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Ageing is a major risk factor for the development of cardiovascular disease (CVD) and can-
cer. Whilst the cumulative effect of exposure to conventional cardiovascular risk factors
is important, recent evidence highlights clonal haematopoiesis of indeterminant potential
(CHIP) as a further key risk factor. CHIP reflects the accumulation of somatic, potentially
pro-leukaemic gene mutations within haematopoietic stem cells over time. The most com-
mon mutations associated with CHIP and CVD occur in genes that also play central roles in
the regulation of inflammation. While CHIP carriers have a low risk of haematological malig-
nant transformation (<1% per year), their relative risk of mortality is increased by 40% and
this reflects an excess of cardiovascular events. Evidence linking CHIP, inflammation and
atherosclerotic disease has recently become better defined. However, there is a paucity of
information about the role of CHIP in the development and progression of heart failure, par-
ticularly heart failure with preserved ejection fraction (HFpEF). While systemic inflammation
plays a role in the pathophysiology of both heart failure with reduced and preserved ejection
fraction (EF), it may be of greater relevance in the pathophysiology of HFpEF, which is also
strongly associated with ageing. This review describes CHIP and its pathogenetic links with
ageing, inflammation and CVD, while providing insight into its putative role in HFpEF.

Introduction
Cardiovascular disease (CVD) and cancer are the two leading causes of deaths worldwide and ageing is a
major risk factor for the development of both of these major disease processes [1,2]. To a large extent, these
age-associated risks reflect the cumulative effects of exposure to ‘conventional’ shared risk factors such as
smoking and obesity. However, clonal haematopoiesis of indeterminate potential (CHIP) may provide
a further important link, particularly in the pathogenesis of CVD [3]. CHIP, also known as age-related
clonal haematopoiesis (ARCH), reflects the accumulation of potentially pre-leukaemic, somatic muta-
tions in haematopoietic stem cells (HSCs) over time [3,4]. However, whilst the risk of malignant transfor-
mation of CHIP is low, its presence confers a substantially greater risk of CVD (Figure 1) [3,5–9].

In this review, we will provide a primer on CHIP and its pathogenetic links with ageing, inflamma-
tion and CVD. In particular, we provide a framework to inform further investigation of the role of CHIP
as a risk factor and pathogenetic mediator in patients with heart failure, especially in heart failure with
preserved ejection fraction (HFpEF).
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Figure 1. Development of clonal haematopoiesis, associated risk factors and its role in heart failure (murine and humans)

Abbreviations: HSC, haematopoietic stem cells; EF, ejection fraction; FS, fractional shortening; HFH, heart failure hospitalisation;

HFrEF, heart failure with reduced ejection fraction; KO, knockout; LAD, left anterior descending artery; NT-proBNP, B-type natriuretic

peptide; TAC, transverse aortic constriction.

������
�����

�	
��	

�������	�
����
��	�	

�������	
�	�
�������
��

������������
����
�����
�����

�����������	
�
�����
���

���
���
������

�������������	�

��
�����
����������

����������	
��
��������	���
�	���	��

����������

Figure 2. Potential mechanistic links between CHIP and HFpEF

Abbreviations: CKD, chronic kidney disease; HFpEF, heart failure with preserved ejection fraction; IL-6, interleukin-6; IL-18, inter-

leukin 18; IL-1β, interleukin-1β.
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Table 1 Most frequent somatic mutations in CHIP

Gene Name Description

TET2 Ten-eleven-translocation-2 A methylcytosine dioxygenase that catalyses the conversion of
5-methylcytosine into 5-hydroxymethylcytosine. An epigenetic
regulator that can activate or repress transcription.

DNMT3A DNA methyltransferase 3A A de novo DNA methyltransferase.

Jak2 Janus kinase 2 Receptor tyrosine kinase involved in haematopoietic cytokine
signalling and myelopoiesis.

ASXL1 Additional sex comb-like 1 Polycomb chromatin-binding protein that is involved in the
transcriptional regulation of Hox genes.

PPMD1 Protein phosphatase, magnesium/manganese-
dependent 1D

Protein phosphatase involved in dephosphorylation and
inactivation of proteins in the DNA damage response pathway.

SF3B1 Splicing factor 3B, subunit 1 A component of the U2 small nuclear riboprotein that binds to the
3′ branch site in pre-mRNA splicing and processing.

SRSF2 Serine/Arginine-rich splicing factor 2 Required for 5′ and 3′ spliceosome assembly, splice-site selection,
U1 and U2 snRNP interactions with pre-mRNA, and alternative
splicing.

TP53 Transformation-related protein 53 Tumour suppressor transcription factor that responds to cellular
stress and DNA damage.

Adapted from [11]. Abbreviations: DNA, deoxyribonucleic acid; mRNA, messenger ribonucleic acid; snRNP, small nuclear ribonucleio-
protein.

