemic injury induced by oxygen–glucose deprivation in
PC-12 cells. Then, we train a machine learning algorithm, developed specifically for systematic review screening, to
identify studies which report the results of in vitro experiments.

Methods
Method 1: Comparison of screening methods in an example systematic
review
The study protocol for the comparison of screening methods is available at https://osf.io/cq48b/. Methods of analyses
were not described in the protocol, and deviations from the protocol are described in Appendix 1.

Search strategy
We conducted a systematic search of PubMed (accessed via NCBI) and Embase (accessed via Ovid) on 16 March 2020.
Full search terms are given in Appendix 2(i) and included a series of terms to identify the experimental approach (e.g.
‘oxygen–glucose deprivation’), the condition modelled (e.g. ‘brain ischaemia’) and the experimental materials (e.g.
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‘PC-12’). An error in implementing the search terms led to our combining the first two of these phrases with ‘OR’
rather than ‘AND’ (the errors are underlined in Appendix 2(i)) resulting in the retrieval of many more studies than
had the search been implemented as intended. We did not notice this error until all studies had been screened, and
we provide a primary analysis of the search as implemented, with a secondary analysis of the search as was intended.

We imported each search result into EndNote X8, created a single XML file of all search results, and removed
duplicate citations using the Automated Systematic Search Deduplicator (ASySD) tool [28]. This performs automatic
deduplication with limited human input and was designed specifically for use in preclinical (but not necessarily in
vitro) systematic review projects. We imported our deduplicated search results to EndNote X8 and retrieved full text
PDFs using EndNote’s in-built ‘find full text’ feature, then converted PDFs to plain text files using the PDF to text
function from XpdfReader (https://www.xpdfreader.com/).

Eligibility criteria for analysis
We included records which had both an English-language abstract and an English-language full text. We excluded
conference abstracts, records with no abstract, records with no English-language full text, records where a full text
was not retrieved by EndNote X8, and records which did not have a machine-readable full text.

Systematic review Inclusion and exclusion criteria
The screening task was to identify controlled experiments exposing PC-12 cells to oxygen–glucose deprivation (OGD)
in vitro and reporting effects on cell death or survival (MTT assay, LDH assay, or cell counting), whether investigating
the effects of OGD or the impact of interventions (e.g. pharmacological and genetic) intended to modulate the effects
of OGD. There was no limitation by publication date.

Human screening
For human screening, we used the Systematic Review Facility (SyRF) web application [29] to screen studies against
our inclusion criteria. A pool of six reviewers were allocated records in random order, and each record was screened
by at least two reviewers. Where there was disagreement, the record was automatically presented to a third reviewer
for arbitration. All decisions were taken blinded to the decision(s) of other reviewers, and whether the task was initial
screening (i.e. ‘reviewer 1’ or ‘2’) or reconciliation of conflicting opinions (‘reviewer 3’). Reviewers first screened each
study based on [TiAb], and then, in the same session, were asked to screen the study again based on the full-text PDF.
Therefore, each publication was screened twice, first on the basis of [TiAb] and then on the basis of the full text.

Automated screening using regular expressions
For automated screening, we used the R programming language and Regular Expressions (RegEx). A regular expres-
sion is a sequence of characters which can be used to search for and match certain patterns within text [30]. We
developed a RegEx to identify relevant publications by matching terms such as ‘oxygen–glucose deprivation’, ‘OGD’,
‘oxygen and glucose deprivation’ or ‘deprived of oxygen and glucose’. The full RegEx is given in Appendix 3. We then
used the AutoAnnotation R package [31] to count the number of occurrences of regular expressions matches in the
[TiAb] or full text. One match meant that some form of the term oxygen–glucose deprivation was mentioned only
once within the text, two matches meant that some form of the term was mentioned twice, etc.

The gold standard dataset
To create a dataset with the highest proportion of true decisions, we reasoned that reconciled human full-text screen-
ing decisions were likely to be most complete. Where there was disagreement between the human full-text decision
and another decision, then that study was evaluated by a senior experienced reviewer, and where they were not in
agreement with the reconciled human full-text screening decision, their re-evaluated decision was used as the gold
standard.

Evaluation of screening performance
We assessed the performance of each approach by calculating the sensitivity, specificity and precision, characteris-
ing the ‘purity in retrieval performance’ [32], (number of true positive decisions divided by the number of positive
decisions) using the Caret R package [33].

