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Atherosclerosis is a disease of large and medium arteries that can lead to life-threatening
cerebrovascular and cardiovascular consequences such as heart failure and stroke and
is a major contributor to cardiovascular-related mortality worldwide. Atherosclerosis de-
velopment is a complex process that involves specific structural, functional and tran-
scriptional changes in different vascular cell populations at different stages of the dis-
ease. The application of single-cell RNA sequencing (scRNA-seq) analysis has discov-
ered not only disease-related cell-specific transcriptomic profiles but also novel subpop-
ulations of cells once thought as homogenous cell populations. Vascular cells undergo
specific transcriptional changes during the entire course of the disease. Epigenetics is the
instruction-set-architecture in living cells that defines and maintains the cellular identity by
regulating the cellular transcriptome. Although different cells contain the same genetic ma-
terial, they have different epigenomic signatures. The epigenome is plastic, dynamic and
highly responsive to environmental stimuli. Modifications to the epigenome are driven by an
array of epigenetic enzymes generally referred to as writers, erasers and readers that define
cellular fate and destiny. The reversibility of these modifications raises hope for finding novel
therapeutic targets for modifiable pathological conditions including atherosclerosis where
the involvement of epigenetics is increasingly appreciated. This article provides a critical
review of the up-to-date research in the field of epigenetics mainly focusing on in vivo set-
tings in the context of the cellular role of individual vascular cell types in the development
of atherosclerosis.

Introduction
Atherosclerosis is characterized by a pathological build-up of plaque within the arterial vessel walls and
is a major contributor to cardiovascular disease [1]. Atherosclerosis is a progressive disease where lesion
progress from fatty streak to vulnerable plaques that on rupture, cause thrombosis and arterial blockage
[2,3]. The interrupted blood supply to vital organs such as brain and heart caused by thrombosis leads
to serious life-threatening conditions such as stroke and heart attacks [4]. Several independent risk fac-
tors including flow-mediated hemodynamic forces, hyperglycemia, hyperlipidemia, smoking and alcohol
consumption have been identified in pathological plaque development [5]. The arterial wall consists of
different residing and infiltrating cellular populations that undergo specific functional changes during
the course of the disease development. Recent high-dimensional single-cell studies have discovered the
tremendous diversity in the transcriptional profile of cells of the vascular wall. Atherosclerotic lesion for-
mation is a complex process that involves several mechanisms including endothelial dysfunction, lipopro-
tein retention, inflammatory cell recruitment, oxidative stress, foam cell formation, apoptosis and necro-
sis, vascular smooth muscle cell (VSMC) proliferation, matrix synthesis, calcification, angiogenesis and
fibrous cap formation (Figure 1) [6]. Transcriptional changes drive functional changes in all different types
of vascular cells during the distinct pathological stages in atherosclerosis progression. Epigenetics controls
the transcriptomic changes through enzyme-mediated epigenetic mechanisms namely histone modifica-
tion and DNA methylation [7]. Epigenetic mechanisms respond to environmental stimuli in regulating
the transcriptional landscape of each vascular cell type and affecting their functionality. In recent years,
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Figure 1. Atherosclerotic plaque development

Atherosclerotic plaques usually develop at the atheroprone regions of medium and large arteries. The process is initiated by en-

dothelial dysfunction and the retention of LDL cholesterol. This causes monocyte transmigration into the intima and differentiation

into macrophages. Continuous engulfment of LDL particles by macrophages causes foam cell formation. VSMCs proliferation is

thought to initially stabilize the plaque, however VSMC apoptosis contributes to plaque destabilization and cause plaque rupture.

Abbreviations: ECM, extracellular matrix; LDL, low-density lipoprotein.

the field of epigenetics has gained attention among vascular clinicians and researchers [8]. In this review article, we
have gathered the latest research advances in the field of epigenetics in the cellular context of atherosclerosis.

Atherosclerotic plaque development: the role of vascular
cells
The arterial wall is composed of different cell populations layered into intima, media, adventitia and perivascular
adipose tissue (PVAT). Vascular structure and function is supported by the location of the vascular cells into these
layers. The innermost layer of the artery, the intima is a thin and a continuous monolayer of endothelial cells that
are the first cell population exposed to metabolic imbalances in the form of hyperglycemia and hyperlipidemia and
to the shear stress of the blood flow [9–11]. Furthermore, the endothelium is the first barrier between blood and the
rest of the vessel wall. The healthy endothelium functions in multiple ways for vascular homeostasis [6]. Endothelial
dysfunction is generally referred to as abnormalities in the endothelial-derived nitric oxide bioavailability resulting
in deleterious changes in vascular reactivity [6]. Impaired endothelial function is the widely accepted the initiating
step in atherosclerotic plaque development. Over time, circulatory stimuli such as hyperglycemia, hyperlipidemia,
hypertension and turbulent blood flow (TBF) compromise endothelial function. Cholesterol carrying low-density
lipoprotein (LDL) is transported transcellularly through the endothelial cells via transcytosis into subendothelial
space where it is modified through biochemical processes into oxidized LDL [6,12]. The retention of oxLDL at sites
of TBF stimulates endothelial cells to express adhesion molecules such as vascular cell adhesion molecule 1 (VCAM1)
and produce pro-inflammatory cytokines that initiate an inflammatory cascade with immunocytes recruitment into
subendothelial space [13]. Leukocytes cross-endothelial migration initiates the process of monocyte differentiation
into macrophages and continuous engulfment of oxLDL by macrophages over time leads to foam cell formation [13].
VSMCs along with elastin and extracellular collagen form the media of the vascular wall. VSMCs’ migration, prolifera-
tion and de-differentiation initially stabilize the atherosclerotic plaque by forming the fibrous cap through production
of extracellular matrix proteins such as collagen [14]. Usually considered beneficial, recent evidence suggests a more
complex role for VSMCs with oligoclonal expansion and transdifferentiation into macrophages and mesenchymal
stem cell-like cells which can also contribute to lesion instability [15]. The external layer of the vessel wall is the ad-
ventitia that consists of fibroblasts, collagen, elastic fibers, vaso vasorum, adrenergic nerves and lymphatic vessels. In
response to vascular injury, fibroblasts proliferate and migrate to the intima where they secrete factors to regulate the
growth of endothelial cells and VSMC and recruit inflammatory cells [16]. However, recent evidence suggests that
fibroblasts are highly plastic and heterogeneous [17]. Blood vessels are surrounded by PVAT and emerging evidence
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suggest that the PVAT plays an important role in vascular contractility and inflammation but also releases adiponectin
which has anti-inflammatory, insulin-sensitizing and vasodilatory properties. Positive or negative roles of different
vascular cells at different stages of atherosclerosis indicate that the understanding of functions of individual cell types
of the vascular wall in promotion of vascular damage is important in identifying novel cell-specific therapeutic targets.
With the advent of state-of-the-art technologies that can define the transcriptomic landscape at the level of single-cell
resolution such as single-cell RNA sequencing (scRNA-seq) and high- dimensional protein analysis such as cytometry
time of flight (CyTOF), we are at the verge of phenomenal discoveries in the area of vascular research.

Vascular cell heterogeneity in atherosclerosis: insights from
single-cell sequencing
Unbiased bulk RNA sequencing at a greater depth has discovered several dysregulated pathways and disease-specific
gene expression changes associated with atherosclerosis. However, this valuable information is irrespective
of cell-specific transcriptomic changes in response to vascular injury. Combining deep sequencing with
Fluorescence-assisted cell sorting (FACS) has identified cell-specific gene expression changes for example in effector
T cells. However, the limitation in this method is that we need to know the surface marker first to isolate that cell
type from a mixture of vascular cells. Different cell populations of arteries undergo specific gene expression changes
during the process of atherosclerosis development. Thus, it is of utmost importance to identify cell-specific gene
expression changes during different stages of atherosclerosis development. The expansion in sequencing technolo-
gies such as scRNA-seq and in tools that uses large combination of protein markers such as CyTOF have uncovered
transcriptomic and high-dimensional protein analysis of cellular subpopulations present in atherosclerotic plaques.