CHIP: a primer
Definition and overview of CHIP
Current diagnostic criteria for clonal haematopoiesis of indeterminate potential (CHIP) include: (1) the absence of
overt haematological malignancy; (2) a normal peripheral blood count and (3) mutant cells bearing relevant driver
mutations in ≥2% of peripheral white blood cells (variant allele frequency [VAF] ≥ 2%) [10]. By the age of 70 years,
10–20% of the otherwise healthy population have a peripheral blood leucocyte clone with a VAF of at least 2% and
meet the criteria for CHIP [5,9,11–13]. Conversely, CHIP is found in fewer than 1% of patients under the age of 50
years [3,9,13].

CHIP can be detected via DNA sequencing of peripheral blood, saliva and tumour samples and, while
deep-sequencing methods may detect a VAF of less than 2%, the clinical consequences of these smaller clonal popu-
lations are unknown [14–16]. The majority of these age-associated mutations are cytosine (C) to thymine (T) transi-
tions, consistent with the signature of mutations seen across many different types of cancer [3,9]. The most frequently
encountered somatic mutations are within the driver genes ten-eleven-translocation-2 (TET2), DNA methyltrans-
ferase 3 [DNMT3]), Janus kinase 2 (Jak2) and additional sex comb-like 1 (ASXL1). CHIP-associated mutations are
also found, albeit less frequently, in other driver genes outlined in (Table 1) [17].

Triggers and risk factors for CHIP
Little is known about the triggers to clone initiation and expansion. The natural process of ageing results in an in-
creased likelihood of retaining somatic mutations [18,19]. At the molecular level, DNA damage, telomere shortening
and autophagy appear to be central mechanisms underlying age-related functional impairment and decline in the
durability of HSCs [20,21]. Chronic low-grade inflammation occurs with ageing (recently described as inflammage-
ing) and may also be partly responsible [22]. Indeed, exposure of mice to the pro-inflammatory mediator, tumour
necrosis factor-α (TNF-α), promotes the expansion of TET2 mutant clones and exposure to inflammatory stress in
myeloid cells results in the rapid increase in frequency and absolute number of TET2-mutated myeloid cells [23,24].
Exogenous stressors that directly provoke inflammation, DNA damage, telomere shortening and production of reac-
tive oxygen species may lead to the premature exhaustion of HSCs and an increased likelihood of retaining somatic
mutations at a younger age [25]. Consistent with this hypothesis, prior chemotherapy and radiotherapy are associ-
ated with an increased susceptibility to the retention of these somatic mutations in humans [26,27]. To date, little
attention has been paid to the environmental factors that may influence the development of CHIP but smoking, diet
and diabetes have been associated with risk for clonal expansion in humans [3,13,28] (Table 2). While there has been
speculation about a potentially heritable risk of CHIP, this was not confirmed in studies of mono- and di-zygotic
twins [29,30].
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Table 2 Risk factors for CHIP

Degree of risk References

Non-modifiable risk factors

Age ↑ [3,9,13]

Male sex ↑ [3]

Race

Hispanic ancestry ↓ [3]

Asian ancestry ↓ [34]

Modifiable risk factors

Smoking ↑ [13]

Diabetes ↑ [3]

Unhealthy diet ↑ [28]

Radiation exposure ↑ [26]

Chemotherapy exposure

Platinum agents (cisplatin, carboplatin and oxaliplatin) ↑ [26,157]

Topoisomerase inhibitors (e.g. etoposide) ↑

CHIP and risk for haematological malignancy and CVD
CHIP belongs to a spectrum of haematological pre-malignant states and is associated with the development of various
haematological malignancies including leukaemia, lymphoma and myeloma [3,26]. However, most carriers will not
develop malignancy and the progression rate is approximately 0.5–1% per year [31]. Malignant transformation or
progression generally requires the acquisition of multiple mutations and directly correlates with the mean VAF [3,10].
It is notable that patients found to have CHIP at the time of autologous stem cell transplantation are at an increased risk
for the subsequent development of therapy-related myeloid neoplasm (myelodysplastic syndrome and acute myeloid
leukaemia) [32].

Despite the low risk of progression to haematologically important diagnoses, all-comers with CHIP have a 40%
higher mortality than those without CHIP, and this striking excess is a reflection of cardiovascular events [3]. The
presence of CHIP confers a substantially increased risk for CVD independent of traditional risk factors including
diabetes and hypercholesterolaemia [3,5].

CHIP and inflammation
The effects of specific CHIP-associated mutations are yet to be fully described, but a core feature appears to be
the establishment of a pro-inflammatory state. Compared with those without CHIP, people with evidence of clonal
haematopoiesis have higher circulating concentrations of pro-inflammatory markers including interleukin-6 (IL-6),
TNF-α and monocyte chemoattractant protein 1 (MCP-1) [33,34]. Driver gene-specific analysis of a large cohort of
individuals with CHIP highlighted the association of TET2 mutations with increased IL-1β, whereas Jak2 and SF3B1
mutations were associated with higher circulating IL-18 [34]. Other, potentially less sensitive markers of inflamma-
tion such as white blood count (WBC), neutrophil count, C-reactive protein (CRP) and erythrocyte sedimentation
rate (ESR) are not normally elevated in people with CHIP [33,34]. It has been proposed that the role of inflammation
in CHIP is bidirectional, whereby inflammation initially predisposes to the development of CHIP, with consequent
unregulated pro-inflammatory cytokine release via a feedback loop [35]. Of the mutations associated with CHIP,
TET2, DNMT3A, Jak2V617F and ASXL1 are the most frequent. To date, it is unknown whether specific mutations in
the TET2, DNMT3A and ASXL1 genes have different clinical consequences. Several different mutations have been
reported to occur in each gene and the pathophysiologic effects of these have not yet been individually characterised
[3,10].