Assessing best performance
Perfect performance is achieved when sensitivity and specificity are both 100%. A total of 100% sensitivity is achieved
when all relevant publications are included during screening, and 100% specificity is achieved when all non-relevant
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publications are excluded during screening. We calculated the Euclidian distance (d) between the performance
achieved and this optimum performance as

d =
√(

1 − Sensitivity
)2 + (

1 − Specificity
)2

and the screening method with the smallest value of d was considered optimal. For the automation approaches, we
used the same approach to calculate the point on the receiver operating characteristic (ROC) curve closest to peak
performance. As a second measure of performance, we used the area under the ROC curve.

Method 2: Developing a trained machine learning classifier for in vitro
systematic review screening
The study protocol for the development of a machine learning classifier is available at https://osf.io/bjsp2/. Deviations
from the protocol methods are described in Appendix 1.

Definition of in vitro research
For the purposes of developing this screening tool, we define in vitro research as involving the manipulation of
biomolecules (including enzymes, genes and genomes), cells, tissues, or organs in a controlled, artificial environment
such as a Petri dish, well or test tube.

Our definition includes samples which may also be described as ex vivo (tissues originating from experimental
animals) if the experimental intervention under investigation was applied to the specimen after derivation rather
than being applied in vivo pre mortem or before tissue collection.

Generation of a screened dataset
Using the PMC API, we downloaded 2,000 randomly sampled records from PubMed Central (PMC) on the 19 De-
cember 2019 [34]. We used no search terms, filters or restrictions to generate this sample.

We uploaded all 2000 PMC records to the SyRF web application for full text screening based on our definition
of in vitro research, given above. Each study was screened by two independent reviewers and disagreements were
reconciled by a third independent reviewer.

We then supplemented our 2000 screened records with 453 known in vitro studies previously screened as part
of the Nature Publication Quality Improvement Project (NPQIP) study [2]. The merged dataset included a unique
identifier for each study, the [TiAb] text and a binary flag indicate the include or exclude screening decision.

Training the machine learning algorithm
We used the binary screening decisions (‘include’ or ‘exclude’) from our merged dataset to train a machine learning
algorithm hosted by our collaborators at The Evidence for Policy and Practice Information and Co-ordinating Centre
(EPPI-Centre), University College London. The algorithm uses a tri-gram ‘bag-of-words’ model for feature selection
and implements a linear support vector machine (SVM) with stochastic gradient descent (SGD), as described in
Approach 1 used by Bannach-Brown et al. [21]. The algorithm associates the training set screening decisions with
features it identifies in the relevant [TiAb] text, and uses these features to predict the inclusion or exclusion status for
new unseen studies.

The dataset was randomly split into training set (80%) and validation set (20%) to ensure the algorithm performed
optimally.

Error correction and retraining classifier
After algorithm training, we performed a round of error correction as described by Bannach-Brown et al. [21]. We
identified the 100 studies with the largest discrepancy between human screening and algorithm score, and had hu-
mans rescreen these studies to identify if there had been a human error during screening. We then retrained the
machine learning algorithm using the set of 2453 screened records thus corrected.

Results
Performance of different screening methods for case study: in vitro OGD
systematic review
Search results
Figure 1 shows the PRISMA flow diagram. Our systematic search as implemented retrieved a total of 9952 records
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9,952 records iden�fied 
from searches

PubMed = 4,219
Embase = 5,733

6,380 unique records

5,362 full-texts retrieved

3,572 duplicate records removed

1,018 records excluded
No available full-text = 1,018

5,172 records included in 
analysis

190 records excluded
Conference abstract = 119
PDF not machine-readable = 42
No abstract text = 29

Figure 1. Flowchart of records retrieved from systematic searches, full texts retrieved, and records included in screening

comparison analysis

(4219 from NCBI PubMed and 5733 from Ovid Embase). Following deduplication, we identified 6380 unique records.
We were able to retrieve full-text PDFs for 5362 (84%) of the unique records identified from our search. From this,

we included a total of 5172 records in our analysis. We excluded 119 records which where conference abstracts, 42
records where the PDF was not machine-readable, and 29 records which had no abstract.

