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The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that is responsi-
ble for the global corona virus disease 2019 (COVID-19) pandemic enters host cells via
a mechanism that includes binding to angiotensin converting enzyme (ACE) 2 (ACE2).
Membrane-bound ACE2 is depleted as a result of this entry mechanism. The consequence
is that the protective renin–angiotensin system (RAS), of which ACE2 is an essential compo-
nent, is compromised through lack of production of the protective peptides angiotensin-(1-7)
and angiotensin-(1-9), and therefore decreased stimulation of Mas (receptor Mas) and an-
giotensin AT2-receptors (AT2Rs), while angiotensin AT1-receptors (AT1Rs) are overstimulated
due to less degradation of angiotensin II (Ang II) by ACE2. The protective RAS has numerous
beneficial actions, including anti-inflammatory, anti-coagulative, anti-fibrotic effects along
with endothelial and neural protection; opposite to the deleterious effects caused by height-
ened stimulation of angiotensin AT1R. Given that patients with severe COVID-19 exhibit an
excessive immune response, endothelial dysfunction, increased clotting, thromboses and
stroke, enhancing the activity of the protective RAS is likely beneficial. In this article, we
discuss the evidence for a dysfunctional protective RAS in COVID and develop a rationale
that the protective RAS imbalance in COVID-19 may be corrected by using AT2R agonists.
We further review preclinical studies with AT2R agonists which suggest that AT2R stimula-
tion may be therapeutically effective to treat COVID-19-induced disorders of various organ
systems such as lung, vasculature, or the brain. Finally, we provide information on the de-
sign of a clinical trial in which patients with COVID-19 were treated with the AT2R agonist
Compound 21 (C21). This trial has been completed, but results have not yet been reported.

Introduction
The discovery in 2003 of angiotensin converting enzyme (ACE) 2 (ACE2) as the binding site and cellu-
lar entry point for the severe acute respiratory syndrome coronavirus (SARS-CoV) unexpectedly pointed
to a link between coronavirus infections and the renin–angiotensin system (RAS) [1]. The current global
Corona Virus Disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2), which also uses ACE2 as a cellular entry point [2,3], has revived interest and
research in this area, resulting in thousands of publications during the past 11 months.

ACE2 is highly expressed in lung alveolar type II and nasal epithelia [4], and therefore these cells serve
as main entry points for SARS-CoV-2 into the body. Many of the individuals who contract SARS-CoV-2
are either asymptomatic, or experience mild, common cold-like symptoms and recover soon. However,
∼20% of patients develop more serious COVID-19 disease, which is often driven by an excessive immune
response termed as a ‘cytokine storm’ [5]. In most cases, these patients develop pneumonia, which can lead
to respiratory failure and acute respiratory distress syndrome (ARDS) [6]. Many patients also experience
extra-pulmonary manifestations affecting heart, kidneys, brain and other organs with multi-organ failure
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Figure 1. Disruption of the protective RAS through SARS-CoV-2

This diagram depicts the ways in which SARS-CoV-2 infection can lead to disruption of the protective arm of the RAS. This disruption

involves: depletion of ACE2, decreased Ang-(1-7) and Ang-(1-9) (red downward arrows) with consequently less activation of Mas,

AT2R and MrgD receptors; and a lack of Mas-induced increases in AT2R expression, and vice versa (green arrow). At the same

time, an abundance of Ang II will enhance AT1R-mediated inflammation, coagulation and fibrosis (red upward arrow). Abbreviations:

Ang-(1-7), angiotensin-(1-7); Ang-(1-9), angiotensin-(1-9); AT1R, angiotensin AT1-receptor; AT2R, angiotensin AT2-receptor; Mas,

receptor Mas; MrgD, Mas-related G-protein coupled receptor member D. SARS-CoV-2 image credit: Desiree Ho for the Innovative

Genomics Institute (https://innovativegenomics.org/free-covid-19-illustrations/).

in the worst case [7]. These complications are not only a result of direct SARS-CoV-2 infection, but also of a systemic
endotheliitis causing coagulopathy and thromboembolic complications [8–10].