TET2
Mutation of TET2 was the first somatic genetic abnormality to be reported in blood cells from individuals with clonal
haematopoiesis without overt haematological malignancy [36]. TET2 is a member of a family of enzymes located on
chromosome 4q23 and is an epigenetic regulator of DNA methylation. It catalyses the oxidation of 5-methylcytosine
(5mC) to 5-hydroxymethylcystosine (5hmC) as the first step in cytosine demethylation [37]. This activity is crit-
ical for maintaining the normal development of HSCs. TET2 mutations are loss-of-function mutations associated
with a decrease in 5hmC availability and consequently this has been proposed as a potential diagnostic and prog-
nostic biomarker in haematological malignancy [38]. Whether it holds the same potential utility in the prediction
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of CHIP/TET2 mutation-associated CVD remains to be tested. TET2 also plays an important role in the regula-
tion of the immune system, and evidence suggests that TET2-mediated clonal haematopoiesis contributes to the
pathophysiology and progression of CVD through its induction of a pro-inflammatory state. TET2 controls the
secretion of pro-inflammatory cytokines through modulation of histone acetylation [39,40]. Lipopolysaccharide
(LPS) and interferon-γ (IFN-γ) stimulation of macrophages from TET2 deficient mice induces the hyperactiva-
tion of pro-inflammatory cytokines and chemokines including IL-1β and IL-6 [39]. Furthermore, loss of TET2 in
myeloid-derived cells results in a higher expression of IL-6 in mice [40]. In an unselected cohort of patients without
CVD, the presence of TET2 mutation was associated with over two-fold higher circulating concentrations of IL-8
than in those without this mutation [5].

DNMT3A
DNMT3A modulates gene transcription via the catalysis of DNA methylation and is the most frequently mutated
gene in people with CHIP. DNMT3A mutations are thought to be loss-of-function mutations although there are
reports that some mutations may lead to gain-of-function, conferring increased HSC self-renewal and subsequent
clonal expansion [41,42]. DNMT3A also has multiple roles in the regulation of inflammation. In particular, it controls
cytokine expression through the regulation of the scaffold protein IQ motif containing GTPase Activating Protein 2
(IQGAP2) in mast cells [43]. In patients with osteoarthritis, IL-6 gene activity is associated with the expression of
DNMT3A and significantly lower levels of IL-6 secretion are found in those with DNMT3A overexpression [44].
Furthermore, in patients with severe aortic stenosis, the presence of DNMT3A mutations has been associated with
significantly elevated T helper 17 cell (TH17): regulatory T cells (Tregs) ratio, representing pro-inflammatory T-cell
polarisation [8].

Jak2V617F

Of CHIP-associated genetic abnormalities, Jak2V617F gain-of-function mutation has been linked most clearly to in-
flammatory processes. In humans, it serves as a signal transmitter downstream of major cytokine receptors resulting
in activation of granulocytes, T cells, enhanced inflammation in macrophages and activation of neutrophil extracel-
lular traps [45]. V617F somatic mutation of the Jak2 gene reflects substitution of phenylalanine for valine at position
617. Jak2V617F mutations are commonly associated with myeloproliferative neoplasms including essential thrombo-
cythaemia (ET) and polycythaemia vera (PV) [46]. These conditions are associated with an increased risk of stroke,
myocardial infarction and deep vein thrombosis, primarily as a result of increased blood viscosity and a pro-coagulant
state. However, Jak2V617F mutations are increasingly recognised in individuals with normal peripheral blood counts,
and remain associated with increased cardiovascular mortality [13,47–49].

ASXL1
ASXL1 encodes an epigenetic regulator which binds to chromatin. It is one of the most frequently mutated genes
in myeloid neoplasms and its presence is associated with poor prognosis [50–52]. The majority of mutations are
frameshift or nonsense mutations and frequently coexist with TET2, IDH1 and IDH2 mutations [52–55]. However,
whether these truncations of the protein lead to loss- or gain-of-function remains controversial [56–58]. Mutation
of ASXL1 is common in patients with atherosclerosis and chronic ischaemic heart failure but the mechanisms con-
tributing to this increased CV risk are not defined [5,7].