Performance of different screening methods
Human reviewers identified 282 of 5172 records for inclusion based on [TiAb], and 318 of 5172 when screening
against full text. The number of RegEx matches was between 0 and 15 for [TiAb], and between 0 and 281 for full text
(Figure 2). We then calculated the sensitivity and specificity at each RegEx threshold (i.e. including studies based on N
RegEx matches, with n = 1–281) and set thresholds for inclusion of 1 match for [TiAb] screening and two matches for
full-text screening (Figure 3). Finally, we re-examined those records where there was a discrepancy between human
full-text screening and one of the other screening approaches. This focussed review identified three records which
had been omitted by human full text screening but identified by the full-text RegEx, and two records included in error
by human full-text screening. This gave 319 included studies (6.2% of 5172).
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Figure 2. Histograms showing the number of studies against the number of regex matches with (A) title and abstract and

(B) full text.

Histograms showing the number of studies against the number of regex matches with (A) title and abstract and (B) full text.

Figure 3. Receiver Operating Characteristic (ROC) curve showing the performance of all screening types at all thresholds

Horizontal dashed lines show 99% (0.99) and 95% (0.95) sensitivity. FPR = false positive rate. Inset shows the top left of the graph

in more detail.
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Table 1 Performance of different screening methods

Screening
method

Number of
true
positives

Number of
true
negatives

Number of
false
positives

Number of
false
negatives Sensitivity Specificity Precision

Euclidian
distance (d) AUC

Human
Title/Abstract

275 4846 7 44 0.862 0.998 0.975 0.138 0.930

Human Full text 316 4851 2 3 0.990 1.000 0.994 0.009 0.995

RegEx
Title/Abstract

284 4829 24 35 0.890 0.995 0.922 0.110 0.944

RegEx Full text 310 4757 96 9 0.972 0.980 0.764 0.034 0.986

A total of 5172 records were screened using each method. For sensitivity, specificity and precision, the optimal performance value is 1. For RegEx
title/abstract, the optimal threshold shown is 1 match. For RegEx full text, the optimal threshold shown is two matches. A lower Euclidian distance (d)
indicates better performance.

Compared with this gold standard, human [TiAb] screening correctly identified 275 of 319 studies, and wrongly
included an additional seven studies (d = 0.138). Human full-text screening correctly identified 316 of 319 studies,
wrongly including two studies (d = 0.009). RegEx of [TiAb] correctly identified 284 of 319 studies and wrongly
included 24 studies (d = 0.110), and RegEx of full text (with an optimal threshold of two matches) correctly identified
310 of 319 studies, wrongly including 96 (d = 0.034) (Table 1). Area under the curve (AUC) was 0.944 for RegEx
applied to [TiAb] and 0.986 for RegEx of full text.

A total of 1060 citations were excluded from the full-text analysis because we were unable to retrieve (1018) or
to process (42) the full text. Within this additional corpus, human [TiAb] and RegEx [TiAb] screening, respectively,
identified 57 and 66 additional studies which appeared relevant. Without access to the full text, we cannot determine
how many of these might be false positives, and given the sensitivity of these approaches in the main cohort of studies,
it is likely that further relevant studies will have been excluded.

Analysis of the ‘intended’ search strategy
The error in implementing our search strategy had a profoundly beneficial effect on our ability to detect relevant
articles. On 5 May 2022, we searched NCBI PubMed and Ovid Embase using our intended search strategy (Appendix
2(ii)), limited by date of record creation to 16 March 2020 (to align with the initial search), and retrieved 910 unique
records (438 from NCBI PubMed and 700 from Ovid Embase, compared with 4219 and 5733, respectively, in the
‘incorrectly’ implemented search). Remarkably, only 133 (or 42%) out of the 319 studies we identified using our
‘incorrect’ search were identified by our planned search strategy. If we had used this approach, and if subsequent
human [TiAb] had been conducted, the performance of human [TiAb] screening would have been overinflated, giving
an apparent sensitivity of 0.925 and specificity of 0.999.

Training a machine learning classifier for in vitro systematic review
screening
Dataset of screened studies
Of the 2000 articles randomly selected from PMC, after full text screening we judged 296 to describe in vitro research.
Combining these with 453 in vitro studies from NPQIP, gave a complete dataset with 749 included studies and 1704
excluded studies (total n=2453). We randomly divided these into training (n=1962) and validation (n=491) sets.

