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Inflammation is a pathological feature of kidney injury and its progression correlates with the
development of kidney fibrosis which can lead to kidney function impairment. This project
investigated the regulatory function of WNT1-inducible signaling pathway protein 1 (WISP1)
in kidney inflammation. Administration of recombinant WISP1 protein to healthy mice in-
duced kidney inflammation (macrophage accrual and production of tumor necrosis fac-
tor α (TNF-α), CCL2 and IL-6), which could be prevented by inhibition of nuclear factor
κ-light-chain-enhancer of activated B cells (NF-κB). Furthermore, inhibition of WISP1, by
gene knockdown or neutralising antibody, could inhibit cultured macrophages producing
inflammatory cytokines following stimulation with lipopolysaccharides (LPSs) and kidney fi-
broblasts proliferating in response to TNFα, which both involved NF-κB signaling. Kidney
expression of WISP1 was found to be increased in mouse models of progressive kidney
inflammation-unilateral ureter obstruction (UUO) and streptozotocin (STZ)-induced diabetic
nephropathy (DN). Treatment of UUO mice with WISP1 antibody reduced the kidney inflam-
mation in these mice. Therefore, pharmacological blockade of WISP1 exhibits potential as
a novel therapy for inhibiting inflammation in kidney disease.

Introduction
The growing prevalence of chronic kidney disease (CKD) is a major health concern and can be caused by
a variety of factors including obesity, diabetes and hypertension. Current therapies have a limited ability to
prevent chronic kidney inflammation and fibrosis and halt the progression of CKD. Consequently, many
CKD patients will develop end-stage kidney disease (ESKD) and require dialysis or kidney transplantation
to survive. Therefore, novel strategies are required to specifically target chronic inflammation, and its
ability to promote fibrosis, in patients with CKD.

Chronic inflammation causes injury and fibrosis in kidney glomeruli and the tubulointerstitium, lead-
ing to progressive CKD and renal function impairment. Complex mechanisms underlie the development
of kidney inflammation, which include kidney accumulation of infiltrating leukocytes and increased lev-
els of inflammatory cytokines [1]. Common kidney inflammatory responses include the induction of
proinflammatory cytokines, such as tumor necrosis factor α (TNF-α) and interleukin (IL)-6 (IL-6), and
chemokines, such as monocyte chemoattractant protein-1 (MCP-1), and IL-8. Notably, TNF-α has the
ability to increase induction of other potent cytokines and amplify the inflammatory response through
promoting activation of the nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) and MAPK
signaling pathways [2]. NF-κB-p65 is a subunit of the NF-κB transcription complex which is activated by
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inflammatory stimuli and translocates into the nuclei of inflammatory cells, where it plays a regulatory role in the
inflammatory response [3]. NF-κB also acts as a transcriptional regulator of survival genes or anti-apoptotic genes to
regulate cell death, cell proliferation and transformation [4].

Activation of the Wnt/β-catenin signaling pathway has been shown to correlate with progression of renal injury
[5], with targeted inhibition of the Wnt pathway reducing the development of fibrosis in animal models of kidney
disease [6,7]. In addition, a downstream factor of the Wnt signaling pathway, known as WNT1-inducible signaling
pathway protein 1 (WISP1) [11], has been shown to be increased in mouse models of progressive CKD, in association
with development of renal fibrosis [8]. However, it is unclear whether the association of WISP1 with kidney fibrosis is
due to an effect of WISP1 on the development of kidney inflammation which precedes fibrosis and can drive a fibrotic
response. Therefore, the current study focuses on the regulatory role of WISP1 in inflammatory responses associated
with kidney injury and investigates the functional role of WISP1 in the progression of inflammation in a mouse model
of CKD, with a view to exploring the potential benefits of targeting WISP1 in CKD with a pharmacological inhibitor.

Materials and methods
In vitro studies: cell culture
The RAW macrophage cells and rat kidney fibroblast cells were obtained from the American Tissue Culture Collec-
tion (Rockville, MD) and maintained in Dulbecco’s modified Eagle’s medium containing 10% serum and 5 mmol/l
glucose.

Gene expression in RAW macrophages was assessed after 12 h of stimulation with lipopolysaccharide (LPS; 1
ng/ml) or high glucose (22.5 mM d-glucose) by quantitative real-time PCR.