Single cell sequencing revealed unexpected diversity among vascular cells. Application of single cell transcrip-
tomic analysis in human plaques as well as in murine models of atherosclerosis has identified not only additional cell
subpopulations but also cell-specific atherosclerotic transcriptomic profiles. Either the whole murine aorta or leuko-
cytes enriched cellular mixture have been subjected to scRNA-seq to investigate the cellular heterogeneity among
vascular cells. Application of scRNA-seq on FACS-sorted CD45+ aortic leukocytes has identified 11–13 distinct im-
mune cell populations and their transcriptional landscape in chow and western diet-fed Apoe−/− and Ldlr−/− mice
[18–20]. ScRNA sequencing data were validated by CyTOF as a second method that also identified a similar number
of distinct immunocyte populations. Interestingly, these studies have revealed previously unknown heterogeneous
macrophages subtypes including Trem2hi macrophages. Foamy macrophages (CD45+SSChiBODIPYhi) with similar
cell identity as Trem2hi macrophages were also identified in atherosclerotic mouse models [20]. These cells were
identified as intimal lipid-loaded macrophages that lack an inflammatory phenotype with the expression of only
few inflammatory genes. Instead, non-foamy macrophages were found expressing interleukin (IL)-1β and other in-
flammatory transcripts confirming a pro-inflammatory phenotype [20–22]. However, the analysis in these studies
is limited to CD45 positive cells excluding all other vascular cells. Other studies have applied single cell sequencing
approach to investigate cellular diversity and transcriptional changes in the whole healthy and diseased aorta [23,24].
These studies have identified plasticity and heterogeneity among vascular cells including endothelial, fibroblasts and
VSMCs. Massive parallel sequencing at a single cell level has also been used in human plaques. Application of single
cell sequencing including RNA and ATAC sequencing on advanced human carotid atherosclerotic plaque identi-
fied intercellular communication and defined their transcriptomic and epigenomic landscape [25]. Gene expression
profiles of endothelial cells indicate not only an activated state but also a potential transdifferentiating state. Further-
more, scRNA-seq analysis of murine and human (carotid and coronary artery) plaques identified VSMCs transition
to smooth muscle cell-derived intermediate cells that were multipotent and could differentiate into macrophage-like
and fibrochondrocyte-like cells [26]. These studies not only show the complexity of gene expression changes in the
interconnected vascular cells but also emphasize the plasticity and heterogeneity of these cells in the healthy and dis-
eased vessel (Table 1). Studying epigenomics at single cell resolution represents technical challenges. Methods have
been developed to study epigenome at single cell resolution including single cell DNA methylome sequencing to
measure DNA methylation, single cell ATAC sequencing to measure chromatin accessibility, single cell chromatin
immunoprecipitation (ChIP) sequencing to measure histone modifications. Single cell ChIP sequencing represent
technical challenges due to background noise of nonspecific pulldown by antibodies and has not been broadly used.
So far, studies of single cell epigenomics in atherosclerosis is limited to single cell ATAC-seq primarily due to limited
number of viable cells from atherosclerotic vessels [27].
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Table 1 Heterogeneity among vascular cell populations as defined by scRNA-seq

S.No
Health
status Species

Vascular
compartment ECs VSMCs Mφ Fib Description/Main findings

1 Healthy mouse Whole aorta 3 1 1 2 Most significant heterogeneity
was observed in ECs. The two
major EC subpopulations
(Vcam1+/Cd36− and
Vcam1−/Cd36+) showed unique
distribution pattern in the lesser
and greater curvatures that may
be the result of differences in
blood flow and shear stress [24].

2 Healthy Mouse
(C57BL/6)

Endothelium of
descending aorta

2 - - - scRNA-seq analysis of CD34+

(isolated via FACs) cells revealed
two distinct aortic endothelial
populations. The authors
suggested that the progenitor
cells (Pdgfr, Sox9, Il33, Postn,
Dcn) transition to differentiated
cells [23].

3 Atherosclerotic Mouse (Ldlr−/−) CD45+ aortic cells - - 3 - ScRNA-seq analysis of CD45+

cells identified 13 leukocytes’
populations with three major Mφ

populations including two
atherosclerosis-specific
population that are inflammatory
and foamy Trem2hi Mφ [18].

4 Atherosclerotic Mouse
(Apoe−/−)

CD45+ aortic cells
(thoracic and
abdominal)

- - 1 - ScRNA-seq analysis of CD45+

cells identified 11 leukocytes’
populations including three B-cell
subsets. The results were
confirmed by CYTOF as a
second method [19].

5 Atherosclerotic Human CD45+ cells of carotid
artery plaques

- - 2 Single cell proteomic (CyTOF)
and transcriptomic (CITE-seq
and scRNA-seq) of plaque and
blood from same patients
unraveled distinct feature of both
T cells and macrophages in
symptomatic and asymptomatic
disease [182].

6 Atherosclerotic Mouse (Ldlr−/−) CD45+ aortic cells - - 2 - ScRNA-seq analysis of CD45+

cells identified 11 leukocytes.
Macrophages were the largest
population. Inflammatory genes
were down-regulated in foamy
macrophages whereas intimal
non-foamy macrophages
showed a distinct inflammatory
phenotype [20].

7 Atherosclerotic human Carotid artery plaques 2 2 3 This is the first study that also
covers non-immune cells in
human plaque. In total, 14 cell
populations were identified with
11 leukocytes and 3
non-immune cellular clusters.
Transcriptional data of endothelial
subpopulations are suggestive of
an activated and a transitory to
mesenchymal phenotype. SMCs
showed a contractile and
synthetic phenotype. One B cell
and four T cell clusters were also
identified. Mφ included two
pro-inflammatory Mφ and a
foamy Trem2hi Mφ populations
[25].

Continued over
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Table 1 Heterogeneity among vascular cell populations as defined by scRNA-seq (Continued)

S.No
Health
status Species

Vascular
compartment ECs VSMCs Mφ Fib Description/Main findings

8 Atherosclerotic Mouse (Ldlr−/− ) CD11+ CX3CR1+

monocyte lineage
aortic arch cells

- - 3 - ScRNA-seq analysis combined
with genetic fate mapping
profiled plaque cells derived from
CX3CR1 precursors in plaque
during progression and
regression of atherosclerosis.
The present study tracks the
cellular state during the
differentiation of CXC3R1 cells
into macrophages in
atherosclerosis. Eleven cellular
clusters were identified including
three macrophages identified by
Cochain et al. confirming the
heterogeneity of macrophages.
They also identified a proliferating
monocyte cluster with a
stem-like phenotype [183].

9 Atherosclerotic Mouse
(Apoe−/−)

Aortic leukocytes - - 2 - ScRNA-seq analysis of aortic
leukocytes after
macrophage-specific
nano-therapy using single-walled
carbon nanotubes (SWNT). The
data revealed that
pro-phagocytic SWNT
decreased inflammatory
phenotype in macrophages
[184].

10 Atherosclerotic Mouse (Ldlr−/-,

Apoe−/−) and
human

Mouse (Ascending and
thoracic aorta and
brachiocephalic artery)
and human (carotid
plaques)

2 3 3 2 ScRNA-seq in SMC-lineage
tracing mice identified multiple
SMC-derived cell state during
atherosclerosis. SMC may
transition through an
intermediate cell state (termed as
SEM cells by the authors) to
multiple cell types [26].

11 Healthy and
atherosclerotic

Mouse
(C57BL/6and
Apoe−/−)

medial cells aortic arch
and thoracic aorta

- 3 - - ScRNA-seq combined with
SMC-lineage tracing identified a
rare population of multipotent
progenitor marker Sca1+ VSMCs
which was shown to be a
hallmark of VSMC transition from
contractile to inflammatory
phenotype [107].

12 Atherosclerotic Mouse
(Apoe−/−) and
human

Aortic root in mice and
right coronary artery in
human

3(m) 1(h) 3(m) 2(h) 1(m) 1(h) 2(m) 2(h) scRNA-seq combined with
SMC-lineage tracing identified a
transition of SMC to
fibroblast-like cells which were
also present in human plaques
[108].

13 Atherosclerotic Mouse
(Apoe−/−)

Adventitia of the whole
aorta

1 1 2 4 This scRNA-seq atlas of aortic
adventitia characterized resident
and bone marrow-derived cell
populations with identification of
mesenchyme cells expression
stem/progenitor markers that
could be a source to several
differentiated cells [131].