Machine learning performance
We trained the machine learning algorithm on title and abstract [TiAb] in the training set, and then applied the
algorithm to the validation set, attributing each citation with a decimal score between 0 and 1, where higher scores
reflect a stronger machine prediction of inclusion. We then established a threshold such that 95% of relevant studies
in the validation set would be retrieved (i.e. sensitivity = 0.950 or higher). A machine score threshold for inclusion
of 0.25 (Figure 4) gave specificity of 0.824 at sensitivity of 0.951 and precision of 0.692 (Table 2). We then checked
human decisions for the 100 citations with greatest mismatch between human decisions and machine predictions. A
total of 35 citations had the human decision reversed, with 31 citations included by human decision now excluded,
and four citations excluded by human decision now included. Retraining on this revised corpus gave specificity of
0.850 (increase in 0.026) at sensitivity of 0.954, and precision of 0.700 (increase in 0.008) (Table 2), with a machine
score threshold for inclusion of 0.29 (Figure 4).
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Figure 4. ROC curve showing both the initial and corrected performance of the machine learning algorithm at all thresholds

The vertical dashed lines show the optimal threshold (0.25 for the initial performance and 0.29 for the corrected performance); FPR,

false positive rate.

Table 2 Performance of the trained machine learning algorithm before and after error correction

Sensitivity Specificity Precision

Initial 0.951 0.824 0.692

Corrected 0.954 0.850 0.700

Discussion
Screening in in vitro systematic reviews
In typical biomedical systematic reviews, a systematic search of [TiAb] text retrieves potentially relevant articles,
which are then screened by two independent reviewers, and any disagreements reconciled by a third reviewer. The
broader the terms of the systematic search the higher will be the sensitivity, but because of the inevitably high total
number of citations returned, this will come at the cost of an increased burden of human screening. Here, we show that
in a systematic review of the effects of OGD in PC-12 cells, human screening of [TiAb] was the least sensitive (0.862)
of four approaches tested and would have wrongly excluded around one in every seven relevant manuscripts. Human
full text screening performs with a sensitivity of 0.990, wrongly excluding only 1 in 1000 manuscripts. However,
because of the time involved, this is not a feasible approach for most systematic reviews.

While we did not formally compare the time taken by human reviewers and the RegEx algorithms, there is a sub-
stantial reduction in time taken, even accounting for the requirement to develop the regular expressions and convert
PDF to text. Dual human screening of 5000 [TiAb], even at 30 s per record, would take over 80 h, and full text screen-
ing around 800 h, compared with less than one day for the RegEx approach.
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The RegEx approach achieved higher sensitivity than human screening when applied to [TiAb] text. For full text,
sensitivity was slightly lower (0.972) than human screening (0.990). For both RegEx approaches, specificity was lower
than human screening ([TiAb]: 0.995 versus 0.998: full text 0.980 versus 1.000). For contrast with human [TiAb]
screening, RegEx full-text screening identifies an extra 35 studies (13%) which should be included, at a cost of in-
creasing the number included in error from 7 to 96. This could, therefore, serve as a useful first step before human full
text screening, which could take place at the data extraction stage. However, the usefulness of RegEx full-text screen-
ing will be heavily dependent on the quality of that RegEx, and we strongly advise researchers carefully to consider
synonyms, alternate spellings and different combinations of target words or phrases.

The benefits of this approach were highlighted, inadvertently, by our mis-formed search strategy. Our intended
search would only have returned 42% of the relevant articles identified in the search as implemented, for a maximum
sensitivity of 0.42 if subsequent citation screening performed perfectly. While the work of human full text screening,
these 910 citations would be less than that required for the 5172 citations included by our broader search, combining
that broader search with RegEx applied to full text would achieve sensitivity of 0.972 while requiring human full text
review of 406 of 5172 citations.

Automation in in vitro systematic reviews
In the first stage, we applied automated full text screening to the results of a search strategy which largely interrogates
title and abstract. It is, therefore, likely that additional relevant publications will have been omitted from those search
returns, for the same reason as they were not detected by our [TiAb] RegEx. This is confirmed by the very poor
performance of what we had considered to be a well-constructed search strategy.

While conceptually attractive, applying the full-text RegEx approach to all of NCBI PubMed is currently impracti-
cal, requiring access to the full text of over 30 million scientific publications. We, therefore, explored an intermediate
approach, where we trained a machine learning algorithm to detect reports of in vitro research, that these might then
be interrogated by the full-text RegEx. In a random sample of PubMed Central records, 14.8% included reports of in
vitro research (based on human full text screening), and the in vitro algorithm, applied to Title and Abstract only,
performs with sensitivity of 0.954. However, across a corpus of 30m publications, the specificity of 0.85 suggests that
of 8.1m publications labelled as reporting in vitro research, 3.8m would have been wrongly included, and 200,000
would have been excluded in error.