Drugs and antibodies
Recombinant human WISP1 protein, IgG control and mouse WISP1 antibody were purchased commercially (R&D
Systems, Minneapolis, MN) and used at specified concentrations. Typically, 24 h after cells were seeded, culture
medium was replaced and cells were incubated for a further 1–5 days with WISP1 or TNF-α, depending on exper-
iments. For Western blotting, primary antibodies were used to detect IκBα (1:2000; Cell Signaling, Danvers, MA),
WISP1 and secondary HRP-conjugated antibodies were either anti-mouse IgG or anti-rabbit IgG (1:2000; Cell Sig-
naling).

RNA extraction and real-time PCR
RNA was isolated from cells and tissues using the Zymo Quick RNA (Zymo Research, Irvine, CA 92614). mRNA was
reverse transcribed into cDNA using Agilent AffinityScript (Agilent, Santa Clara, CA 95051). Gene expression was
analyzed by real-time (RT)-PCR, using the TaqMan system based on real-time detection of accumulated fluorescence
(ABI Prism 7500; PerkinElmer, Foster City, CA). Fluorescence for each cycle was quantitatively analyzed by an ABI
Prism 7500 Sequence Detection System (PerkinElmer). To control variation in the amount of DNA that was available
for PCR in the different samples, gene expression of the target sequence was normalized in relation to the expression
of an endogenous control, 18S rRNA (18S rRNA TaqMan Control Reagent kit, ABI Prism 7500; PerkinElmer). Details
of primers and TaqMan probes for these genes have been previously reported [9]. Each experiment was conducted in
four to six replicates. Results were expressed relative to control (untreated) cells/tissue, which were arbitrarily assigned
a value of 1.

Transfection of shRNA of WISP1
Cells were seeded at 3 × 104 cells per well in 12-well plates. The following day, medium was replaced with OptiMEM
(Invitrogen) and cells were transfected with lentivirus expressing Wisp1 shRNA using Lipofectamine 2000 (Invitro-
gen).

In each case, lentiviral controls were used at the same concentration. Cells were harvested 3–5 days
post-transfection.

ELISA
The expression levels of TNF-α were determined in medium of RAW 264.7 cells using ELISA kits (R&D Systems,
Inc., Minneapolis, MN, U.S.A.), according to the manufacturer’s protocols.
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Western blot analysis
Whole-cell lysates that contained 10–50 μg of protein were subjected to 10–12% SDS/PAGE and transferred on to
polyvinylidene fluoride membranes by semidry transfer. Membranes were blocked in 5% skim milk/Tris-buffered
saline with 0.1% Tween 20 for 1 h at room temperature. All primary and secondary antibody incubations were for 1
h at room temperature. Detection was by chemiluminescence and images captured on the UVITEC Imaging system
(Cambridge, U.K.). ImageJ was used to analyze protein density.

Animal models
Two well-established animal models were used to explore the relationship between WISP1 and the development of
kidney inflammation. Unilateral ureter obstruction (UUO) was performed on C57BL/6 mice aged 7–8 weeks (20–25
g, n=7–8/group) [10], whereby the left ureter was visualized via a flank incision and ligated using double tracks with
5.0 surgical silk. This procedure results in rapidly progressive tubulointerstitial fibrosis, which resembles lesions seen
in C.KD after 7 days.

Secondly, we induced type 1 diabetic nephropathy (DN) in C57BL/6 mice aged 7–8 weeks (20–25 g, n=8/group)
using streptozotocin (STZ). Each mouse was administered with five daily intraperitoneal injections of STZ (55
mg/kg/day) to induce overt diabetes [11] and were assessed after 18 weeks for development of chronic kidney fi-
brosis.

Antibody treatment of UUO mice
Male C57BL/6 mice (20–25 g) were randomly allocated into the treatment groups of IgG control or WISP1 antibody
(n=7/group). UUO surgery was performed on mice using 2% isoflurane as the inhalation anesthesia (Abbott Aus-
tralasia, Kurnell, NSW, Australia) immediately following UUO surgery, osmotic minipumps (ALZET Models 1007D
Alzet, Cupertino, CA) administering control IgG or WISP1 antibody (5 μg/g body weight/day for 7 days) were placed
in the abdominal cavity prior to suturing and recovery. Seven days after UUO surgery, kidney fibrosis was assessed.