Given the current worldwide death rate of patients with COVID-19 of ∼3.0% and the unavailability of a specific
treatment as yet, there is a clear need for novel therapies. Such novel therapies for COVID-19 may reside in the RAS.
When considering the interactions between the SARS coronaviruses (SARS-CoVs) and the RAS with regard to the
development of potential new drugs for COVID-19, there are several aspects that are important.

One aspect is the mechanisms by which these viruses bind to ACE2 and their subsequent entry into human cells.
Such knowledge is particularly important because it may guide the way to the development of novel drugs that are
able to prevent SARS-CoVs’ cellular entry through inhibition of binding to ACE2.

Furthermore, the SARS-CoVs/ACE2 interaction leads to changes within the expression and ratio of other RAS
components, which are most likely of relevance for the severity of organ injury (Figure 1) [11]. This includes on the
one hand a rise in angiotensin II (Ang II) levels and its stimulatory and potentially harmful effects on inflammation,
coagulation and fibrosis via the AT1R, and on the other hand a shortage in protective mediators and mechanisms of
the so-called protective arm of the RAS [11,12]. This imbalance of the RAS in SARS-CoVs infection will be discussed
thoroughly later in this review. The impairment of the protective arm of the RAS in COVID-19 patients is the rationale
for several drug development projects and clinical trials. One such trial has tested safety and efficacy of an agonist
(Compound 21, C21) for the angiotensin AT2-receptor (AT2R), which is a receptor of the protective arm of the RAS, in
hospitalised patients with COVID-19 infection who do not require intensive care (Angiotensin II Type Two Receptor
Agonist in COVID-19 Trial (ATTRACT) study) [13]. The trial has been completed, but results have not yet been
reported.

This article will discuss how SARS-CoV-2 infection, ACE2 and AT2R biology and function are related. It will also
discuss interactions between the main receptors of the protective RAS, AT2R and Mas, and how this cross-talk may
play a role in COVID-19 pathology and treatment. We will further lay out the reasons why AT2R stimulation may be
effective in patients with COVID-19 infection, and provide information on the design of the clinical trial with C21
in COVID-19 patients.
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The protective RAS
Aside from the well-known classical RAS with Ang II acting on the AT1R as its main functional entity, there also
exists a so-called ‘protective’ or ‘alternate’ RAS that in general opposes the actions of the classical RAS [14]. The main
mediators of the protective RAS are angiotensin-(1-7) [Ang-(1-7)], angiotensin-(1-9) [Ang-(1-9)], alamandine, Ang
II and angiotensin III (Ang III), and the main receptors are AT2R, Mas, and Mas-related G-protein coupled receptor
member D (MrgD) (Figure 1) [14].

ACE2 is one of the main enzymes of the RAS, generating Ang-(1-7) directly from Ang II and Ang-(1-9) from
Ang I, which is then further processed by ACE to Ang-(1-7). Importantly, ACE2 does not only cause an increase in
Ang-(1-7) and Ang-(1-9) levels, but it also leads to a decrease in the substrates, Ang I and Ang II [15]. Ang-(1-7) exerts
its protective actions by binding to the receptor Mas [16] and also as a β-arrestin biased agonist at the AT1R [17,18].
Alamandine is generated from Angiotensin A, catalysed by ACE2, and is an agonist for the MrgD receptor. Ang III is
an endogenous agonist for the AT2R in peripheral tissues [19], but likely an AT1R agonist in the brain [20]. Ang II is
a potent agonist for both, the AT1R and the AT2R, but with slightly higher affinity for the AT2R. Nevertheless, since
in the vast majority of tissues and cells AT1R expression is much higher than that of AT2R, a net Ang II response is
usually a result of AT1R stimulation.

Both Mas and MrgD mediate protective actions that have been reviewed extensively elsewhere, with the ac-
tions of Ang-(1-7) via Mas particularly well-defined [21]. These actions of Ang-(1-7) via Mas include potent
anti-inflammatory, anti-oxidative, anti-proliferative, and anti-fibrotic actions, as well as inducing endothelial- and
neuroprotection [22]. Thus, a decline or loss of these protective Ang-(1-7) actions in COVID-19 may help exacerbate
the disease state. On the other hand, activation of AT2R exerts very similar powerful protective actions as Ang-(1-7)
at both the systemic and brain levels, and so AT2R agonists may substitute for the loss of natural Ang-(1-7) protective
mechanisms in COVID-19 disease. These AT2R actions are discussed in more detail in later sections of this review.