The performance of the full text RegEx in unselected reports of in vitro research is not known, but we estimate a
prevalence for inclusion of approximately 0.01% (∼400 from ∼ 4 million). Estimating sensitivity and specificity in this
context would require full text screening of several hundreds of thousands of articles and is not currently practicable.
However, performance of this approach against the ‘gold standard’ performance identified here, may be feasible. We
think that some combination of broad but ‘conventional’ search strategies, combined with algorithmic identification
of the in vitro literature and RegEx interrogation of selected full-text articles, will prove an effective approach.

Limitations
Due to lack of full text availability, it was not possible for us to generate a gold standard dataset of all the studies which
should be included in the complete corpus of 6232 studies (5172 included in the main analysis + 1060 additional
studies). Examining [TiAb] of these additional studies identified an additional 66 potentially relevant studies, but we
were not able to confirm this because we were unable to access the full texts. Given a sensitivity for the [TiAb] RegEx
of 0.890 as an estimate suggests an additional 10 studies not included by the TiAb RegEx. Taken together, we estimate
the total number of relevant studies in the corpus of 6232 to be 76 more than we have identified, suggesting that there
are around 395 relevant studies in that corpus.

We can, therefore, provide a rough estimats of the overall sensitivity of various approaches; [TiAb] approaches
can be applied to all 6232 and we predict would have identified 332 of the estimated total of 395 studies (sensitivity:
0.841). RegEx [TiAb] would identify 350 (sensitivity: 0.886). Because full-text approaches can only be used where
we have access to full text, the sensitivity falls from 316 of 319 to 316 of 395 (human, sensitivity: 0.800) and from
310 of 319 to 310 of 395 (RegEx, sensitivity: 0.785), respectively. Our preferred approach is, therefore, to use full-text
RegEx where full text is available, supplemented by [TiAb] RegEx when only abstracts are available. In the example
provided, this approach identifies 376 studies (310 from RegEx of full text and 66 from RegEx of [TiAb] when only
[TiAb] available). With an estimated 395 relevant studies this represents a sensitivity of 0.952.

One limitation of the RegEx-based approach is that – unlike human screening – it cannot be used where files are
not machine readable or where no abstract is provided.
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A limitation of the machine learning algorithm for detecting in vitro research is that it was trained on only
English-language [TiAb]s, and so performance in texts in other languages is not known. Excluding non-English lan-
guage texts may introduce bias and reduce the generalisability of systematic reviews; although in clinical systematic
reviews this has been found to have little or no impact on the conclusions of the review [35], we do not yet know the
extent or the impact of this potential bias in reviews of in vitro experimental data. The algorithm may also perform
poorly in contexts where cell preparations are used as therapies in human studies, for instance CAR-T cells in cancer
or stem cell transplantation in neurodegenerative diseases.

Conclusion
Firstly, we show that in an in vitro systematic review, human screening is based on title and abstract erroneously
excluded 14% of relevant studies. This may be due to an incomplete description in the abstract of all experiments
described in a publication, and this may be more likely in the pre-clinical literature, where several experiments are
often presented in a single publication. We then describe a machine learning algorithm which detects publications
reporting in vitro research with high sensitivity. We propose this tool may be used as a first selection phase in in vitro
systematic reviews to limit the extent of full-text screening which our first finding suggests is necessary.

Clinical perspectives
• Systematic reviews of in vivo animal experimental data have made important contributions to the

evidence-based translation of findings from the laboratory to human clinical trials, and has informed
clinical trial design.

• Equally, in vitro research makes key contributions to the development of new treatments and thera-
pies.

• Recently, we have seen an increase in the number of systematic reviews investigating in vitro research
relevant to human health.

• However, the nature of the in vitro literature may be different to in vivo, and it is important to determine
where systematic review methodologies as currently used can be simple applied or may require
adaptation.

• Here, we show that title and abstract screening has low sensitivity to identify relevant in vitro pub-
lications, and we make recommendations to optimise search and screening strategies for in vitro
systematic reviews.
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Appendix 1 Deviations from protocol

Method 1: Comparison of screening methods in an example systematic review

• Full-text PDF retrieval – Due to time constraints, we did not conduct hand searching for PDFs not retrieved by EndNote X8.