CHIP and vascular disease
Atherosclerosis is an inflammatory disease, predominantly of the macro-vasculature. Almost 60% of elderly patients
with atherosclerosis have either no conventional risk factors (e.g. hypertension or hypercholesterolaemia) or have only
one risk factor, thus implying the presence of otherwise unidentified predisposing conditions [59]. CHIP has been
identified as a potential factor closely linked to the initiation and progression of atherosclerosis [5]. Microvascular
disease involves a complex interplay between upstream atherosclerosis, inflammation and endothelial dysfunction. Of
the CHIP-related mutations, the role of TET2 has been most clearly defined in relation to vascular disease and normal
TET2 function has been implicated in several important regulatory processes in both the macro- and microcirculation
[60–64]. These include suppression of vascular smooth muscle cell (VSMC) phenotypic transformation, protective
effects upon endothelial cells as well as anti-inflammatory and anti-atherogenic effects [60–64].
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Table 3 CHIP mutations and associated cardiovascular risk

Cohort Mutation Age Cardiovascular risk HR Ref

US population based Any CHIP mutation Median 58 years Incident coronary artery
disease

2.0 (1.2–3.5) [3]

Ischaemic stroke 2.6 (1.3–4.8)

PROMIS Any CHIP mutation <50 years Early onset myocardial
infarction (before the age of
50)

4.0 (2.4–6.7) [5]

ATVB 5.4 (2.3–13.0)

U.K. Biobank Any CHIP mutation Mean 61 years Myocardial infarction,
coronary artery
revascularisation, stroke or
death

1.27 (1.04–1.56) [6]

Chronic ischaemic HFrEF TET2 or DNMT3A Median 69 years Heart failure hospitalisation
or all-cause death

2.1 (1.1–4.0) [7]

Severe aortic stenosis
undergoing transcatheter
aortic valve replacement

TET2 or DNMT3A Median 83 years Risk of death following
transcatheter aortic valve
replacement

3.1 (1.17–8.08) [8]

Abbreviations: ATVB, Atherosclerosis, Thrombosis, and Vascular Biology Italian Study Group; HFrEF, heart failure with reduced ejection fraction; HR,
hazard ratio; PROMIS, Pakistan Risk of Myocardial Infarction Study.

CHIP and human atherosclerosis
Nested case–control analyses of prospective cohorts, that together enrolled 4726 participants with coronary artery
disease and 3529 controls, revealed that carriers of CHIP (DNMT3A, TET2 and ASXL1 mutations) have a risk of
coronary artery disease that is substantially greater than controls (Table 3). Indeed, patients with CHIP were twice
as likely to have a history of myocardial infarction or coronary revascularisation than people without CHIP [5].
CHIP-associated DNMT3A mutation was associated with a hazard ratio of 1.7 for coronary artery disease while
TET2 mutation conferred a hazard ratio of 1.9. Those with JakV617F mutation had the highest increased risk of coro-
nary artery disease, which was 12-times greater than people with no mutation. In younger patients, the association
between CHIP and atherosclerotic risk was even stronger than in older individuals [5]. In the same study, people
with CHIP without a prior diagnosis of coronary artery disease were three times more likely to have a computed
tomography (CT) coronary artery calcification (CAC) score of at least 615 Agatston units [5], the empirical cutoff
for the identification of older patients at high risk of coronary events [65]. This coronary artery calcification score
correlated positively with percentage VAF implying a ‘dose effect’ of the accumulation of mutated cells. Patients with
large mutant clone populations (VAF > 10%) without a prior diagnosis of coronary artery disease were 12-times
more likely to have a CAC score over 615 Agatston units [5]. In a large genome-wide association study, the presence
of CHIP-associated Jak2 mutation was associated with increased risk of coronary artery disease despite lower levels
of triglycerides and low-density lipoprotein (LDL) cholesterol [66].

Endothelial dysfunction is the earliest feature in the development of atherosclerosis. Patients with coronary en-
dothelial dysfunction (assessed via vasomotor responses to intra-coronary acetylcholine infusion) have significantly
higher prevalence of CHIP-associated mutations in comparison with people with normal coronary endothelial func-
tion (9.2 versus 1.5%, respectively) [67]. Furthermore, somatic mutations in ASXL1, DNMT3A and TET2 are asso-
ciated with higher levels of IL-6 and IL-8 in this group [67].