Interaction of the AT2R with other components of the
protective RAS
The interactions of the AT2R with other components of the protective RAS are multifaceted. As will be discussed in
detail in later paragraphs of this review, these interactions are important to understand the rationale of AT2R-agonists
for the treatment of COVID-19.

In general, according to current data it seems that the different arms of the protective RAS, i.e. those connected to
the AT2R and those connected to Mas/MrgD, reinforce each other by various ways of cross-talk. The main examples
of this type of cross-talk are discussed in the following paragraphs:

Effect of AT2R stimulation on the expression of other protective RAS
components
There are multiple publications reporting that AT2R stimulation leads to an increase in the expression of other protec-
tive RAS components thus constituting a type of positive feedback mechanism within the protective RAS: for exam-
ple, stimulation of AT2R leads to an increase in ACE2 expression and subsequently an increase in the protective RAS
hormones Ang-(1-7) and Ang-(1-9). To name some examples, an AT2R-mediated increase in ACE2 expression was
demonstrated in the renal cortex of male, obese rats on a high-salt diet [23] and of male obese Zucker rats [24], in the
plasma of type I diabetic rats with ischaemic renal injury [25], and, importantly, in fibrotic lungs in a monocrotaline
model in mice [26].

An AT2R-mediated increase in Mas expression was, for example, reported in the renal cortex of obese Zucker rats
and in lungs of rats after monocrotaline challenge [24,26].

This positive reinforcement within the protective RAS also works in the other direction with Mas-stimulation re-
sulting in increased AT2R expression as, for example, shown in injured femoral arteries of rats treated with Ang-(1-7)
[27].

Aligned regulation of protective RAS components
Apart from direct regulation of ACE2 by AT2R/Mas stimulation, there is also evidence in the literature that AT2R and
ACE2 expression is often regulated by various RAS-related or -unrelated compounds in an aligned way. For example,
tissue-protective compounds such as AT1 receptor blockers (ARBs), curcumin [28], glucagon-like peptide-1 receptor
agonists or dipeptidyl peptidase-4 inhibitors [29] caused a coincident increase in AT2R and ACE2 expression/activity.
In contrast, harmful compounds such as Ang II, applied at a hypertensive dose in male Sprague–Dawley rats [30],
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led to a decrease in both AT2R and ACE2 expression/activity. It is tempting to speculate that AT2R and ACE2 share a
common mechanism of gene regulation, which reacts to certain stimuli in the same way; however, this has not been
investigated as yet.

AT2R/Mas dimerisation
Another type of AT2R-/Mas-axis interaction is the heterodimerisation of AT2R and Mas.
AT2R/Mas-heterodimerisation has first been shown in rat astrocytes in vitro [31] and later in renal proximal
tubules and cortical homogenates from obese Zucker rats ex vivo and in human proximal tubule epithelial cells in
vitro [32]. Other organs and cell types have not been tested yet for AT2R/Mas-heterodimerisation, and consequently
knowledge about the occurrence and significance of AT2R/Mas-heterodimerisation is still fragmentary. What is
known is that at least in some tissues, in which AT2R and Mas form heterodimers, functionality of one receptor
depends on the presence of the other receptor [31,32].

With regard to cross-talk between the AT2R-related and the Mas-related arms of the protective RAS,
AT2R/Mas-heterodimerisation could cause that AT2R-agonists also stimulate Mas and Mas-agonists also stimulate the
AT2R. Moreover, heterodimerisation seems to cause cross-inhibition, which means that AT2R effects can be blocked
by a Mas antagonists and Mas effects by an AT2R antagonist [31,32].