Abbreviations: EC, endothelial cell; Fib’, fibroblasts; h, human; m, mouse; Mφ, macrophage.

Epigenetics
Epigenetics is defined as changes in gene expression, transient or heritable, that are not associated with changes in
DNA sequences. The epigenetic status of the genome varies fundamentally in a tissue-specific manner. The overall
epigenetic status of a cell is termed ‘epigenome’ that represents the entire structure of the chromatin including covalent
modifications. Changes in the epigenome involve myriad enzymatic activities to methylate DNA and modify histones.

© 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons
Attribution License 4.0 (CC BY).

1169

D
ow

nloaded from
 http://port.silverchair.com

/clinsci/article-pdf/135/9/1165/917865/cs-2020-1066c.pdf by guest on 19 April 2024



Clinical Science (2021) 135 1165–1187
https://doi.org/10.1042/CS20201066

Figure 2. The dynamic epigenome

In response to environmental cues, genes can be turned on and off by reversible epigenetic changes. Epigenetic mechanisms

namely DNA methylation and histone modifications (such as arginine (R) methylation, lysine (K) acetylation/methylation (most stud-

ied and shown here) and others such as phosphorylation, ubiquitination) can alter chromatin structure from open transcription-per-

missive to closed transcription-repressive confirmation and vice versa. NcRNAs including lncRNAs and microRNAs (miRNAs) can

also regulate gene expression at the transcriptional and post-transcriptional levels. K, lysine followed by lysine residue position; R,

arginine followed by arginine residue position.

With the advancement in high-throughput sequencing and novel sample preparation techniques, researchers are now
able to map epigenomic modifications including DNA methylation, histone modification, and non-coding RNAs
(ncRNAs) with exquisite genome-wide coverage and astonishing accuracy. These developments are propelling the
field of epigenetics and revolutionizing our understating of cell biology in human health and disease. The epigenetic
control of gene expression is regulated mainly through mechanisms such as DNA methylation, histone modifications
and ncRNAs. The cell-specific transcriptional profile is regulated by the physical shape and organization of DNA
into chromatin. DNA is organized in the form of chromatin inside the nucleus as a DNA–histone complex. This
organization not only facilitates the packaging of the DNA into the nucleus but also regulates gene transcription by
structural changes in the chromatin. The chromatin structure is central to epigenetic control of gene transcription.
This change in chromatin structure is brought by addition or removal of chemical groups such as acetyl or methyl
group from histone tails or DNA itself. These mechanisms are generally referred to as ‘epigenetic mechanisms’ (Figure
2).

DNA methylation
DNA methylation is an enzymatic process of addition of methyl group to cytosine residues at CpG dinucleotides
in the genome [28]. A number of DNA methyl-transferases are involved in writing this epigenetic mark. DNMT1
is responsible for maintaining previously established DNA methylation by recognizing hemi-methylated CpG and
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adding methyl group to the previously unmethylated cytosine. On the other hand, DNMT3a and DNMT3b are re-
sponsible for the establishment of de novo DNA methylation. At regulatory elements, DNA methylation can mediate
gene silencing through direct inhibition of the binding of methylation-dependent transcriptional activators [29] or
indirectly by altering the affinity of proteins involved in the chromatin remodeling such as MeCP2 that recognize and
bind methylated CpG sites to recruit chromatin modifiers [30–32]. DNA methylation does not function in isolation
but in fact, there is interplay between DNA methylation and histone modification to form a complex epigenome to
regulate genome expression.

Histone modifications
DNA is packaged by histone into chromatin, which is essential for nuclear functions such as transcription, DNA repli-
cation and repair [33]. The canonical repeating unit of the chromatin fiber, the nucleosome is composed of approxi-
mately 147 bp of double-stranded DNA wrapped around a core of eight histone protein molecules (two copies of each
H2A, H2B, H3 and H4) [34,35]. The unstructured tail extensions of histones in the nucleosomes are chemically mod-
ified at lysine, arginine, serine and threonine residue by processes such as acetylation, methylation, phosphorylation,
ubiquitination and sumoylation to regulate gene expression (Figure 2) [35]. These post-translational modifications
(PTMs) can structurally remodel chromatin to form transcriptionally active euchromatin and inactive heterochro-
matin [36]. Histone acetylation in general relaxes histone–DNA interactions and is correlated with transcriptional
activation of genes whereas deacetylation is associated with chromatin compaction and transcriptional repression
[37]. Histone acetylation is the process of enzymatic transfer of an acetyl group from acetyl coenzyme A to the amino
group of histone lysine residues [37]. Acetylation of histone lysine removes positive charge on histone tails, thereby
decreasing the interaction with negatively charged phosphate group of DNA. Consequently, the condensed chromatin
structure is transformed into a more relaxed structure allowing greater access for the transcription machinery to come
in contact with the DNA template for gene transcription [37]. Acetylation can occur on lysine (K) residues on his-
tones H3 (K9, K14, K18, K23 and K27) and H4 (K5, K8, K12, K16 and K20) [33,38]. Histone acetylation has been
correlated with transcriptional activation of genes by forming a relaxed transcriptionally active chromatin structure,
however another implication is to provide a site for transcription factor and adaptor proteins binding. Transcription
factor complexes can read PTMs on histones, leading to regulatory changes. Histones are acetylated at lysine residue
by histone acetyl-transferases (HATs). HATs function as co-activators of transcription as they cannot bind to DNA
directly and need other co-activators for targeted promoter recruitment [39]. The involvement of HATs and histone
acetylation in disease has led to the development of pharmacological agents to prevent the irregular patterns in HAT
activity.

Histone deacetylation is an enzymatic process of removal of acetyl group, an opposing activity to acetylation, which
is mediated by histone deacetylase (HDAC) enzymes. Histone deacetylation is associated with transcriptional repres-
sion by promoting the compact chromatin state [40]. HDAC activity is also targeted to other non-histone proteins
including the transcription factor p53, nuclear receptors and cell cycle regulating proteins, hence more recently re-
ferred as lysine deacetylases (KDACs) [41,42]. The activation or repression of pathways detrimental to the onset of
disease such as cancer has led to the development of HDAC inhibitors (HDACi) [43]. HDACi generally activate gene
expression following inhibition of HDAC-dependent removal of acetyl groups from histone tails.

Histone lysine methylation, depending on the residue involved, can be associated with active or repressive tran-
scription [44]. For example, histone H3 lysine 4 trimethylation (H3K4me3) is associated with active chromatin,
whereas histone H3 lysine 9 trimethylation (H3K9me3) and histone H3 lysine 27 trimethylation (H3K27me3) are
associated with transcriptionally inactive chromatin. These different patterns of PTM of histones are read and rec-
ognized by various proteins for gene regulation. These reader proteins have specific domains to identify a particular
modification such as bromodomain to recognize acetylated histones and chromodomain to recognize methylated hi-
stones [45]. However, the epigenetic control of the transcriptional state of a gene is a complex process involving mul-
tiple histone and DNA modifications. Importantly, enzyme-mediated epigenetic changes are reversible and amenable
to pharmacological intervention and thus represent suitable therapeutic targets.

NcRNA
The DNA inside the nuclei is the blueprint of life that is transcribed into protein coding and non-protein coding RNA
sequences. The majority of DNA encodes for RNA molecules that are not translatable into proteins, instead have
other increasingly recognized gene regulatory functions. These RNAs are termed ncRNAs and are grouped into long
ncRNAs (transcripts longer than 200 bp) and short ncRNAs (transcripts smaller than 200 bp) such as microRNAs

© 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons
Attribution License 4.0 (CC BY).

1171

D
ow

nloaded from
 http://port.silverchair.com

/clinsci/article-pdf/135/9/1165/917865/cs-2020-1066c.pdf by guest on 19 April 2024



Clinical Science (2021) 135 1165–1187
https://doi.org/10.1042/CS20201066

(miRNAs). Both long and short ncRNAs are functionally important in epigenetic regulation of gene expression at
transcriptional and post-transcriptional levels in both health and disease.