The potential association between CHIP, inflammation and CVD was assessed in 35416 people included in the
U.K. Biobank (Table 3) [6]. Participants did not have a history of CVD at inclusion but those with DNMT3A or
TET2 mutation had a 27% higher risk of CVD over 6.9 years of follow-up when compared with those without these
CHIP mutations [6]. This risk was larger in those with larger clones denoted by VAF >10% (hazard ratio 1.59 [95%
CI: 1.21–2.09]) [6]. Furthermore, to examine the potential interaction with inflammation, the effect of carrying a
genetic proxy of IL-6 inhibition (IL6R p.Asp358Ala) and simultaneous CHIP was also assessed [6]. In people with
large CHIP clones (VAF > 10%), the presence of this genetic proxy was associated with a 54% lower risk of CVD
events and was without effect upon CVD event risk in individuals without CHIP [6]. In those aged over 50 years with
a history of prior myocardial infarction and CHIP, each additional IL6R p.Asp358Ala allele attenuated the risk of
CVD events [6]. Not only do these genetic data provide further mechanistic insight concerning interactions between
CHIP, inflammation and CVD, they also give weight to the hypothesis that therapeutic inhibition of IL-6 signalling
may prove to be beneficial in patients with large CHIP clones and CVD.
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TET2 – preclinical vascular models
The first murine model to implicate the role of CHIP in atherosclerosis aimed to mimic human clonal haematopoiesis
by initially introducing a small number of mutant TET2 cells. This model used a competitive bone marrow transplan-
tation strategy to generate atherosclerotic prone, LDL receptor deficient (Ldlr−/−) chimeric mice with a small pro-
portion of TET2-deficient HSC (10% TET2−/− bone marrow) [68]. Importantly, when compared with control mice,
there was no difference in body weight, plasma cholesterol levels, glucose and systemic insulin sensitivity. Following
nine weeks of a high fat/high cholesterol diet, TET-2 deficient mice (10% knockout [KO]-BMT) developed aortic root
plaques that were 60% larger than those of control animals. This increased atherogenesis in 10% KO-BMT mice was
paralleled by an increase in total macrophage content in the intima, and these TET2-deficient macrophages exhibited
markedly increased expression of pro-inflammatory cytokines. In particular, the transcription of aortic arch IL-1β in
macrophages was doubled and treatment with the nucleotide-binding domain leucine-rich repeat containing receptor
3 (NLRP3) inflammasome inhibitor, MCC950, reduced the atherosclerotic plaque burden. Furthermore, IL-1β secre-
tion was completely abrogated in macrophages following treatment with MCC950, suggesting that TET2 deficiency
affects NLRP3-mediated IL-1β secretion. Subsequently, these findings have been replicated in other murine models of
TET2 deficiency, confirming the association of TET2 deficiency in accelerated atherosclerosis through induction of a
proinflammatory state [5]. There has been a suggestion from a small cohort of TET2 deficient atherosclerotic-prone
mice (n=30) that the response to IL-1β inhibition may be sex-dependent although this needs further exploration
[69].

VSMC-derived cells in mouse atherosclerotic plaques are generated by clonal expansion of cells within the ves-
sel wall [70–72]. TET2 is highly expressed in human coronary artery SMCs and, in response to arterial injury, TET2
loss-of-function exacerbates intimal hyperplasia after injury [73]. It has previously been demonstrated that rapamycin
induces contractile protein expression in human VSMCs [74]. Rapamycin-induced VSMC differentiation is prevented
by TET2 coronary arterial SMC knockdown, whereas TET2 overexpression induces a contractile phenotype suggest-
ing that TET2 acts a regulator of VSMC phenotypic transformation [73].

The endothelium exerts substantial vasoprotective effects. Abnormalities of autophagy homoeostasis, the natural
process regulating the removal of unnecessary or damaged cellular components, has been implicated in endothe-
lial cell dysfunction and the development of atherosclerosis, microvascular dysfunction and heart failure. TET2 is
an important regulator of autophagy and, following low shear stress, endothelial cell autophagy is reduced via the
down-regulation of TET2 [63]. Furthermore, in the ApoE−/− murine model, autophagy is up-regulated by TET2
overexpression and decreased by TET2 silencing [63].

JakV617F – preclinical vascular models
The JakV617F mutation has also been examined in a mouse model of atherosclerosis. Irradiated Ldlr−/− mice were
transplanted with bone marrow from either wild type or Jak2VF617 mutant mice and subsequently fed a high fat/high
cholesterol diet. Despite lower plasma cholesterol levels, the aortic root atherosclerotic lesion size was 1.6-fold higher
in Jak2VF617F mice in comparison with WT [75]. Furthermore, Jak2VF617F macrophages had greater expression of
pro-inflammatory cytokines and chemokines including, IL-1β, IL-6, IL-18, TNF-α and MCP-1 following challenge
with LPS [75]. Even in the absence of LPS stimulation, Jak2V617F mice had higher plasma levels of IL-18 compared
with WT controls [75]. However, these Jak2V617F mice developed marked erythrocytosis, thrombocytosis and neu-
trophilia which is more consistent with a myeloproliferative neoplastic phenotype than CHIP and these confounding
effects limit further interpretation. A subsequent experiment examined endothelial function in the common carotid
artery of LDLr−/− mice transplanted with Jak2V617F bone marrow cells following constrictive cuff placement across
the artery [76]. The carotid arteries of these Jak2V617F mice displayed increased endothelial permeability, reduced
endothelial continuity, increased intimal neutrophil extracellular trap accumulation with a subsequent increase in
thrombus formation [76]. Treatment with ruxolitinib, a Jak1/2 inhibitor, reduced endothelial cell apoptosis and im-
proved endothelial continuity in Jak2V617F mice [76].