Effects of Ang-(1-7) and Ang-(1-9) at the AT2R
Ang-(1-7) and Ang-(1-9) are both products resulting from ACE2 enzymatic activity with Ang-(1-7) derived from
cleavage of Ang II and Ang-(1-9) derived from cleavage of Ang I [22]. In the context of physiological and pathophysi-
ological actions of ACE2, including its role in COVID-19, focus is usually laid on the ACE2/Ang-(1-7)/Mas axis [11].
However, ACE2 enzymatic products are not only agonists for the receptor Mas, but also for the AT2R. Specifically,
Ang-(1-7) binds to the AT2R with low affinity and has agonistic properties at this receptor [33,34], and Ang-(1-9) has
been described as an endogenous AT2R agonist [35]. However, it is not entirely clear, whether actions of Ang-(1-9)
are really elicited by this hormone or whether the active component is actually its degradation product, Ang-(1-7).

The fact that Ang-(1-7) and potentially Ang-(1-9) have agonistic properties at the AT2R obviously means that in
case of changes in ACE2 expression and enzymatic activity such as in COVID-19, not only signalling and effects
mediated by the receptor Mas are affected, but also signalling and effects mediated by the AT2R.

In summary, there are several mechanisms, by which an alteration of one RAS component can have an impact on
the expression or functionality of other RAS components. The following section will discuss the potential nature of
such interactions, specifically how reduced ACE2 expression in COVID-19 may lead to changes within the protective
RAS and how this may impact the course of the disease.

Imbalance of the protective RAS in COVID-19
As discovered by Li et al. in 2003 for SARS-CoV [1] and by Zhou et al. and Wan et al. in 2020 for SARS-CoV-2
[2,3], SARS viruses bind to extracellular portions of ACE2 with their spike (S) glycoprotein. The process of
SARS-CoVs/ACE2 binding is facilitated through S-protein priming by transmembrane protease serine 2 (TMPRSS2)
[36,37]. This protease is a potential drug target for the treatment of COVID-19, since inhibitors of TMPRSS2, camo-
stat mesylate and nafamostat mesylate, successfully prevented SARS-CoV-2 cell entry into cells [37,38].

After binding of SARS-CoV viruses to ACE2, the virus/enzyme complex is internalised, which leads to loss of
enzymatically active ACE2 at the cell surface [37,39,40].

The loss of ACE2 enzymes and ACE2 enzymatic activity is the key event that triggers the resulting imbalance within
the RAS. There are two main initial consequences of a loss of ACE2 activity: (1) decreased synthesis of the protective
mediators Ang-(1-7), Ang-(1-9) and alamandine, and (2) increased levels of Ang II due to less degradation by ACE2
[11]. Or in other words, there is a weakening of the protective arm of the RAS and a strengthening of the potentially
harmful, classical arm of the RAS.

Experimental and clinical evidence for an imbalanced RAS in SARS-CoV
infection and consequences for the course of disease
As stated above, current knowledge about ACE2 suggests that in case of a SARS-CoV infection and a resulting decrease
in ACE2 activity, Ang II levels will rise, while levels of Ang-(1-7) [and also Ang-(1-9)] will decline. In the following, we
review studies which tested the above assumption about a RAS imbalance in COVID and whether such an imbalance
does have any impact on the course of the disease.
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The strongest evidence still comes from studies performed in relation to the first SARS-CoV/COVID outbreak
in 2003. A landmark study in this regard is a publication from Josef Penninger’s group from 2005. In this study,
the authors first demonstrated the crucial role of ACE2 for the process of SARS-CoV infection [39]. They found
that ACE2-knockout mice presented with a much lower pulmonary viral load than wild-type mice on day 2 after
intranasal inoculation with 100 μl SARS-CoV virus, thus supporting the importance of ACE2 as an entry gate for the
SARS-CoV virus. In further experiments within this study, the authors used a recombinant SARS-CoV surface-Spike
protein instead of the intact virus after showing that the Spike-Fc protein binds to ACE2 and reduces ACE2 surface
expression in vitro. After Spike-Fc protein ‘infection’ of C57Bl/6 mice, which were additionally challenged by acid
aspiration to induce acute lung injury (ALI), the authors indeed reported an imbalance of the RAS by showing that
pulmonary Ang II levels, which were already elevated after acid aspiration, increased further by Spike-Fc protein
infection [39]. Infection with the Spike-Fc protein and elevated Ang II levels coincided with a more severe course
of ALI in these mice. Moreover, the fact that pharmacological AT1R blockade with losartan (15 mg/kg) lessened the
severity of symptoms of ALI in these mice clearly supported the hypothesis that elevated Ang II levels caused by
virus-induced lowering of ACE2 expression and acting via the Ang II/AT1R axis play a crucial role for the severity of
disease [39].