Epigenetic changes in endothelial cells in atherosclerosis
The considerable amount of experimental and clinical data suggests the endothelial dysfunction is an early sign of
the development of atherosclerosis [46]. Important risk factors that are independently linked to endothelial dysfunc-
tion include low shear stress, hyperglycemia, hyperlipidemia and aging, and the endothelial epigenome is shown to
respond to these stimuli. Epigenetic mechanisms have been demonstrated to be linked to the oxidative stress and
inflammation leading to endothelial dysfunction. Several in vitro studies highlighted the critical role of epigenetic
mechanisms in endothelial dysfunction reviewed elsewhere [8,10,47]. In this section, we describe the in vivo evidence
of the dynamic endothelial epigenome in response to two important atherosclerotic risk factors, specifically TBF and
hyperglycemia.

Fluid mechanical forces generated by blood flow are known to cause structural, functional and transcriptional
changes in the vascular endothelium [48]. The earliest atherosclerotic lesions develop where blood flow is disturbed
with relatively low shear stress such as where vessels branch and bend [49]. Shear stress is the tangential force of
the flowing blood on the vascular endothelium. Straight parts of arteries that are generally spared from atheroscle-
rotic plaques are exposed to sustained laminar blood flow with high shear stress. In contrast, atherosclerotic plaques
develop predominantly at branches, bends and bifurcations in the arterial tree because these sites are exposed to
TBF that exerts low shear stress on the vascular wall. The molecular mechanisms connecting cellular responses to
flow-mediated hemodynamic forces are poorly understood. Epigenetic mechanisms are emerging as important reg-
ulators of hemodynamic-mediated transcriptional changes [50]. For instance, a catalytic component of the Poly-
comb repressive complex 2 (PRC2) that is responsible for tri-methylation of lysine 27 on histone 3 is up-regulated
in atherosusceptible endothelium from TBF regions of blood vessels [51,52]. The PRC2 methylates lysine 27 of hi-
stone H3 (H3K27me3) through its catalytic component EZH2 [53]. H3K27me3 is tightly associated with inactive
gene promoters suppressing gene expression [53]. Multiple lines of evidence have implicated EZH2 up-regulation
in the development and progression of atherosclerosis [54–56]. For instance, a recent study has shown increased
H3K27me3 in endothelial cells isolated from human early and advanced atherosclerotic plaque [54] in contrast with a
decrease in global H3K27me3 in the whole vessels suggesting endothelial-specific H3K27me3 plays an important role
in atherosclerotic lesion development [57,58]. Further evidence for a role for EZH2 in atherosclerosis is provided by
its enhanced expression in atherosusceptible endothelium from disturbed blood flow regions of blood vessels [51,52].
Mechanosensitive transcription factors NRF2 and KLF2 that regulate many shear responsive genes have been shown
to be regulated by HDACs (HDACs,1, 2, 3, 5 and 7) in vivo in rats [59]. Furthermore, HDAC3, 5 and 7 have been
identified as mechanosensitive chromatin modifiers that control expression of miR-10a in endothelial cells in shear
stress modulation of vascular phenotype and function [60].

In vivo studies have also demonstrated the critical role of DNA methylation in regulating flow-mediated tran-
scriptional changes in vascular endothelial cells. Turbulent flow has been shown to increase promoter methylation
levels of mechanosensitive genes such as KLF3, KLF4 and HoxA5. Promoter hypermethylation was inversely corre-
lated with gene expression of these genes [61,62]. In addition, studies have shown DNMT1-dependent genome-wide
hypermethylation in endothelium in partially ligated mouse arteries, which is an in vivo model of low shear stress
[63,64].

MiRNAs have also been identified as important gene regulators at both transcriptional and post-transcriptional
levels in flow-induced endothelial gene expression changes in atherosclerosis [65–67]. The expression of an
anti-inflammatory, NFκB signaling pathway targeting miRNA, miR-10a was found down-regulated in endothelial
cells in porcine aortic arch, a region of TBF as compared with thoracic aorta. Similarly, another mechanosensitive
miRNAs miR-92a was identified in Ldlr−/− mice and in pigs targeting endothelial inflammation [68,69]. Using a
partial carotid ligation model of flow-induced atherosclerosis, two mechanosensitive athero-miRNAs miR-712 and
miR-205 were identified [70,71]. The expression of these miRNAs was elevated by turbulent flow which was associ-
ated with endothelial inflammation. As a nuclear mechanosensitive athero-miR, a recent study has demonstrated that
caspase 3 inhibition by nuclear enrichment of miR126-5p confers endothelial integrity in atheroprotected regions of
arteries suggesting that epigenetic changes are important factors in endothelial integrity [72].

In patients with diabetes, hyperglycemia induces epigenetic changes triggering the expression of genes associated
with endothelial dysfunction [10,73,74]. These early epigenetic changes due to poor metabolic control are in part re-
sponsible for the ‘metabolic karma’ phenomenon [75]. The DCCT and EDIC trial (type 1 diabetes) as well as the Steno
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and UKPDS trials (type 2 diabetes) suggested that previous exposure to high glucose levels has long lasting deleteri-
ous effects on cardiovascular outcomes despite subsequent better diabetes control [10,76]. Exposure of the endothelial
cell layer to chronic hyperglycemia induces a proatherogenic transcriptional profile, which leads to endothelial dys-
function and atherosclerosis. SET7 is a histone methyl transferase responsible for monomethylation of lysine 4 on
histone 3 (H3K4). In endothelial cells, SET7 has been shown to drive glucose-induced inflammation by regulating
transcription factor NFκB [11]. In patients with type 2 diabetes (T2D), significant correlation of SET7 expression in
peripheral blood mononuclear cells (PBMCs) with oxidative stress marker 8-isoprostaglandin F2α and flow-mediated
dilation was observed. This correlational study showed that SET7-driven epigenetic changes contribute to vascular
dysfunction in patients with T2D [77]. Furthermore, H3K9 hyperacetylation of multiple genes including HMOX1,
IL-8, HMOX1, MMP10, Cox2 and TNFα has been detected in vascular cells and immunocytes in patients with
diabetes [78,79].

Given the importance of endothelial dysfunction in atherosclerosis development and the emerging role of the
environment-responsive epigenome in atherosclerosis, there is still a major lack of knowledge specifically in in vivo
settings, which needs to be elucidated in order to understand the mechanisms involved in these early steps of vascular
injury.

Immune cell epigenetics in atherosclerosis
Due to ongoing recruitment, differentiation and local proliferation, monocyte-derived macrophages are the domi-
nant cell population of the innate immune system in the atherosclerotic plaque and play a critical role in the dis-
ease development and progression. Macrophages are a crucial contributor to plaque progression through secretion
of pro-inflammatory mediators and apoptotic death leading to necrosis. Upon apoptosis, macrophages release tis-
sue factors and lipid contents forming a prothrombotic necrotic core, an important contributor to plaque instability.
Inhibition of cholesterol efflux in macrophages causes foam cell formation, a hallmark of plaque development [80].
EZH2 has been shown to promote foam cell formation by targeting ABCA1 thus accelerating atherosclerosis [81].
The HDACs SIRT1 and SIRT 6, on the other hand have been shown to enhance cholesterol efflux by the activation of
ABCA1 and ABCG1 blunting formation of foam cells and associated inflammation [82]. Recently, myeloid-specific
HDAC inhibition using an esterase-sensitive motif (ESM) technology has been shown to impair maturation and acti-
vation of peritoneal macrophages with limited efficacy on atherosclerosis [83]. This technology conjugates ESM on to
small molecules for targeting those cells that express Carboxylesterase 1 (CES1), such as mononuclear myeloid cells
[83].