Heart failure
While heart failure with reduced ejection fraction (HFrEF) is a consequence of impaired left ventricular systolic
function (left ventricular ejection fraction [LVEF] <40%), patients with heart failure and preserved ejection fraction
(HFpEF; LVEF >50%) reflect a less well understood group in whom ageing and inflammation may play a much larger
relative role [77]. Unlike HFrEF, no evidence-based therapies currently exist for the treatment of patients with HFpEF
which is more commonly associated with multi-morbidity, myocardial stiffening and macro- and micro-vascular
endothelial dysfunction [78–81].
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Human HFrEF and CHIP
The prevalence of CHIP in patients with HF has been assessed in 200 patients with chronic ischaemic HFrEF enrolled
in clinical trials of autologous stem cell therapy. In this relatively young cohort (median age 65 years) with a mean
LVEF of 31%, CHIP was present in 18.5%. [7]. DNMT3A mutations were observed in 30% of patients and 18% of
patients had mutations in TET2. These CHIP mutations were independently associated with heart failure hospital-
isation and death (HR 2.1; 95% CI 1.1–4.0) (Table 3) [7]. Notably, the majority of this mortality was attributable to
progressive heart failure with only one death occurring as a result of subsequent MI. There was a significant associa-
tion between clinical outcome and %VAF, further implying a ‘dose effect’ of CHIP [7]. VAF cut-off values of ≥0.73%
and ≥1.15% for TET2 and DNMT3A mutations, respectively, were predictive of poorer prognosis [82]. Circulating
inflammatory cytokines were not measured in this group but, in a separate very small cohort of six patients with
heart failure, the presence of DNMT3A mutation was associated with higher transcription of IL-1β and IL-6 when
compared with patients with HF and no DNMT3A mutation [83].

Human HFpEF and CHIP
HFpEF now accounts for more than 50% of patients with HF, the incidence of which rises substantially with age
[81,84]. The pathophysiology of HFpEF remains incompletely understood although structural and functional abnor-
malities are becoming better defined. Cardiac biopsies obtained from patients with HFpEF reveal structural alter-
ations including cardiomyocyte hypertrophy [85,86] and interstitial fibrosis [85,87–89], while functional changes in-
clude impaired myocardial relaxation [90] and increased myocardial stiffness [85,87,88]. Cardiac biopsies also reveal
higher levels of myocardial inflammatory cells in patients with HFpEF [91]. Post mortem findings from patients with
HFpEF reveal more extensive coronary artery disease, a greater burden of myocardial fibrosis and reduced microvas-
cular density compared with controls without heart failure [92]. Large vessel stiffening is also a feature of vascular
ageing and inflammation may, at least in part, contribute to the pathophysiology of HFpEF [93].

Inflammation appears to be more important in the pathophysiology of HFpEF than HFrEF [80]. Circulating
concentrations of inflammatory biomarkers including IL-1, CRP and growth differentiation factor 15 are high in
HFpEF [94–97] and more so in HFpEF than in HFrEF [98–100]. Network analysis of circulating biomarkers ob-
tained from patients with HFrEF and HFpEF in the BIOlogy Study to TAilored Treatment in Chronic Heart Failure
(BIOSTAT-CHF) cohort revealed important differences between the two heart failure phenotypes. In patients with
HFrEF, pathways related to cellular growth and metabolism were specifically up-regulated [80] while inflammatory
pathways were specifically up-regulated in those with HFpEF [80]. In addition to the inflammatory hypothesis for the
aetiology of HFpEF, micro- and macro-vascular disease involving the cardiac, pulmonary and peripheral circulation
are highly prevalent in patients with HFpEF [101].

Non-cardiac comorbidities are common in HFpEF, particularly obesity, diabetes, chronic kidney disease and hy-
pertension [79] and the systemic inflammatory state induced by these conditions has recently been shown to be
predictive of incident HFpEF but not HFrEF [102]. A novel paradigm to explain the underlying pathogenesis of HF-
pEF proposes that the systemic inflammatory state induced by these comorbidities induces coronary microvascular
endothelial dysfunction. The production of inflammation-induced reactive oxygen species limits the bioavailability
of nitric oxide with consequent impairment of cardiomyocyte protein kinase G activity, microvascular ischaemia,
fibrosis and left ventricular concentric remodelling [78,98].

Given the associations between HFpEF, vascular dysfunction, inflammation and ageing, we propose that CHIP
may be a particularly potent risk factor for the development, progression and potentiation of HFpEF. This hypothesis
is yet to be tested directly in humans.