In another study from the same group, the authors showed in three different, non-viral models of ALI and ARDS
(models of ALI induced by acid aspiration, sepsis or endotoxins) that the pathological changes within the lung, such as
reduced lung elastance and pulmonary edema formation, were more severe and mortality increased in ACE2-deficient
mice (a condition resembling SARS-CoV-induced ACE2 inactivation) compared with wild-type mice [41]. The re-
sponsibility of ACE2 deficiency for these differences was further substantiated by rescue experiments, in which
application of human recombinant ACE2 significantly attenuated the severity of lung injury and dysfunction in
ACE2-knockout mice, an effect that was not seen after application of mutated, non-functional recombinant ACE2
molecules.

This study also provided important evidence that ACE2 deficiency indeed causes an increase in Ang II levels by
demonstrating elevated Ang II content in lungs of ACE2-knockout mice when compared with wild-type mice in
the acid aspiration model [41]. Moreover, similar to the situation in the study with Spike-Fc protein infection, phar-
macological AT1R blockade lessened the severity of symptoms of ALI in ACE2-knockout mice, thus supporting the
detrimental role of elevated Ang II levels caused by ACE2 deficiency. Interestingly in the context of this article, the
authors also concluded that the AT2R protects against lung injury; however the only data provided in support were
the lack of reversal of severe lung injury in ACE2-KO mice by pharmacological AT2R blockade [41].

Taken together, these studies by the Penninger group provided strong support for the hypothesis that elevated Ang
II levels as a result of virus-induced down-regulation of ACE2 are an important driver of SARS-CoV induced lung
injury. A piece of information that was missing in these studies and would have rounded out the story was a proof
for the impairment of the protective arm of the RAS, specifically lower levels of Ang-(1-7) and Ang-(1-9) in lungs of
animals infected with the SARS-CoV virus, with the Spike-Fc protein or in ACE2-deficient mice.

It is still not really clear how much the imbalance of the RAS as predicted from theoretical considerations and as
observed in animal models actually occurs in humans infected with a SARS-CoV virus, and what the impact of such
an imbalance on the course of the disease in humans might be.

A few first studies have been published in which plasma concentrations of RAS components in COVID-19 patients
were determined during the current outbreak. These studies elicited conflicting results.

One study by Wu et al. measured plasma Ang II levels in 82 patients with COVID-19 and 12 patients who were
severely ill from other diseases, and found a significant increase in Ang II levels in COVID-19 patients, which cor-
related with the severity of the disease [42]. Measurement of Ang II was likely by enzyme-linked immunosorbent
assay (ELISA), but no details about methodology were reported. Liu et al. also reported significantly increased Ang
II plasma levels in 12 patients with COVID-19, which correlated positively with viral load and lung injury [43]. In
contrast, Henry et al. did not note any difference in plasma Ang II levels between 30 patients with COVID-19 and
12 healthy controls [44]. There were also no differences between hospitalised and discharged patients or between pa-
tients requiring intensive care unit support or not. The latter two studies used ELISA for the measurement of plasma
Ang II.

A very recent study by Kintscher et al. determined plasma angiotensin peptides by LC-MS/MS [45]. Plasma sam-
ples were derived from patients with or without COVID-19 admitted to the emergency room. This study also did
not find any significant differences in angiotensin peptide levels or ACE2 activity between patients with or without
COVID-19. However, as the authors state themselves, the study had several limitations including a low number of
patients (n=8–12 per group) and therefore insufficient statistical power.
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It is a limitation of all four studies that they only measured Ang II levels in plasma, which do not necessarily reflect
the situation in infected tissues like the upper respiratory tract and the lungs.