Macrophages show remarkable plasticity by adopting to various stimuli in tissue-specific environment. Conven-
tionally, and largely in an in vitro paradigm, active macrophages have been characterized into pro-inflammatory M1
and anti-inflammatory M2 phenotypes. However, macrophage polarization in vivo is much more complex and has
been reviewed elsewhere [84]. Several epigenetic enzymes have been implicated in regulation of classical macrophage
phenotypes including histone methyltransferase and demethylase such as EZH2 and Jumanji domain-containing pro-
tein D3 (JMJD3) and histone acetyltransferase and deacetylases such as P300, SIRT1, SIRT6, HDAC3 and HDAC9 in-
dicating that histone modification is linked to macrophages activation in atherosclerosis [85]. The histone-modifying
enzymes that have been shown to regulate macrophage function toward a M2 phenotypes include HDAC4, SIRT2,
JMJD3, PRMT1, SMYD3 whereas HDAC3 and HDAC9 have been shown to oppose M2 polarization. The M1 phe-
notype has been shown to be positively regulated by several chromatin modifiers including JMJD2D, SET7 UTX,
HDAC1 and HDAC3 whereas histone modifiers that inhibit M1 polarization include JMJD1A, SMYD2, SIRT1 and
SIRT2 (in vitro studies, reviewed in [85]). A study has shown that up-regulation of SMYD3 (SET and MYND do-
main containing protein 3) favors the M2 phenotype in human monocyte-derived macrophages in vitro. SMYD3
is a methyltransferase inducing di and tri-methylation of lysine 4 on histone H3 (H3K4) which is associated with
transcriptional activation. Elevated expression of SMYD3 was associated with increased levels of trimethylation of
H3K4 at a lipoxygenase M2 marker, ALOX-15 promoter mediating its transcriptional activation [86]. JMJD3 is a
histone demethylase that removes the repressive trimethylation marks on lysine 27 of histone H3 facilitating the gene
transcription. JMJD3 has been shown to be involved in the regulation of pro-fibrotic gene expression via H3K27
demethylation in macrophage-derived foam cells. RNA sequencing of peritoneal foam cells in myeloid cell-specific
jmjd3 deficient mice showed that JMJD3 is involved in pro-fibrotic signature of macrophage-derived foam cells in
vivo [87].

Macrophage activation with different stimuli results in different phenotype. For example, IL4/IL13 stimulation re-
sults in anti-inflammatory macrophages, LPS/INFγ stimulation leads to an inflammatory phenotype and modified
lipid uptake results in foamy macrophages. Multiple epigenetic enzymes have been described as important regulators
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Figure 3. Epigenetics in vascular cells at play in the atherosclerotic plaque development

Atherosclerotic plaque development is a complex process. Histone modifications have been shown to play important roles in

endothelial dysfunction. Histone marks and ncRNAs have been demonstrated to be involved in trained innate immunity. Several

miRNAs have been shown to regulate functions of adoptive immune cells such as T and B lymphocytes in atherosclerosis. Recent

single cell sequencing studies have identified at least three macrophage subtypes (differently colored here). Epigenetic mech-

anisms need to be investigated in these subpopulations. However, histone deacetylation and demethylation have been shown

to be associated with foam cell formation. Recent evidence indicates VSMCs oligoclonal expansion and transdifferentiation into

macrophage-like cells. Several histone marks have been identified in vivo associated with the novel role of VSMCs in atheroscle-

rosis. H3, histone 3; K4, lysine 4; K9, lysine 9; K27, lysine 27; me1, mono-methylation; me2, di-methylation; me3, tri-methylation;

EndmT, endothelial-to-mesenchymal transition.

of these phenotypic changes. For example, JMJD3 has been shown to be involved in anti-inflammatory and inflam-
matory macrophage phenotypes, whereas HDAC3 and HDAC9 are linked to foamy macrophage and inflammatory
macrophage phenotype. Recent evidence indicates a wider range of phenotypic adaptation of macrophages in re-
sponse to local tissue cues. Several scRNA-seq studies have identified multiple macrophage populations with three
prominent macrophage clusters namely resident-like macrophages, inflammatory macrophages and Trem2hi foamy
macrophages in human and murine atherosclerosis (Figure 3). Epigenetic mechanisms are highly likely to play an
important role in macrophage heterogeneity and plasticity identified by scRNA-seq that needs further investigation
with the advent of state-of-the-art single cell epigenomic technologies.

Furthermore, until recently, monocytes and macrophages were regarded as immune cells of the less sophisticated
innate immune system because they lack the antigen-specific lifelong immunological memory that exist in cells of
the adoptive immune system such as B and T lymphocytes. However, recent evidences suggest a specialized immune
memory exist in these cells, a phenomenon termed as ‘trained immunity’. Trained immunity refers to the ability of
cells of the innate immune system to remember invading agents and respond with augmented strength to reinfec-
tion through epigenetic and metabolic rewiring. Importantly, trained immunity is non-specific and long-lasting. It
responds strongly to secondary similar or unrelated stimuli and sustains the activated phenotype for a longer pe-
riod. Various cues including exogenous and endogenous stimuli can induce trained immunity, however our cur-
rent mechanistic understanding of innate immune memory is mainly based on studies using BCG vaccine (Bacille
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Calmette-Guerin, a live attenuated vaccine against tuberculosis), β-glucan (components of the cell wall of Candida
albicans) and oxLDL. This prolonged hyperactive innate immune response has recently been hypothesized as a po-
tential mechanism for non-resolving chronic inflammation in atherosclerosis. Epigenetic remodeling is thought to
be at the core of molecular mechanisms associated with trained immunity. Chromatin-based studies have identified
associations of specific histone modifications such as H3K4me3, H3K4me1, H3K27ac and H3K9me2 with trained
immunity. Induction of trained immunity by BCG vaccination in healthy volunteers was associated with elevated
H3K4me3 at the prompters of IL-6 and TNF-α. β-glucan has also been shown to stimulate trained immunity by pro-
duction of pro-inflammatory cytokines regulated through histone modification, H3K4me3. Genome-wide increase
in H3K27ac both at enhancers and promoters has been observed in β-glucan induced innate immune memory in
differentiated macrophages [88]. The ATF7 and H3K9 methyltransferase G9a axis has been shown to be linked to a
decline in repressive histone modification H3K9me2 on inflammatory genes upon β-glucan or LPS stimulation of
murine macrophages [89]. Induction of trained immunity was shown to blunt KDM5 demethylase activity linked
to elevated H3K4me3 at trained immunity genes activating transcription in monocytes [90]. More recently, histone
methyltransferase SET7, an H3K4me1 writing enzyme was shown to induce trained immunity genes by modifying
chromatin accessibility at enhancer regions of genes in primary human monocytes [91].

Enrichment of the transcription-activating histone mark, H3K4me3 occurs at immune-related gene promot-
ers during trained immunity. Recently, β-glucan was shown to epigenetically reprogram immune genes in a long
ncRNA-dependent manner in mouse macrophages [92]. Long ncRNA UMLILO regulated chromatin structure at
the promoters of immune genes during β-glucan-induced trained immunity. Three-dimensional chromatin loop-
ing positioned the UMLILO in the genomic location proximal to essential trained immune gene promoters such
as IL-6 and IL1β, facilitating H3K4me3 enrichment by targeting WDR5–MLL1 (WD repeat-containing protein 5
(WDR5)-mixed lineage leukemia protein 1 (MLL1)) complex at these gene promoters.

Antigen-responsive adoptive immune activity contributes significantly to the atherogenesis process. Studies of lym-
phocyte deficiency in atherosclerotic mouse models such as ApoE−/− and LdlR−/− demonstrated a significant in-
volvement of the adaptive immune system in the atherosclerotic plaque development and progression [93]. Different
subsets of T and B lymphocytes show variable pro- and anti-inflammatory response in atherosclerosis. T lymphocytes
in the plaques are antigen-experienced memory T cells. Naı̈ve T cells are primed in secondary lymphoid organs by
antigen-presenting cells (APCs) such as dendritic cells (DCs). Second activation of these primed T cells occurs in
non-lymphoid tissues by APCs. CD4+ T cells are abundant, although CD8+ cells are also found in the plaque. CD4+