• Inclusion and exclusion criteria for screening – Due to the RegEx being written in English, we could only include records
with an English-language full text in our analysis. However, our search did not retrieve any records which had to be excluded
solely due to this reason.

• Regular expressions – Our protocol included both a RegEx for OGD and PC-12 cells. However, we only used the OGD
RegEx in our analysis.

Method 2: Developing a trained machine learning classifier for in vitro systematic review screening

• Risk of bias assessment – We initially planned to additionally develop a tool to identify risk of bias reporting (randomisation,
blinding and sample size calculation) but did not due to time constraints and a lack of studies reporting randomisation, blind-
ing and sample size calculation. Since publishing our protocol, such a tool has been developed for in vivo research (Wang et
al., 2021b). However it has not yet been validated on in vitro research.

• Supplemented data from NPQIP – We originally stated we would supplement our machine learning training set with 640
records from NPQIP. This number was written in error, as only 453 records fit our definition of in vitro research.

Appendix 2 Systematic search terms

(i) The incorrect strategy implemented in error: fragments containing errors are underlined
NCBI PubMed
(‘oxygen–glucose deprivation/reoxygenation’ OR ‘oxygen–glucose deprivation’ OR ‘OGD’ OR ‘OGD/R’ OR ‘oxygen and
glucose-deprived model’ OR ‘glutamate’ OR ‘N-methyl-D-aspartate’ OR ‘NMDA’ OR ‘H2O2’ OR ‘hydrogen peroxide’ OR
‘sodium nitroprusside’ OR ‘SNP’ OR ‘brain ischaemia’ OR ‘brain ischaemia’ OR ‘brain ischemic’ OR ‘brain infarctions’ OR
‘brain infarction’ OR ‘cerebral infarction’ OR ‘cerebral infarction’ OR stroke OR ‘ischemic stroke’ OR ‘neuroprotection’) AND
‘PC12’ OR ‘PC-12’ OR ‘PC 12’
Ovid Embase
Oxygen–glucose deprivation reoxygenation or oxygen–glucose deprivation or OGD or OGDR or oxygen and glucose-deprived
model or glutamate or N-methyl-D-aspartate or NMDA or H2O2 or hydrogen peroxide or sodium nitroprusside or SNP or brain
ischemia or brain ischaemia or brain ischemic or brain infarctions or brain infarction or cerebral infarction or cerebral infarc-
tions or stroke or ischemic stroke or neuroprotection AND PC12 or PC-12 or PC 12

(ii) The ‘correct’ strategy, only deployed in our analysis of the intended search strategy.
NCBI PubMed
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(‘oxygen–glucose deprivation/reoxygenation’ OR ‘oxygen–glucose deprivation’ OR ‘OGD’ OR ‘OGD/R’ OR ‘oxygen and
glucose-deprived model’ OR ‘glutamate’ OR ‘N-methyl-D-aspartate’ OR ‘NMDA’ OR ‘H2O2’ OR ‘hydrogen peroxide’ OR
‘sodium nitroprusside’ OR ‘SNP’)
AND
(‘brain ischaemia’ OR ‘brain ischaemia’ OR ‘brain ischaemia’ OR ‘brain infarction’ OR ‘brain infarction’ OR ‘cerebral infarction’
OR ‘cerebral infarctions’ OR stroke OR ‘ischaemic stroke’ OR ‘neuroprotection’)
AND
(‘PC12’ OR ‘PC-12’ OR ‘PC 12’)
Ovid Embase
(Oxygen–glucose deprivation reoxygenation or oxygen-glucose deprivation or OGD or OGDR or oxygen and glucose-deprived
model or glutamate or N-methyl-D-aspartate or NMDA or H2O2 or hydrogen peroxide or sodium nitroprusside or SNP) and
(brain ischaemia or brain ischaemia or brain ischemic or brain infarctions or brain infarction or cerebral infarction or cerebral
infarctions or stroke or ischaemic stroke or neuroprotection) and (PC12 or PC-12 or PC 12)

Appendix 3 Regular expression for oxygen–glucose deprivation
\ bOGD \ b|(?i)(oxygen|glucose)( \ s|-| and)(glucose|oxygen) depriv(ation|ed)|deprived of (oxygen and glucose|glucose and oxy-
gen)
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