Administration of recombinant human WISP1 protein and NF-κB inhibitor
Male mice were delivered parthenolide (NF-κB inhibitor, PTL) 3.5 μg/g body weight or its vehicle (0.05% DMSO)
1 day prior to 2.5 μg/g body weight recombinant WISP1 or saline by intraperitoneal injection [12]. The mice were
killed after 48 h of WISP1 injection.

Histopathology analysis of kidney samples
Formalin-fixed paraffin-embedded kidneys were sectioned at 4 μm and stained with Masson’s Trichrome to assess
changes in kidney structure. Picrosirius Red (PSR) staining was performed on kidney sections to visualize the distri-
bution of interstitial collagen (Col) under bright-field and polarized microscopy as described previously [9].

Immunohistochemistry
For immunostaining, sections were treated with 5% rabbit or goat serum for 30 min and then incubated with primary
antibody in 3% BSA overnight at 4◦C. Sections were then washed three times with PBS for 10 min. Bound primary
antibodies were detected using a fluorescently labeled secondary antibody.

Statistical analysis
Values are shown as means +− SEM, unless otherwise specified. GraphPad Prism (GraphPad Software) was used to
analyze data by unpaired Student’s t test or by one-way analysis of variance followed by a Tukey’s multiple comparison
test. P-values <0.05 were considered significant.

Results
Administration of recombinant WISP1 into mice induces kidney
inflammation
To examine the acute inflammatory effects of WISP1 in the kidney, we administered human recombinant WISP1
into C57BL/6 mice by intraperitoneal injection and studied the kidney response 48 h later. Compared with vehicle
controls, mice which received WISP1 had increased accumulation of macrophages (F4/80+ cells) in their kidneys
(Figure 1A), verified by counting the percentage of F4/80+ cells and increased kidney gene expression of proinflam-
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Figure 1. WISP1 induces inflammation in healthy mouse kidneys

(A) F4/80 positive cells were accumulated in mice kidney (kidney cortex) with WISP1 administration and reduced by PTL, which

was verified by counting the percentage of F4/80 positive cells. (B) The expression of inflammation markers was up-regulated by

WISP1 and alleviated by PTL treatment. (C) M1 and M2 marker expression. Results are expressed as the mean +− SEM relative

gene expression, ***P<0.001,**P<0.01, *P<0.05. n=3–5.
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matory molecules (TNF-α, MCP-1, IL-6) (Figure 1B). Pre-treatment of mice with the NF-κB inhibitor partheno-
lide (PTL), but not vehicle alone (0.05% DMSO), prevented both the accrual of kidney macrophages and the in-
crease in kidney pro-inflammatory gene expression seen in response to WISP1 administration. This indicates that
the pro-inflammatory effects of WISP1 in the kidney are mediated by activation of NF-κB. The pro-inflammation
function of WISP1 was also demonstrated by the up-regulated M1 markers (Nos-2, MMP-12) and M2 markers
(Arginase-1) (Figure 1C).

In comparison, acute exposure of mouse kidneys to recombinant WISP1 had no impact on the kidney morphol-
ogy (Figure 2A) and kidney collagen accumulation (Figure 2B). Furthermore, quantitative PCR analysis of whole
kidney found that acute exposure to WISP1 induced no changes in the gene expression of collagen 1 and fibronectin
(Figure 2C), but did induce gene expression of α-smooth muscle actin (α-SMA) (Figure 2D). Our data to study other
inflammatory cells that are involved in kidney injury showed no significant changes in CD3e marker of T cells in
WISP1-treated normal kidneys at 48 h, indicating that WISP-1 does not promote T-cell infiltration (Supplementary
Data S1).