Mechanisms of weakening the protective actions of the AT2R by
SARS-CoV-2 infection
While it is discussed many times in the recent literature on RAS/COVID-19 interactions that a weakening of ACE2
enzymatic activity leads to a decrease in synthesis of Ang-(1-7) resulting in reduced stimulation of the receptor Mas
and a weakening of the protective effects throughβ-arrestin-biased agonism at the AT1R, there is much less awareness
that decreased ACE2 enzymatic activity also leads to reduced stimulation of the AT2R. This is for several reasons,
which are illustrated in Figure 1 and are as follows:

• less synthesis of the putative AT2R-agonist Ang-(1-9),
• less synthesis of Ang-(1-7), which is not only a Mas, but also a low-affinity AT2R-agonist,
• less AT2R-stimulation by Ang-(1-7) through cross-activation of Mas-AT2R-heterodimers, and
• less induction of AT2R-expression by Ang-(1-7) acting on the receptor Mas.

It is also important to note that decreased ACE2 enzymatic activity in COVID-19 would lead to increased levels of
the ACE2 substrate Ang II, that would conceivably stimulate the protective RAS via activation of AT2R. However, the
benefits of such AT2R activation by Ang II would largely be overridden or offset by its simultaneous activation of the
more predominant AT1R pathways. Thus, application of a selective AT2R agonist (or Mas agonist) would be required
to stimulate the protective RAS in COVID-19.

Rationale for AT2R agonists in COVID-19
One of many current attempts to find a treatment for patients with COVID-19 is to strengthen the protective arm of
the RAS, which is impaired in a multifaceted way by infection of cells with the SARS-CoV-2 virus as reviewed above.
Three such approaches, which are human recombinant ACE2 [46], formulations of Ang-1-7 (e.g. TXA127) [47] or
an AT2R agonist [13] are currently being tested in clinical trials in patients with COVID-19.

The following will discuss the rationale for AT2R agonists in COVID-19 including considerations on how
AT2R-agonists may correct for the above-discussed imbalance within the protective RAS and also on how direct
effects of AT2R stimulation on certain aspects of COVID-19 pathology may have a therapeutic effect in these pa-
tients.

Compensation for impairment of the protective RAS
As discussed in the preceding sections, infection of a cell or organism with a SARS-CoV virus leads to a reduction
in ACE2 enzymatic activity, resulting in a lessening of the synthesis of the protective RAS mediators Ang-(1-7) and
Ang-(1-9) and, subsequently, decreased stimulation of the receptor Mas and the AT2R [11].

While it is likely that in SARS-CoV-2 infections substituting ACE2 with recombinant human ACE2 or compensat-
ing for reduced Ang-(1-7) levels by application of recombinant Ang-(1-7) (or derivatives) may be promising strategies
to correct the virus-induced impairment of the protective RAS, it is less obvious why AT2R-agonists may also be used
for this purpose.

As discussed in the section on the imbalance of the protective RAS in SARS-CoV infection, AT2R stimulation is
impaired by various mechanisms. Collectively, these mechanisms weaken AT2R stimulation and signalling and this
can be counteracted by application of AT2R-agonists. Moreover, AT2R-agonists may also lead to stimulation of Mas
signalling through cross-activation of AT2R-Mas-heterodimers [31,48].

Anti-inflammatory effects of AT2R activation
As would be expected, COVID-19 infection elicits activation of the innate and adaptive immune systems, and in a
majority of cases their combined actions result in disease resolution [49–53]. In patients with more severe COVID-19
disease, those displaying ARDS and pneumonia, clinical findings indicate that multiple aspects of the innate and adap-
tive immune systems are compromised or dysregulated [50,51,53]. Of importance for the current article is the obser-
vation that this group of COVID-19 patients exhibits massively increased levels of circulating pro-inflammatory cy-
tokines, including interleukin (IL)-1β (IL-1β), IL-6, tumour necrosis factor (TNFα), IL-17 and interferon-γ, (IFN-γ)
[53,54]. The resulting chronic pro-inflammatory milieu, termed as a ‘cytokine storm’, is likely responsible for the un-
controlled inflammation within the lungs, heart, vascular endothelium and kidney, and recruitment of immune cells
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Figure 2. Potential attenuation of severe COVID-19 by AT2R agonists

