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In this commentary, we highlight a new study by Bidne and colleagues that identifies
changes in placental lipids and lipid metabolic enzymes that happen not only in the context
of parental obesity but also from as early as 4 weeks of gestation. Their assessment of lipid
and enzyme content demonstrates a feasible approach to untangling the complexities of
metabolic pathologies that impact the lifelong health of both parent and child.

The importance of studying placental lipid metabolism cannot be overemphasized because it not only
influences pregnancy outcomes but also fetal growth, development, and life-long health [1]. A growing
body of evidence demonstrates that the assumption of free diffusion of maternal fatty acids to the de-
veloping fetus is no longer accepted. The placenta converts circulating maternal lipids to free fatty acids
(FFAs) for uptake and processing by trophoblast cells, which use them to meet their own metabolic de-
mands, to produce hormones for pregnancy maintenance, and to transfer them to the developing fetus
[2,3]. Robust lipid uptake and metabolism early in gestation is vital to meeting the high energetic demands
needed to simultaneously grow the placenta and develop embryonic organ systems. Late in gestation the
human fetus requires more lipids for neurodevelopment and growth than any other land mammal, so as
pregnancy progresses, metabolic adaptations in the mother and placenta uniquely support increasing lipid
transport and biomagnification of essential long chain polyunsaturated fatty acids (LCPUFA) in the last
trimester [2]. These particular fatty acids are important components of phospholipid membranes where
they serve as local mediators of metabolism, inflammation, immune function, platelet aggregation, signal
transduction, neurotransmission, and neurogenesis that is vital for the developing fetal brain and retina
[4]. Because LCPUFA cannot be synthesized de novo, the fetus relies on increasing placental transport,
especially during the last trimester when peak in utero accretion can surpass maternal intake to sup-
port rapid fetal brain growth [4]. For these reasons, placental lipid uptake and metabolism is a critical,
highly-regulated, and surprisingly dynamic process across gestation.

Beyond the need to understand placental lipid transport and metabolism in uncomplicated pregnan-
cies, there is an even more urgent need to identify maladaptations that occur in common conditions such
as obesity as well as to understand the downstream consequences for the parent–placenta–fetal triad. The
prevalence of obesity (body mass index ≥ 30 kg/m2) is increasing worldwide to impact approximately
40% of women of reproductive age in the United States [5]. Obesity is associated with poor pregnancy
outcomes [6] and serious lifelong health risks not only for the parent [7], but also for the child. Mater-
nal obesity increases the risk for the child being born large for gestational age (LGA) [8–10], with birth
defects [11], relative insulin resistance [12], and increased adiposity [10,13], which translates to a higher
lifetime risk for developing Type 2 diabetes, obesity, cardiometabolic disease, cognitive impairment, and
mood disorders [10,14]. Increasing evidence demonstrates that disturbances in placental lipid metabolism
play an important role in the pathogenesis of these adverse outcomes, specifically via oxidative stress and
variable fatty acid transport to the fetus [15–18].

As the fields of reproductive health and developmental origins of health and disease look to the placenta
for answers regarding the role of fuels in driving pregnancy and fetal outcomes [1], it will be essential to
overcome gaps in knowledge about adaptations in placental lipid metabolism across critical windows of
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Figure 1. Model of fatty acid transport for energy and complex lipid production in placental tissue

Circulating triglycerides (TGs) in the parental circulation are metabolized into FFAs by lipases like lipoprotein lipase (LPL) at the pla-

centa. The FFAs are able to be transported into placental cells by a variety of fatty acid transport proteins (FATP), fatty acid translo-

case (FAT/CD36), and plasma membrane-bound fatty acid binding proteins (FABPpm), alongside other crucial fuels like glucose in

response to physiologic alterations in insulin and plasma lipids in pregnancy. Intracellular fatty acid binding proteins (FABP3 and 5)

shuttle fatty acids toward incorporation into phospholipids or toward energy production through β-oxidation in the mitochondria

(facilitated by the carnitine shuttle system’s CPT1a and CPT2). Triacylglycerols (TAG) and well as phospholipids like phosphatidyl-

choline (PC) are synthesized within the placenta for their storage as lipid droplets, facilitated by PLIN2/adipophilin (ADRP), and their

mobilization to be transported into fetal circulation. Acyl-transferase enzymes like glycerol-3-phosphate acyltransferase (GPAT) and

1-acylglycerol-3-phosphate-O-acyltransferases (AGPAT2 and AGPAT4) in the Kennedy Pathway and phospholipase A2 (PLA2G4c)

and lysophosphatidylcholine acyltransferase (LPCAT4) in the Lands’ cycle remodel the fatty acid species being transported to the

fetus. These elements of lipid metabolism in the placenta can be studied over gestation as well as between control and obese

pregnancies to determine the mechanisms driving this important element of fuel transport, as demonstrated by Bidne et al. [23] in

this issue of Clinical Science. Created with BioRender.com.

gestational risk. The use of animal models has been fundamental to understanding this but translating findings to hu-
mans is challenging. This is primarily because of difficulty obtaining samples at various stages of pregnancy. Indeed,
most studies focus on the term, postpartum placenta which reflects only the endpoint and fails to identify critical win-
dows for intervention or compounded exposures across fetal development. Birth defects or malformations, common
morbidities associated with obese pregnancy, develop very early in the first trimester and are reportedly mediated by
abnormal lipid metabolism and excess reactive oxygen species production [19]. Studying second trimester placentae
is key to understanding the role of lipid metabolism in placental maladaptation and the high rate of stillbirths found
in obese pregnancies [20–22]. Yet, accessing first and second trimester placentas for research is very challenging and
fraught with confounding.

In this issue of Clinical Science, Bidne et al. have been able to surmount this challenge to examine human placentas
and cord blood ranging from 4 to 40 weeks gestation [23]. Their study builds upon previous work detailing placen-
tal nutrient transporters across gestation [24] by quantifying lipid fractions, transporters, and metabolic pathways
in first, second, and third trimester placenta, then comparing these levels between obese and non-obese pregnant
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women. Admittedly, the study has limitations including unreported differences in total lipid content, individual pla-
cental cell populations, and understandable limitations in details about whether placentas collected at 4–24 weeks
gestation were complicated by fetal anomalies or would have gone on to cause gestational diabetes or preeclampsia.
Regardless, the work provides valuable insight on obesity-associated differences in fatty acid transport at multiple
stages of gestation. Specifically, the authors identify the abundance of various phospholipid, lysophospholipid, and
triacylglycerol species, in addition to levels of proteins important for lipid uptake, metabolism and synthesis, par-
ticularly those involved in β-oxidation, intracellular trafficking, storage, and the Kennedy and Lands’ pathways as
illustrated in Figure 1. Although the authors conclude that there are only limited obesity-related differences, detailing
the changes in placental lipid content in the first and second trimester is a necessary step needed to understand how
obesity during these early critical windows can cause compounding consequences in placental and fetal development
as well as metabolism to affect pregnancy outcomes.

One could feasibly use Bidne et al.’s approach to gather a breadth of knowledge about how other disease states,
toxins, or environmental exposures could disrupt the parent-placenta-fetal triad to contribute to other reported ad-
verse pregnancy or programming consequences. It would also be possible to use their methods to compare placenta
supporting males compared with those supporting females to understand sex-specific differences in fetal growth and
programming. Answering fundamental questions about the role of lipid metabolism in the parent-placenta-fetal triad
across gestation will certainly set a foundation needed to identify mechanisms and critical windows for intervention
that impact numerous pregnancies and children worldwide.
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