T helper type 1 (TH1) cells are considered pro-atherogenic by promoting macrophage activation and inflammation
through interferon-γ (IFNγ) production whereas regulatory T cells (Tregs) have atheroprotective functions by limiting
the pro-inflammatory response of TH cell subtypes. A reduced number of Tregs in peripheral blood was found to be as-
sociated with acute coronary disease in atherosclerotic patients [94]. DNA hypermethylation of the FOXP3 gene was
suggested to suppress its expression thereby down-regulating Tregs and increasing the risk of acute coronary disease.
However, Tregs have also been shown to convert into a pro-inflammatory T-cell subtype and become pro-atherogenic
during atherosclerosis progression. The role of other T-cell subtypes including TH2, TH9 and TH22 are less investi-
gated. Several miRNAs have been shown to play a critical role in regulating T-cell proliferation and differentiation in
atherosclerosis. OxLDL-induced miRNA let-7c expression was shown to be down-regulated by Statin treatment in
human näıve T cells isolated from carotid endarterectomy samples from patients co-cultured with pre-treated DCs
[95]. Down-regulation of miR let-7c induced Tregs was associated with elevated levels of anti-inflammatory cytokine
IL-10 [95]. Tregs have also been shown to be negatively regulated by miR-21 in coronary heart patients [96]. Inhibition
of another miRNAs, miR-33 has also been implicated in Treg differentiation in atherosclerotic mice [97]. Moreover,
a recent study revealed a role of an miRNA, miR-155 in CD4+ T lymphocyte-mediated immune response in human
primary cells ex vivo [98]. Endothelial, VSMCs and T cells were used from the same donor to avoid potential immune
rejection. Inhibition of miR-155 in näıve CD4+ T cells was achieved with lentiviral transfection. These cells were ac-
tivated by incubating with oxidized LDL-stimulated DCs. The TH2 and Treg T lymphocyte population was increased
with elevated levels of anti-inflammatory cytokines. Co-culture experiments showed that miR-155 inhibition blunted
CD4+ T cells to induce endothelial cell apoptosis and to promote VSMCs growth [98]. However, further research is
warranted to identify gene targets of miR-155 in CD4+ T cells and to validate results of this study in the in vivo setting.

Epigenetic changes in concert with transcription factors play crucial roles in B lymphocyte development and dif-
ferentiation, thereby modulating humoral responses to antigens. Studies investigating epigenetic mechanisms in B
cell differentiation in atherosclerosis are scarce. However, several miRNAs have been identified as important regu-
lators of B cell functions in atherosclerosis. The immune regulatory cytokine IL-10 is down-regulated in peripheral
B cells in patients with atherosclerosis which was inversely correlated with the expression of miR-19a [99]. Further-
more, TNF-α, INF-γ or IL-4 was shown to repress IL-10 in cultured B cells via increased expression of miR-19a [99].
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The anti-inflammatory cytokine IL-10 is also shown to be targeted by another miRNA, miR-98 in peripheral B lym-
phocytes in patients with coronary artery atherosclerosis [100]. In that study, level of serum cortisol, a psychological
stress hormone was higher in patients and inversely correlated with peripheral B-cell frequency. Interestingly, corti-
sol suppressed IL-10 expression via miR-98 in cultured B lymphocytes suggesting therapeutic potential of targeting
miR-98 in atherosclerosis. B-cell subtypes have also contrasting effects on atherosclerosis progression. B2 B lympho-
cyte depletion ameliorated atherosclerosis in ApoE−/− mice whereas its adoptive transfer aggravated atherosclerosis
in lymphocyte deficient ApoE−/− Rag-2−/− mice [101]. In contrast, B1a B cells have been shown to be atheroprotec-
tive when B1a cells were selectively transferred to splenectomized ApoE−/− mice, which restored secreting levels of
natural IgM antibodies [102]. Future studies targeted to identify epigenetic mechanisms linked to these contrasting
roles of the B cell subtypes may identify potential novel therapeutic targets in atherosclerosis.

Epigenetics of VSMCs in atherosclerosis
Studies have shown that atherosclerosis progression involves cross-talk between immunocytes with endothelial cells
and VSMCs. Smooth muscle cells are the major cell population in the vascular wall mainly located in media. In
healthy vessels, VSMCs express contractile proteins and function to regulate blood flow and pressure through vascular
contraction and relaxation. In response to vascular injury, VSMCs undergo a phenotypic modulation and convert
into proliferative synthetic cells that through de-differentiation, migration and proliferation play an important role
in atherosclerotic plaque development and progression [103]. VSMCs in the intima were traditionally considered as
beneficial as early evidence suggested a plaque stability function attributed to matrix producing VSMCs in advanced
atherosclerotic plaques by fibrous cap formation [104–106]. However, more recent evidences indicate the remarkable
plasticity of VSMCs suggesting a more complex role for VSMCs contributing to plaque vulnerability. Several recent
lineage-tracing studies and scRNA-seq studies revealed the VSMCs heterogeneity and proliferation in a clonal fashion
[25,107,108]. These studies have shown that VSMCs can adopt to a less differentiated phenotype that lacks classical
markers of contractile VSMCs and may directly promote atherosclerosis.

In response to vascular injury, VSMCs undergo reversible phenotypic transition from contractile to synthetic state.
However, studies using in vivo genetic fate mapping as clonality tracking systems have provided clear evidence that
VSMCs within the atherosclerotic plaque originate from a limited number of clones [15,108–112]. In addition, within
the plaque, VSMCs can alter their gene expression profile to resemble various other cell types such as macrophages,
mesenchymal stem-like cells, osteochondrocytes and myofibroblasts [14,15,108,113]. These distinct cell types that
have a VSMC-origin that may be involved in multiple processes including plaque stability, lesion growth, lipid re-
tention and inflammation. Collectively, the latest consensus is that in response to vascular injury, VSMCs populate
injured vessels by expansion in clonal fashion and undergo multiple phenotypic modulations by expressing markers
of alternative cell types. Thus, VSMC-derived cells can influence plaque stability as well as vulnerability.

Studies have identified several transcription factors and promoter elements that control the transcription of genes
associated with VSMC phenotypic transition including contractile genes. Gene encoding contractile proteins includ-
ing ACTA2, CNN1, SM22 and MYH11 are regulated by CC(A/T-rich)6GG (CArG) cis-regulating elements in their
promoter [104]. These elements are recognized and bound by the transcription factor Serum Responsive Factor (SRF)
[114]. SRF associates with Myocardin (MYOCD) which is only expressed in the vasculature by VSMCs to achieve cell
type-specific expression of CArG-dependent contractile genes [114,115]. Several studies have provided compelling
evidence that multiple epigenetic changes are associated with VSMCs phenotypic transition in response to vascular
injury in vivo.

Reduced levels of gene repressive histone modification, H3K27me3 was observed in medial regions of advanced
human peri-renal aortic atherosclerotic plaques by immunohistochemistry staining [116]. Interestingly, no change in
expression of the corresponding histone methyltransferase, EZH2 and demethylase, JMJD3 was observed. An early
study identified down-regulation of H3K9me3-especific methyltransferase Suv39h1 and reduced levels of the re-
pressive H3K9me3 on inflammatory genes responsible for VSMCs-mediated inflammation in diabetic db/db mice
[117]. This study demonstrated that H3K9me3 plays an important role in VSMCs inflammation in diabetes. In
addition, reduced levels of H3K9me2 and increased expression of histone demethylase KDM3a were observed in
VSMCs of diabetic rats suggesting H3K9me2 may have a role in vascular complications of diabetes [118]. Interest-
ingly, another study identified reduced levels of H3K9me2 and increased levels of H3K4me2 in VSMCs in advanced
human atherosclerotic carotid plaques as compared with early plaques by immunohistochemistry [119]. More re-
cently, a study has shown an atheroprotective role for this repressive histone mark, H3K9me2 through regulating
a pro-inflammatory response of VSMCs in atherosclerosis [120]. Using a high fat-fed VSMC-lineage tracing trans-
genic ApoE−/− mouse model, the authors demonstrated that protein levels of H3K9me2 in VSMCs were decreased in
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atherosclerosis both in the media and in the lesion itself. ChIP analysis in primary human and murine VSMCs identi-
fied H3K9me2 enrichment at promoters of important components of VSMCs-mediated inflammation including ma-
trix metalloproteinases MMP3, MMP9, MMP12 and pro-inflammatory cytokine IL-6. Inhibition of H3K9me2 writ-
ing enzymes G9A and GLP elevated VSMCs-mediated inflammation in vitro and in vivo. Furthermore, H3K9me2
enrichment prevented NFκB and cJUN transcription factors binding to the promoters of IL-6 and MMP3 and blunted
the inflammatory response in VSMCs. In contrast, G9A and GLP inhibition caused NFκB and cJUN enrichment on
IL-6 and MMP3 promoters as a result of decreased H3K9me2 augmenting VSMCs inflammation [120]. Gene repress-
ing activity of histone deacetylation by HDACs have also been studied in VSMCs phenotypic modulation. A study
has shown KLF4-dependent binding of pELk and HDAC2 at CArG element containing VSMC marker genes such as
Tagln blunting their expression after ligation-induced carotid injury in vivo [121].