This diagram illustrates where AT2R agonists may be of potential benefit in COVID-19 following SARS-CoV-2 infection;

at the anti-inflammatory, endotheliopathy, coagulopathy, stroke and anti-fibrotic levels, as indicated by blue arrows. Ab-

breviation: AT2R, angiotensin AT2-receptor. SARS-CoV-2 image credit: Desiree Ho for the Innovative Genomics Institute

(https://innovativegenomics.org/free-covid-19-illustrations/). Epithelial cell pictures are reproduced from Servier Medical Art Com-

mons Attribution 3.0 Unported License. (http://smart.servier.com). Servier Medical Art by Servier is licensed under a Creative Com-

mons Attribution 3.0 Unported License.

(macrophages, neutrophils, T cells) to these sites [7,55]. The subsequent release of pro-inflammatory cytokines from
these cells and generation of reactive oxygen species results in endothelial cell and tissue damage [8,51,56].

As indicated in Figure 2, the excessive immune response in patients with severe COVID-19 may lead to various
pathological outcomes: coagulopathy with associated venous and arterial thrombosis, subsequent stroke and possible
death or disability [57,58]; multi-organ failure, partly due to coagulopathy, and possible death [59–62]; deleterious
effects on vital organs, including acute kidney injury [63,64], myocarditis [65] and pulmonary fibrosis [66–69].

Considering the excessive pro-inflammatory response and the decreased anti-inflammatory capacity of the
ACE2/Ang-(1-7) system following COVID-19 infection, anti-inflammatory agents would provide a logical thera-
peutic strategy [52,70]. Indeed, a number of recent clinical studies have indicated beneficial effects of corticosteroids
administered systemically to patients with ARDS in severe COVID-19 disease [71].

It is well-known that AT2R agonists exert powerful anti-inflammatory actions [72–75]; thus, they may be
prime candidates to compensate for the loss of ACE2/Ang-(1-7) protective mechanisms and help offset the large
pro-inflammatory response in COVID-19 patients with severe disease (Figure 2). Based on the literature available,
the anti-inflammatory effects associated with AT2R may result from direct effects on immune system cells, as well as
effects on non-immune cells.

Direct anti-inflammatory AT2R actions via cells of the innate and adaptive
immune systems
Innate immune system
In general, initial COVID-19 infection will result in activation of the innate immune system, including monocytes,
macrophages, dendritic cells and the complement system [50,51,53]. Human monocytes, macrophages and dendritic
cells contain AT2R [75–77] and a number of studies indicate that activation of this angiotensin receptor subtype in-
terferes with certain aspects of the innate immune system response. For example, in vitro studies have demonstrated
that the AT2R agonist CGP42112 inhibits the IL-1β induced activation of monocytes [78]. Furthermore, a number
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of studies indicate that AT2R activation interferes with Toll-Like Receptor (TLR) – induced pro-inflammatory mech-
anisms. TLR-induced activation of macrophages is well established [79], and in the case of COVID-19 infection this
involves endosomal TLR3 and TLR7/8, as well as the indirect activation of cell-surface TLR4, via virus-induced oxi-
dised phospholipids [80]. Interestingly, the AT2R agonist C21 exhibits anti-inflammatory actions in TLR4-mediated
inflammation in THP-1 macrophages, mediated via IL-10 production [76]. Another study, using human monocyte
cell lines, has demonstrated that inflammatory responses mediated by TLR4 were attenuated by C21 acting to re-
duce pro-inflammatory cytokines [81]. Of direct importance to the immune pro-inflammatory response occurring
after COVID-19 infection, C21 has been shown to exert significant anti-inflammatory effects in the lung, via in-
fluences on TLR4 and macrophage infiltration [82]. Specifically, systemic administration of C21 into rats that had
undergone bleomycin-induced pulmonary inflammation and fibrosis prevented the up-regulation of TLR4 and less-
ened the migration of CD68+ macrophages in the lung [82]. In another study, investigators used neonatal rats with
hyperoxia-induced lung injury to evaluate the anti-inflammatory effects of an AT2R agonist. Daily treatment of
these rats with dKcAng-(1-7), a specific AT2R ligand, attenuated the pulmonary influx of macrophages [83]. The
anti-inflammatory effects of AT2R activation are not confined to monocyte/macrophage-mediated mechanisms, as
indirect evidence suggests that dendritic cells are another locus of action. Specifically, human dendritic cells that
underwent differentiation in the presence of the AT2R antagonist PD123319, displayed a more pro-inflammatory
phenotype [84]. A more recent study indicates that the potent anti-inflammatory effect of ACE inhibitors on den-
dritic cells post-myocardial infarction is at least partly due to activation of AT2R [85]. As yet, there is no evidence for
modulation of the complement system by AT2R agonists.