WISP1 promotes inflammation by facilitating activation of the NF-κB
pathway
To verify that WISP1 regulates NF-κB activity in macrophages, we treated cultured macrophages (RAW264 cells) with
the recombinant WISP1 for 48 h in the presence or absence of NF-κB inhibitor (PTL). Immunofluorescence staining
demonstrated that WISP1 induces translocation of phosphorylated-p65 (P-p65) into nuclei, which can be inhibited
by PTL (Figure 3A). The elevated gene expression of TNF-α was inhibited by PTL (Figure 3B). This translocation of
P-p65 could also be induced by stimulating macrophages with the classical pro-inflammatory stimulant LPS (Figure
3C), which coincided with elevated gene expression of TNF-α, MCP-1 and IL-6, and was inhibited by PTL (Figure
3D). Interestingly, LPS-induced nuclear translocation of P-p65 in macrophages, and the corresponding increase in
pro-inflammatory gene expression, were also inhibited by WISP1 knockdown with shRNA (expressed via lentiviral
transfection) (Figure 4A–C) or WISP1 blockade with neutralizing antibody (Figure 5A,B). In addition, these strategies
for inhibiting WISP1 activity reduced macrophage secretion of TNF-α induced by LPS (Figure 5C). These results
suggest that WISP1 facilitates NF-κB-p65 signaling in macrophages during inflammatory responses, which could
help drive kidney injury.

WISP1 promotes kidney fibroblast proliferation
In addition to inducing kidney inflammation, administration of WISP1 to normal mice also increased kidney expres-
sion of α-smooth muscle actin at 48 h, suggesting that it may directly or indirectly regulate myofibroblast activity.
It is known that α-SMA expression by fibroblasts is an indicator of fibroblast activation [13]. However, no increase
in gene expression of collagen I or fibronectin was seen in WISP1-treated mice (Figure 2). To identify how WISP1
may increase myofibroblasts, we treated cultured kidney fibroblasts (NRK49F cells) with recombinant WISP1. This
showed that WISP1 could induce kidney fibroblast proliferation, and was preventable by the addition of the NF-κB
inhibitor PTL (Figure 6A). Since TNF-α can also stimulate fibroblast proliferation [14] through NF-κB pathway [15],
we explored whether this mitogenic effect was dependent on WISP1. We found that kidney fibroblast proliferation in
response to TNF-α could be reduced by either WISP1 knockdown using shRNA (Figure 6B) or treatment with a neu-
tralizing anti-WISP1 antibody (Figure 6C). These studies indicate a role for WISP1 in promoting kidney fibroblast
activity, particularly during an inflammatory response.

Kidney expression of WISP1 is increased in mouse models of progressive
inflammatory kidney disease
Two common models of inflammatory kidney disease were examined to analyze the relationship of WISP1 to kidney
inflammation. DN is an inflammatory kidney disease affecting both glomerular and tubulointerstitial compartments,
which progresses in approximately one-third of patients [16]. It is also the most common cause of end-stage renal
failure worldwide. Therefore, we examined kidney expression of WISP1, and its association with inflammation, in
a mouse model of DN. After 16 weeks of STZ-induced diabetes, mice displayed elevated kidney gene expression of
CD68, TNF-α and MCP-1 and α-SMA, which was accompanied by an increase in WISP1 gene expression (P<0.01)
(Figure 7A). In addition, immunofluorescence staining indicated the elevated expression of WISP1 in diabetic kid-
neys (Figure 7A). Infiltrating macrophages co-localized with WISP1 in DN model (white arrows). The profiles of
non-diabetic/control and DN mice are in Supplementary Data S2.
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Figure 2. WISP1 induces no immediate changes to kidney structure

At 48 h after administration of WISP1 and/or PTL to healthy mice, there were: (A) no morphology changes (Masson staining)

observed based on in the kidney at 48 h after administration of WISP1 and/or PTL in healthy mice. (B) No collagen (PSR staining)

alteration was found in the WISP1-treated mice. (C) Q-PCR data showed no significant changes in collagen1a1 and fibronectin. (D)

α-SMA expression were up-regulated with WISP1 treatment, reduced by PTL. Results are expressed as the mean +− SEM relative

gene expression, **P<0.01, *P<0.05. n=3–5.
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Figure 3. WISP1 regulates inflammation via the NF-κB signaling pathway in RAW macrophages

(A) The translocation of P-p65 into nucleus induced by WISP1 was inhibited by treatment of NFκB inhibitor PTL, with the inhibition

on the up-regulated expression of TNF-α. (B,C) PTL inhibited the LPS-induced nucleus translocation of P-p65 and the up-regulated

expression of inflammation markers. (D) Results are expressed as the mean +− SEM relative gene expression, ***P<0.001,**P<0.01.

n=3–5.
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Figure 4. Knockdown of WISP1 inhibits LPS-induced inflammation in RAW macrophages

(A) Knockdown (KD) of WISP1 by shRNA. (B) Knockdown of WISP1 in LPS-stimulated RAW macrophages inhibited (B) the translo-

cation of P-p65 into nucleus, and up-regulated (C) expression of inflammation markers. ***P<0.001,**P<0.01. n=3–5.