Preclinical models – heart failure and CHIP
HSC-specific TET2 mutation is associated with the accelerated development of heart failure in murine models of
heart failure as a result of left ventricular pressure overload induced by transverse aortic constriction (TAC) and as a
consequence of chronic ischaemia induced by ligation of the left anterior descending (LAD) coronary artery [103].
While TAC has been employed as a murine model of HFpEF, after 2–3 weeks TAC results in a reduction in systolic
function and progression to HFrEF [104–106]. Following permanent ligation of the LAD, 10% TET2 KO mice had
significantly reduced ejection fraction (EF) and this was associated with increased transcription of pro-inflammatory
mediators including IL-1β, IL-18, Chemokine (C–X–C motif) ligand 2 (Cxcl2), Chemokine (C–C motif) ligand 2
(Ccl2) and 5 (Ccl5) [103]. Myeloid-specific TET2-deficient mice also had worse cardiac remodelling following LAD
ligation with lower LVEF and increased fibrotic area when compared with control mice. Ten percent TET2 KO mice
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subjected to TAC exhibit marked left ventricular hypertrophy with greater posterior wall thickness and cardiac fi-
brosis when compared with WT mice. These structural changes were also associated with higher concentrations of
circulating IL-1β when compared with control mice [103]. IL-1β cleavage is mediated by the NLRP3 inflammasome,
a complex intracellular protein which upon activation, cleaves procaspase-1 protein to functional caspase-1. The pri-
mary function of caspase-1 is the conversion of the inactive pro-inflammatory cytokines pro-IL-1β and pro-IL-18
into their active, potently pro-inflammatory states. Over time, TET2 KO mice subjected to TAC also developed sys-
tolic impairment. Importantly, administration of MCC950, an NLRP3 inflammasome inhibitor, was associated with
significant protection from adverse cardiac remodelling in both models [103].

Bone marrow-specific deletion of TET2 or DNMT3A is associated with cardiac hypertrophy, fibrosis and impaired
LV fractional shortening after infusion of angiotensin II in comparison with WT controls [107]. TET2 deletion pro-
moted the expression of IL-1β and IL-6, whereas DNMT3 deletion significantly increased the expression of IL-6
with a trend towards increased IL-1β [107]. Importantly, DNMT3A has been demonstrated to have both direct and
indirect roles in maintaining overall cardiomyocyte homeostasis and function [108]. Specifically, DNMT3A−/− en-
gineered human induced pluripotent stem cell-derived cardiomyocytes have up-regulation of pathways involved in
cardiac hypertrophy and cardiac proliferation pathways when compared with WT [108]. DNMT3A knock-out also
affected contraction kinetics, cell diameter was greater and intracellular lipid accumulation was greater in comparison
with the WT [108].

Myeloid-specific Jak2V617F mutation in mice is not associated with abnormalities of peripheral blood count, as
would be expected in human CHIP. These animals also do not appear to have abnormalities of cardiac structure or
function in the unstressed state [109]. However, following LAD ligation or TAC these mice have greater myocar-
dial macrophage infiltration and concentrations of IL-6 and IL-1β are greater than WT. It has been proposed that
Jak2V617F activates the IFN-γ receptor 1 Jak2 signalling transduction pathway (IFNGR1-Jak2-STAT1) resulting in the
release of pro-inflammatory cytokines [109]. In the myeloid-specific Jak2V617F model, this mutation was associated
with a more substantial deterioration in cardiac function, larger infarct size and increased cardiac fibrosis following
TAC/LAD ligation [109]. Furthermore, the adoptive transfer of Jak2V617F bone marrow cells into mice exposed to
chronic hypoxia was associated with increased right ventricular systolic pressure and increased muscularisation of
pulmonary vessels when compared with control chronically hypoxic mice [110].

While these models have focused upon the investigation of the effects of an exogenous injury or stressor, a re-
cent investigation has attempted to replicate the effects of CHIP in the otherwise ‘unstressed’ state. By transferring
TET2-mutant bone marrow cells into mice without prior myeloablative irradiation preconditioning, an attempt was
made to replicate the accumulation of somatically abnormal cells over time [111]. In this model, TET2-deficient car-
diac macrophages had an overrepresentation of immune response effectors, with specific increases in IL-1β, Ccl17
and IL1-receptor antagonist gene [111]. Concentrations of brain natriuretic peptide (released in response to cardiac
pressure overload) were significantly higher in TET2 mutant mice and these animals had greater posterior wall di-
mension, left ventricular end systolic volume, heart weight and cardiac fibrosis in comparison to control. While LVEF
declined slightly, all mice had an LVEF of ≥40% providing evidence that CHIP may be important in the development
of HFpEF [111].

Interplay between CHIP, ageing, inflammation and HFpEF
As outlined, both CHIP and HFpEF are considered to be diseases of the ageing population and both are associated
with a systemic pro-inflammatory state (Figure 2). The incidence and prevalence of HFpEF increases sharply with
age [112–116], and the mean age of patients with HFpEF in recent cohorts is 72 years [113–115,117–138]. In the
context of findings describing the prevalence of CHIP in all-comers, it is reasonable to expect that CHIP is found in
at least 10–20% of patients with HFpEF. However, this may be a substantial underestimate. CHIP was found in 27%
of patients with chronic ischaemic HFrEF aged between 70 and 79 years [7] and in an elderly population (median
age 83 years) with severe aortic stenosis undergoing transcatheter aortic valve implantation (TAVI), the prevalence of
CHIP was 33% [8]. In this cohort of patients with severe aortic stenosis, the presence of TET2 or DNMT3A was also
associated with an elevated pro-inflammatory subset of circulating leucocytes and conferred a profound increased in
mortality even after successful correction of the aortic valve stenosis (HR 3.1 [95% CI: 1.17–8.08]) [8].