DNA methylation may also play a crucial role in VSMCs phenotypic transition, however reports of direct evidence
of DNA methylation associated with VSMCs phenotypic modulation in atherosclerosis in vivo are limited. The DNA
demethylase Ten Eleven Translocation 2 (TET2) have been shown to regulate the expression of SRF and contractile
genes such as MYOCD and MYH11 in human VSMCs. Expression of TET2 is inversely correlated with severity of
atherosclerosis in patients and its knockdown in mouse exacerbates vascular response to injury [122]. Moreover,
a recent study demonstrated that DNA methylation modulates expression of an miRNA, miR-128-3p that plays a
critical role in VSMC phenotypic transition in vascular injury [123].

Recent evidence suggests that ncRNAs including long ncRNA and miRNAs also play a role in VSMCs phe-
notypic transition. Smooth muscle-induced lncRNA enhances replication (SMILR; Ensembl: RP11-94A24.1) was
found to be up-regulated in human unstable atherosclerotic plaques. Upon stimulation with inflammatory medi-
ators (platelet-derived growth factor (PDGF) and IL-1α), Primary human saphenous-derived VSMCs (HSVSMCs)
showed increased SMILR expression linked to inflammation and VSMC proliferation [124]. The miR143/145 clus-
ter regulates VSMC specific gene expression controlling plasticity and contractility. MiRNAs miR-143 and miR-145
deficiency showed reduced atherosclerosis in LdlR−/− mice [125]. Furthermore, these miRNAs have been shown re-
sponsible for aortic smooth muscle cells transition to dysfunctional macrophage-like cells in response to lipid loading
[126]. A recent study identified a novel miRNA, miR-128-3p as a crucial regulator of VSMC phenotypic modulation.
Stimulation with a potent atherogenic agent PDFG, down-regulated miR128-3p expression inducing VSMC differ-
entiation. Interestingly, aortic expression of miR128-3p was decreased in ApoE−/− mice fed a high cholesterol diet.
Furthermore, gain and loss-of-function in vivo and in vitro experiments showed that miR128-3p regulates VSMC
phenotypic transition via an miR-128-3p/KLF4-MYH11 axis. KLF4 was identified as a direct target of miR128-3p
and KLF4 then regulates MYH11 through positive modulation of promoter DNA methylation maintaining the dif-
ferentiated state [123].

These epigenetic targets including miRNAs represent attractive potential candidates to preserve plaque stabilizing
functions of VSMCs and to limit detrimental SMC phenotypic behavior in vascular pathologies.

Fibroblast epigenetics in atherosclerosis
The outer most layer of vessel wall is termed as adventitia that is surrounded by PVAT. The adventitia contains several
types of cells including fibroblasts, VSMCs, adipocytes, pericytes and resident immune cells including macrophages,
DCs, mast cells, T cells and B cells [127]. Fibroblasts are the most common cells in the adventitia of a healthy ves-
sel that produce extracellular matrix fibers including collagen type I and III, proteoglycans and fibronectin [128].
The activated fibroblast cells express α smooth muscle actin (α-SMA) and are termed as myofibroblasts. Upon acti-
vation, adventitial fibroblasts have been shown to infiltrate atherosclerotic lesions and contribute to neointima and
fibrous cap formation [108,128–130]. However, new insights from single cell sequencing indicate the plastic and
heterogenic nature of fibroblasts in healthy and atherosclerotic vessels [16]. Interestingly, scRNA-seq analysis of the
healthy murine aorta showed that fibroblasts were the second most abundant (∼33%) cells after VSMCs (∼40%)
even after removal of PVAT indicating existence of plastic and heterogenic fibroblasts in healthy vessel wall [24]. Two
fibroblasts subpopulation were identified by scRNA-seq in human and murine atherosclerotic vessels further im-
posing the heterogenic nature of these cells [24]. Other studies have identified additional fibroblast subpopulations
[108,131]. Recent studies have revealed several origins of atherosclerosis-associated fibroblasts including VSMC, en-
dothelial cells and adventitial stem/progenitor cells attributed to their plasticity and heterogeneity nature [128,132].
In addition, scRNA-seq studies have shown phenotypic modulation of fibroblasts into other cell types and vice versa
in atherosclerosis [131]. This phenotypic modulation is consistent with changes in gene expression profile of these
fibroblasts’ subpopulations in atherosclerosis. Epigenetic mechanisms are highly likely to be involved in regulating
fibroblast phenotypic transition in atherosclerosis. Several studies have unravelled the role of multiple epigenetics
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mechanisms in myofibroblasts differentiation. These studies have identified that the DNA methyltransferases, HATs,
HDACs and miRNAs including miR-21, miR-29, miR-132 and miR-155 associated with myofibroblast differentiation
[17,133–135]. However, studies investigating these epigenetic changes directly in atherosclerotic vessels are scarce.
This could be due to the limited number of well-defined fibroblasts in atherosclerotic lesions that are required for
epigenetic analysis. Combining lineage tracing experiments with scRNA-seq may advance our understanding of the
role of epigenetic changes in fibroblasts functions in atherosclerosis.

Epigenetic therapies for atherosclerosis
Although LDL oxidation remains a major culprit in the atherosclerotic process, studies appearing in rapid succession
are supporting the pivotal role of vascular inflammation and immune dysregulation as key drivers of atherosclerosis
[136]. Targeting epigenetic pathways controlling vascular inflammatory response represents indeed a new frontier
in pharmaceutical research and might contribute to reduce the burden of vascular disease in this setting [137]. Over
the last years, advances in epigenetic research have a led to a deep comprehension of chromatin dynamics and DNA
methylation thus paving the way for the development of several chromatin modifying drugs. Many of these com-
pounds modulate the activity of enzymes involved in DNA methylation or post-translational histone modifications
thus affecting transcriptional programs implicated in atherosclerotic vascular disease [138]. The general limitation
of epigenetic therapy is that compounds targeting epigenetic modifiers have broader effects. However, technical ad-
vances facilitating specific epigenetic editing may provide solution to address this limitation [83].

Dietary compounds such as folic acid are potent modulators of chromatin structure and can be considered promis-
ing epigenetic drugs in patients with cardiovascular disease [139]. The methyl-group responsible for DNA and histone
methylation originates from folate metabolism. In this process, folic acid is first reduced to dihydrofolate by dihydrofo-
late reductase and subsequently to tetrahydrofolate (THF), which after several steps is reduced to 5-methylTHF by the
methylenetetrahydrofolate reductase (MTHFR) enzyme [140]. Folate-enriched diets have shown to modulate DNA
methylation and to affect obesity and hypertension-induced endothelial dysfunction, liver steatosis (via modulation
of PPARα signaling) and adipogenesis [139,141]. Epigenetic remodeling induced by folate rescues obesity-related
pro-inflammatory transcriptional signatures and, interestingly enough, folate-induced chromatin modifications are
transmitted across multiple generations in rats [142]. The latter aspect highlights the notion that epigenetic therapies
may exert protective effects which extend to the progeny and further generations. Restoration of CpG methylation
by folates prevents the up-regulation of the mitochondrial adaptor p66Shc, a pivotal regulator of vascular oxidative
stress, endothelial dysfunction and atherosclerosis [143–145]. The clinical relevance of this observation is supported
by the notion that CpG methylation of p66Shc promoter is significantly reduced in peripheral blood leukocytes from
patients with coronary artery disease and high plasma homocysteine levels [143]. Vitamin B6, vitamin B12, betaine
and its precursor choline are dietary compounds also involved in the regulation of DNA methylation in atherosclero-
sis. For example, betaine supplementation in apolipoprotein ApoE deficient mice was able to prevent atherosclerotic
lesion formation and growth [146]. Along the same line, sulforaphane (SFN), an organosulfur compound found in
broccoli sprouts, and epigallocatechin-3-gallate (EGCG), the most abundant catechin in green tea, have also shown
to modulate vascular oxidative stress and inflammation [147]. SFN administration prevents pulmonary vascular re-
modeling, inflammation and fibrosis via inhibition of the Nrf2 pathway [148]. Moreover, SFN suppresses endothe-
lial inflammation by preventing TNF-α-mediated secretion of VCAM-1, ICAM-1, E-selectin, Endothelin-1 as well
as hyperglycemia-induced endothelial dysfunction [149]. EGCG also exerts anti-inflammatory effects. In cultured
endothelial cells, the compound was recently found to attenuate LPS-induced ICAM-1 up-regulation and to accel-
erate re-endothelialization in the diabetic vasculature via the Akt/eNOS pathway [150,151]. Of note, low doses of
EGCG prevented atherosclerosis in LDL receptor knockout mice [152]. Given the pivotal role of DNA CpG methy-
lation in the pathogenesis of atherosclerosis, over the last few years several studies investigated the potential rel-
evance of methylation-editing interventions [140]. Treatment of VSMCs with 5-azacytidine, a compound able to
inhibit DNA methyltransferase activity, resulted in reduced methylation of eNOS promoter and subsequent gene
up-regulation [153]. Moreover, 5-AZA administration was found to restore the CpG methylation pattern at the pro-
moter of mechanosensitive and inflammatory genes, thus preventing vascular remodeling and endothelial dysfunc-
tion [154]. Similarly, to what observed with 5-AZA, treatment with DNMT inhibitors induced demethylation of the
eNOS promoter thus favoring its transcription in vascular cells [155,156]. Given the impairment of NO signaling in
atherosclerosis, epigenetic-based approaches for the modulation of eNOS expression in this setting would represent
an attractive opportunity. Beside DNA methylation, pharmacological targeting of histone modifications is also a po-
tential epigenetic intervention to combat features of atherosclerotic vascular disease [157]. The HDACi Vorinostat
prevents eNOS uncoupling and NF-kB transcriptional programs in the diabetic vasculature [158], and has shown