Similarly, quantitative PCR analysis revealed that treatment of RAW macrophages with high glucose (22.5 mM =
4.5 g/l) induced an increase in the gene expression of WISP1, TNF-α and MCP-1, compared with cells cultured with
low glucose (5 mM = 1 g/l, Figure 7B).

We also examined WISP1 expression in a mouse model of rapidly progressive tubulointerstitial inflammation and
fibrosis caused by UUO. Similar to the DN model, we found a significant increase in the gene expression of WISP1
at day 7 of UUO, which correlated with increases in inflammatory genes (TNF-α, MCP-1 and IL-6) (Figure 7C).

36 © 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY-NC-ND).

D
ow

nloaded from
 http://port.silverchair.com

/clinsci/article-pdf/136/1/29/927386/cs-2021-0663.pdf by guest on 10 April 2024



Clinical Science (2022) 136 29–44
https://doi.org/10.1042/CS20210663

Figure 5. Blockade of WISP1 reduced inflammation in RAW macrophages

(A) The addition of WISP1 antibody (Ab) inhibited the translocation of P-p65 induced by LPS and the expression of inflammation

markers (B,C). ELISA showed that the up-regulation TNF-α was reduced by WISP1 knockdown and the addition of antibody.

Results are expressed as the mean +− SEM relative gene expression, ***P<0.001,**P<0.01, *P<0.05. n=3–5.
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Figure 6. WISP1 participates in the inflammation-related kidney fibroblast cell proliferation

The representative cell images were taken using 4× light microscope. (A) PTL inhibited kidney fibroblast cells proliferation induced

by recombinant WISP1 protein (1 μg/ml), validated by counting cell numbers. (B) Wisp1 knocked-down using shRNA reduced the

proliferation of kidney fibroblast cells by TNF-α, confirmed by counting cell number. (C) The addition of WISP1 antibody reduced

the fibroblast cell growth in the presence of TNF-α, as confirmed by counting cell number. n=3.
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Figure 7. WISP1 expression in two different experimental models of kidney inflammation

(A) STZ-induced DN mice at 18 weeks demonstrated the increased expression of TNF-α, MCP-1, CD68, α-SMA and WISP1 gene

by qPCR, compared with control mice (n=12–15 mice/group). Immunofluorescence staining indicated the elevated expression of

WISP1 in DN model. Macrophage co-localized with WISP1 staining (white arrow). (B) High glucose-treated RAW cells expressed

more WISP1, TNF-α and MCP-1 than low glucose-treated cells. (C) The kidneys of mice with 7 days post-UUO surgery showed

an increased expression of inflammation genes, TNF-α, MCP-1 and IL6 and an up-regulation of WISP1, compared with control

kidneys (n=5 mice/group). Immunofluorescence staining indicated the elevated expression of WISP1 in UUO model. Macrophage

co-localized with WISP1 staining (white arrow). ***P<0.001,**P<0.01.
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Immunofluorescence staining indicated the elevated WISP1 in kidney with UUO injury (Figure 7C). Infiltrating
macrophages co-localized with WISP1 in UUO model (white arrows). These data suggested WISP1 expression in
UUO kidneys correlates with increased macrophage infiltration in these kidneys.

Data from these models indicate that an up-regulation of WISP1 is a common feature of kidney injury which is
associated with kidney inflammation. Kidney tubules also strongly express WISP1 in kidney disease, particularly in
UUO, which may also influence the inflammatory response.

Blockade of WISP1 reduces inflammation in mouse UUO kidneys
We examined the functional role of WISP1 in inflammation in mouse UUO kidneys by administering neutralizing
WISP1 antibody to mice from the commencement of injury.