In tandem with ageing, the prevalence of comorbidity increases in patients with chronic heart failure [139]. Indeed,
nearly half of patients with HFpEF have five or more comorbidities [140]. Many of these comorbidities are associ-
ated with a pro-inflammatory state and, furthermore, circulating markers of inflammation are predictive of incident
HFpEF [102]. Diabetes occurs in approximately 40% of male patients with HFpEF and 30% of female patients with
HFpEF [140]. Diabetes is associated with a two-fold increased risk of developing CHIP and individuals with both
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Figure 3. CHIP and future research

diabetes and CHIP have a higher burden of cardiovascular comorbidities than those with diabetes alone [6,141]. It
is unclear to what extent these pro-inflammatory comorbidities, considered to be central to the concept of inflam-
mageing , are the cause or effect of CHIP, but it is likely that a positive feedback loop is established between them
[35].

Younger patients with HFpEF are more likely to be male and have a history of obesity and diabetes [142–144], both
of which are strongly associated with chronic low-grade inflammation [142–144]. The presence of CHIP may be of
even greater relevance in these younger patients as an indicator of increased epigenetic age. Indeed, the presence of
any CHIP mutation confers a 4-year increase in epigenetic age, while CHIP-related TET2 mutation confers a 6-year
increase [145]. Deviations from chronological age towards an increased epigenetic age are associated with increased
risk of earlier mortality and age related morbidities [146,147].

In 5214 postmenopausal women included in the Womens Health Initiative dataset, the presence of any of the top
three CHIP-associated mutations (TET2, DNMT3A and ASXL1) was associated with incident HFpEF but not HFrEF
[148]. Women with premature menopause have increased risk of heart failure, stroke, coronary and peripheral arterial
disease [149]. Furthermore, systemic markers of inflammation, including CRP, are higher in post-menopausal women
than they are in those who are pre-menopausal [150,151]. It is of note that, in women included in the U.K. Biobank and
Womens Health Initiative, the prevalence of CHIP was 60% higher in women with premature menopause compared
with those without and the presence of CHIP was independently associated with incident coronary artery disease
[152]. Whether or not the presence of CHIP and early-onset menopause increases the risk of developing HFpEF is
unknown.
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CHIP and personalised cardiovascular management
Historical trials of anti-inflammatory therapy for the treatment of CVD have mainly been disappointing. However,
Canakinumab Anti-Inflammatory Thrombosis Outcome Study (CANTOS) has reinvigorated this area and highlights
CHIP as a potential biomarker to inform personalised therapy. CANTOS examined the effects of canakinumab, a
monoclonal antibody directed against IL-1β, in patients with a history of prior myocardial infarction and elevated
CRP. Canakinumab reduced CRP and the incidence of atherosclerotic cardiovascular events was decreased by 15%
versus control [153]. Notably, canakinumab also reduced heart failure hospitalisation and heart failure-related mor-
tality by 23% in patients who achieved a CRP level of <2 mg/l [154]. Given the association of CHIP with inflammation
and, in particular, the secretion of IL-1β (the immediate upstream precursor to IL-6), CHIP has been proposed as a
potential biomarker for personalised therapy with canakinumab and potentially other anti-inflammatory therapies.
Indeed, in an exploratory analysis of CANTOS, canakinumab reduced the relative risk of major adverse cardiovas-
cular events by 64% in those with TET2 mutations and by 15% in the treatment overall [155]. Whether or not this
impressive effect will also be seen in patients with HF is unknown.

Inzomelid, a novel small-molecule inhibitor of the NLRP3 inflammasome, is currently under clinical investiga-
tion for its safety and tolerability in humans (NCT04015076). Whether any potential effect is amplified in patients
with CHIP may be a logical future step in its assessment. Recent intriguing data reveal that the sodium-glucose
co-transporter 2 (SGLT-2) inhibitor, dapagliflozin, reduces IL-1β via up-regulation of serum β-hydroxybutyrate
[156]. Again, the potential benefits of personalisation of SGLT2 inhibitor therapy on the basis of CHIP status is an
intriguing but untested hypothesis.

Conclusion
While early attention has been paid to the potential role of CHIP in progression to haematological malignancy, it
has rapidly become clear that its association with CVD is much stronger. The mechanistic basis to its role in the
pathogenesis of atherosclerosis and vascular dysfunction is becoming clearer and further highlights the central role of
inflammation in these processes. Preliminary clinical data have highlighted the prevalence of CHIP and its association
with poorer outcome in patients with chronic ischaemic HFrEF, while animal models have provided further insight.
Given the important intersections among ageing, inflammation and vascular disease in the pathogenesis of HFpEF
we believe that CHIP reflects a ripe target for further assessment in this growing group of patients who currently
lack evidence-based therapy. Whether CHIP status will allow personalisation of therapy for these patients and others
remains an open avenue for future work, with the optimistic aim of harnessing the potential of anti-inflammatory
treatments for heart failure (Figure 3).
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