1178 © 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons
Attribution License 4.0 (CC BY).

D
ow

nloaded from
 http://port.silverchair.com

/clinsci/article-pdf/135/9/1165/917865/cs-2020-1066c.pdf by guest on 19 April 2024



Clinical Science (2021) 135 1165–1187
https://doi.org/10.1042/CS20201066

to reactivate autophagic flux in the heart [159,160]. These findings are of potential relevance as defective autophagy
is emerging as an important underpinning of endothelial dysfunction and atherosclerosis in obesity [161]. Potent
anti-inflammatory effects were also observed with the HDACi sodium butyrate, which was shown to suppress NF-kB
signaling and NF-kB-dependent inflammatory molecules (i.e. TNF-α, IL-6, VCAM-1 and ICAM-1) in human en-
dothelial cells and circulating peripheral blood mononuclear cells [162,163]. Chronic treatment with butyrate also
prevents metabolic alterations in experimental models of obesity and diabetes by enhancing oxidative phosphory-
lation and β-oxidation in mitochondria [164]. Butyrate-dependent effects on mitochondrial metabolism are mainly
due to changes in chromatin accessibility and miRNA expression (i.e. miR-133a-3p) leading to transcriptional mod-
ulation of PGC-1α [156]. Moreover, Trichostatin A (TSA), an organic compound which selectively inhibits the class
I and II HDAC, was found to suppress the transcription of TNF-α, the latter being a detrimental signature involved
in the ET-1/NO system imbalance, endothelial dysfunction and atherosclerosis [165,166]. Inhibition of the histone
deacetylase SIRT1 by resveratrol has shown to attenuate inflammation, oxidative stress, and to rescue endothelial
dysfunction in experimental models and patients with cardiometabolic disturbances [167–169]. These effects on vas-
cular function were driven by inhibition of TNFα-induced activation of NAD(P)H oxidase and preservation of eNOS
activity [170,171]. However, the beneficial effects of resveratrol were not confirmed by other studies suggesting that
more research is needed in this area [172]. Pharmacological activation of SIRT3 has also demonstrated to prevent ac-
cumulation of mitochondrial ROS mainly via histone deacetylation and subsequent increase in MnSOD transcription
[173]. Beside HDACs, emerging evidence indicates that therapeutic targeting of acetyltransferases (HATs) contributes
to maintain vascular homeostasis by controlling transcriptional programs implicated in antioxidant and redox sig-
naling [174]. A clear example is represented by curcumin, an important bioactive component of turmeric that has
been widely applied as a traditional medicine to prevent and treat various diseases [175]. This drug acts by inducing
a proteasome-dependent degradation of the HAT p300 and the closely related CBP protein, thus reducing chromatin
accessibility on the promoter of genes regulating cellular growth, proliferation, survival, inflammation and oxidative
stress [174]. Of interest, chronic supplementation with the HAT inhibitor Curcumin improves vascular endothelial
function in healthy middle-aged and older adults by increasing NO bioavailability and reducing oxidative stress [176].

Pharmacological modulation of epigenetic reader proteins, namely BETs (bromodomain and
extraterminal-containing protein family) is gaining increasing attention. BETs—which include BRD2, BRD3,
and BRD4 and the testis-restricted BRDT—are epigenetic reader proteins that bind to specific acetylated lysine
residues on histone tails where they facilitate the assembly of transcription complexes including transcription factors
and transcriptional machinery like RNA Polymerase II [157]. Recent evidence indicates that BETs induce specific
transcriptional programs in endothelial cells, VSMCs and inflammatory cells [157]. BET inhibition, including the
use of specific chemical BET inhibitors like JQ-1, has shown to attenuate atherosclerosis and intimal hyperplasia in
experimental models [157]. These beneficial effects are explained by suppression of vascular inflammation as well as
by lipid-lowering effects. Indeed, the BET inhibitor apabetalone (RVX-208) stimulates reverse cholesterol transport
both in vitro and in vivo by inducing ApoAI expression and increasing HDL levels [177,178]. Notably, this drug
prevents hyperglycemia-induced up-regulation of IL-1β, IL-6 and TNF-α in human endothelial cells and in aortic
plaques from ApoE−/− mice [179]. Apabetalone has also shown to decrease systemic inflammation in humans,
as assessed by C-reactive protein levels [179]. Of clinical relevance, a pooled analysis of non-randomized studies
showed that treatment with apabetalone was associated with fewer cardiovascular events as compared with placebo
[180]. The recent phase III BETonMACE trial, designed to investigate the impact of apabetalone on cardiovascular
outcomes in 2425 patients with diabetes after an acute coronary syndrome, failed to meet the primary cardiovascular
endpoint of cardiovascular death, non-fatal myocardial infarction, or stroke [181]. However, the drug showed a
highly favorable profile on secondary endpoints, namely heart failure. Therefore, despite the negative results of
BETonMACE trial, there is still potential for future clinical trials targeting BET proteins in CVD in specific subsets
of patients. Future studies with apabetalone or other BET inhibitors should be performed in larger cohorts, and
possibly target more specific patient groups such as in patients with established CVD and an inflammatory risk
profile.

Concluding remarks
The cellular composition of atherosclerotic plaque is central to plaque stability. The atherosclerotic plaque represents
a highly complex tissue with multiple cell types each contributing in their own way at different stages of disease pro-
gression. The phenotypic modulation of different vascular cell types during plaque development is a consequence of

© 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons
Attribution License 4.0 (CC BY).

1179

D
ow

nloaded from
 http://port.silverchair.com

/clinsci/article-pdf/135/9/1165/917865/cs-2020-1066c.pdf by guest on 19 April 2024



Clinical Science (2021) 135 1165–1187
https://doi.org/10.1042/CS20201066

changes in gene expression. This phenotypic modulation is a cellular response to detrimental environmental stim-
uli. The underlying transcription-controlling epigenetic changes are reversible and pharmacologically modifiable. In-
deed, it is crucial to understand cell-specific epigenetic modifications that through gene expression changes contribute
to cell-specific functions within this complex plaque development process. Drugs targeting epigenetic modifiers have
global effects, a general limitation of epigenetic therapy, however, a recent study has shown that macrophage-specific
HDACi delivery reduced atherosclerotic plaque size raising hope for specific epigenetic editing and their functional
consequnces [83]. Advances in techniques targeting specific cell types and gene loci hold a great promise in address-
ing these limitations. Furthermore, the latest single cell technological advances hold great potential to identify cell
type-specific novel epigenetic targets.
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