Compared with sham controls, UUO kidneys from untreated mice displayed a marked increase in the gene expres-
sion of TNF-α, MCP-1 and IL-6 (Figure 8A), which was similar to UUO mice that received control IgG. In contrast,
UUO mice which received WISP1 antibody had reduced kidney expression of these inflammation genes, indicat-
ing the suppression of kidney inflammation (Figure 8A). In addition, immunostaining showed a marked increase in
F4/80+ macrophages in the kidneys of UUO mice, which was significantly reduced by treatment of WISP1 antibody
(Figure 8B), indicating that kidney macrophage accumulation in UUO mice is dependent on WISP1. To ascertain
whether WISP1-mediated inflammation in UUO kidneys is dependent on NF-κB signaling, we examined whether
WISP1 antibody treatment could protect UUO kidneys from the degradation of IκB proteins which facilitates NF-κB
activation [17]. Western blotting analysis showed that IκB-α was reduced in UUO kidneys, which was inhibited by
treatment with WISP1 antibody (Figure 8C). This demonstrates that WISP1-mediated inflammation in UUO kidneys
is dependent on NF-κB signaling.

Discussion
The present study has identified a role for WISP1 in the induction of kidney inflammation. It has also demonstrated
that kidney production of WISP1 correlates kidney inflammation during diabetes or ureter obstruction, and that
pharmacological blockade of WISP1 reduces kidney inflammation. In addition, it has established that macrophages
and NF-κB-p65 signaling play a key role in WISP1-mediated inflammation. These findings demonstrate that WISP1
has the capacity to regulate inflammation in kidney diseases.

Macrophages appear to be the major effector cells of WISP1-mediated inflammation in the kidney. In support of
this concept, we demonstrated that administering WISP1 to normal mice induces kidney macrophage accumulation).
This correlated with increased kidney gene expression of pro-inflammatory cytokines (TNF-α, IL-6, MCP-1) which
are readily produced by macrophages. In vitro studies performed by other researchers have shown that WISP1 can
induce cultured mouse or human macrophages to produce and secrete these proinflammatory cytokines [18,19]. In
comparison, peritoneal macrophages require activation of TLR4 by LPS before they will produce proinflammatory
cytokines in response to WISP1 [19,20]. This latter finding also relates to our in vitro studies which demonstrated
that LPS induction of pro-inflammatory cytokine gene expression in mouse RAW264 macrophages was dependent on
WISP1 production by these cells. Therefore, activation of TLR4 may help facilitate WISP1-mediated inflammation by
stimulating production of both WISP1 and its receptors on macrophages. Hence, in vitro and in vivo studies support
the concept that WISP1 can promote kidney inflammation by stimulating the recruitment and activation of kidney
macrophages. What remains to be determined is whether proximal tubular epithelial cells are also be important in the
WISP1-mediated inflammatory response, since they are the most abundant cell type in the kidney and are capable of
producing cytokines which can recruit and activate macrophages.

Activation of NF-κB-p65 signaling appears to be the principal mechanism by which WISP1 facilitates kidney in-
flammation. Our in vivo studies found that pharmacological blockade of NF-κB could prevent WISP1 from inducing
inflammation in healthy kidneys. They also showed that treatment with WISP1 antibody reduced inflammation in
diseased (UUO) kidneys in association with reduced degradation of IκB-α, which is an inhibitor of NF-κB activation.
Similarly, our in vitro studies demonstrated that blockade of either NF-κB or WISP1 was able to significantly reduce
induction of proinflammatory gene expression in macrophages by LPS. Induction of NF-κB activation by WISP1
was also identified in immunofluorescence staining showing that both LPS and WISP1 induce nuclear translocation
of NF-κB in macrophages, which were inhibited by either gene knockdown or antibody blockade of WISP1. These
findings indicate that WISP1-induced inflammation in kidney, particularly in macrophages, is mediated by NF-κB
signaling.
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Figure 8. Treatment with WISP1 antibody alleviated the development of inflammation in kidney of UUO mice with 7 days

post-injury

(A) Q-PCR analysis demonstrated that WISP1 antibody reduced inflammation gene expression in kidneys from UUO mice. (B)

UUO kidneys without treatment or receiving IgG show an up-regulated F4/80 positive cells accumulation at 7 days. Administration

of WISP1 antibody in UUO mice resulted in a reduction, verified by the percentage of F4/80 positive cells. (C) WISP1 antibody

treatment rescued the degradation of IκBα expression in UUO kidneys, by Western blotting. Results are expressed as the mean +−
SEM relative gene expression, ***P<0.001, **P<0.01, *P<0.05. n=3–7.

WISP1 is associated with inflammation in patients with obesity, diabetes and diabetic kidney disease. Clinical
studies have shown that WISP1 increases in visceral adipose tissue (VAT) during obesity and type 2 diabetes in as-
sociation with adipose inflammation, accumulation of adipose tissue macrophages and reduced insulin sensitivity
[18,21]. Furthermore, our examination of mouse DN has shown that gene expression of WISP1 increases with the
expression levels of CD68 (a macrophage marker) and inflammatory cytokines (IL-6, TNF-α, MCP-1) in diabetic
kidneys. Therefore, WISP1 regulation of inflammation may play a role in the development of type 2 diabetes and
its kidney complications. This concept is supported by our finding that high levels of glucose induce WISP1 gene
expression in macrophages and that macrophages are known to play a critical role in adipose inflammation, insulin
resistance and diabetic kidney disease [22] .
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Our experiments validated WISP1 as a therapeutic target for progressive kidney disease. In our UUO model, kid-
ney injury is characterized by an early inflammatory response involving macrophage infiltration and inflammatory
cytokine production (TNF-α, IL-6, MCP-1). We showed that this correlated with increased kidney gene expression
of WISP1. Furthermore, we established that treatment of UUO mice with a neutralising antibody targeting WISP1
reduced this inflammatory response, thereby demonstrating a functional role for WISP1 in kidney inflammation.
What remains to be determined is whether therapeutic blockade of WISP1 would be effective at suppressing the pro-
gression of kidney inflammation in patients with DN, especially since this disease is the major cause of end-stage
renal failure.

The study also identified a link between WISP1-mediated inflammation and kidney fibrosis. Given that kidney
inflammation can often drive subsequent fibrotic responses, we explored whether WISP1 regulation of inflammation
could promote renal fibrosis. Administration of WISP1 to healthy mice produced an inflammatory response and an
increase in gene expression of α-SMA, suggesting a possible role in kidney myofibroblast accumulation. Both the in-
flammatory response and the increase in α-SMA were reduced by NF-κB, suggesting that these events may be linked.
We showed that an inflammatory stimulus (LPS) can induce WISP1, which can subsequently induce TNF-α produc-
tion. Interestingly, TNF-α has been shown to promote fibroblast proliferation via the NF-κB pathway [21]. Therefore,
we examined whether WISP1 could induce proliferation of kidney fibroblasts. We found that WISP1 could directly
stimulate kidney fibroblast proliferation via activation of NF-κB, which is supported by similar findings in adult hu-
man dermal fibroblasts [23]. Furthermore, we showed that WISP1 was a mediator of TNF-α-induced proliferation of
kidney fibroblasts. These findings suggest that WISP1 can have a role in promoting both inflammation and fibrosis
in kidney diseases.

In conclusion, our study has established a functional role for WISP1 in mediating kidney inflammation via NF-κB
signaling. It has also demonstrated that therapeutic targeting of WISP1 can reduce inflammation in kidney disease.
Given that macrophages appear to be the major effector cells of WISP1-mediated inflammation, it is likely that ther-
apies targeting WISP1 will be most effective in macrophage-mediated kidney diseases, such as DN, which warrants
further investigation.

Clinical perspectives
• CKD is growing worldwide with renal failure being a common end-point. It is characterized by the

loss of kidney function and tubular fibrosis/inflammation. There is a clinical urgency to explore novel
therapy for kidney injury due to the lack of effective treatments.

• In this project a new pro-inflammation factor, called WISP1, will be explored to understand the un-
derlying mechanism in mediating kidney injury. We demonstrated in vitro and in vivo data to show
that WISP1 has the potential to induce kidney inflammation. The transfection of shRNA of WISP1
into RAW macrophage cells alleviated the progress of inflammation progress. In addition, we report
that WISP1 antibody provides significant protection from inflammation in a kidney injury model.

• Recently, the monoclonal antibody-based anti-fibrosis therapy has become a breakthrough in kidney
disease treatment. In general, our work demonstrated WISP1 as a potential therapeutic target for
kidney injury and the generation of WISP1 monoclonal antibody will provide a new idea for CKD
treatment.
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