Adaptive immune system
COVID-19 infection also results in activation of the adaptive immune system, albeit over a more delayed time frame
[50,51,53]. T helper (CD4+) and cytotoxic (CD8+) T cells are central to the adaptive immune response [86]. Interest-
ingly, a feature of COVID-19 disease is that patients display lymphopaenia, with a reduction in the absolute levels of
all types of T cells, of natural killer (NK) cells and also B cells [51,53]. While this lymphopaenia would compromise the
adaptive immune response, studies have also demonstrated that the activity of CD8+ cells and of pro-inflammatory
Th17 cells is increased in COVID-19 patients, and may be partly responsible for tissue damage in patients with se-
vere disease [51,52]. Thus, agents that can counter the adaptive immune system pro-inflammatory response may be
of value to COVID-19 patients. A number of studies have concluded that AT2R are not expressed at high levels on
cells of the adaptive immune system [87,88]. However, T cells and NK cells do express AT2R at low levels [89,90], and
increased levels of AT2R-expressing T cells of CD4+ and CD8+ varieties appear to become important under certain
disease conditions with a strong pro-inflammatory component. For example, CD4+ AT2R+ FoxP3+ were identified
as a novel T-regulatory cell subset that was up-regulated in a rat model of myocardial infarction (MI) and in hu-
man heart failure patients, and acted anti-inflammatory via the secretion of IL-10 [91]. Myocardial transplantation of
these CD4+ AT2R+ FoxP3+ T cells decreased infarct size and improved cardiac function in the rat MI model [91]. A
similar study identified a cardioprotective CD8+ AT2R+ T-cell population, which increased during ischaemic heart
injury. These cells secreted IL-10 upon AT2R stimulation by C21, exhibited decreased IL-2 and IFN-γ expression,
and contributed to maintaining viability of cardiomyocytes [92]. The protective- and anti-inflammatory effects of
AT2R-expressing CD4+ T cells were also apparent in thoracic aortic aneurysm (TAA) [93]. Further studies which
utilised naı̈ve T cells isolated from mouse spleen and lymph nodes demonstrated that AT2R stimulation with C21
under polarising conditions modified their differentiation, resulting in a less pronounced pro-inflammatory pheno-
type as indicated by lowered expression of IFN-γ and IL-17 and increased expression of the marker of regulatory T
cells, FoxP3 [94]. Despite these studies that demonstrate protective, anti-inflammatory actions of AT2R-expressing T
cells, one study indicates the opposite. Namely, Caillon et al. [95] demonstrated that AT2R-activation of Th17 cells
induced secretion of the pro-inflammatory cytokine IL-17 that drove flow-mediated outward arterial remodelling,
and proposed that this is necessary for collateral artery growth in ischaemic disease – once again, a beneficial action
of AT2R activation, but opposite in terms of inflammatory response. As stated above, AT2R are also expressed on NK
cells (particularly uterine NK cells) [89,96]. However, their specific roles in terms of influencing the immune system
are unknown.

Thus, there is evidence that points to direct beneficial actions of AT2R activation via cells of the innate and adaptive
immune systems, which could be beneficial during the hyperinflammatory state in COVID-19. However, based on
the available evidence the greater effect of AT2R on the immune system is via actions at non-immune tissues and
cells.
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Anti-inflammatory AT2R actions via non-immune cells and tissues
There is a host of data indicating powerful anti-inflammatory actions of AT2R within the parenchymal tissues of
multiple organ systems throughout the body [73,75]. This includes the lungs [26,82,83,97], heart [85,92,98,99],
kidney [100–103], vasculature [72,73,102,104–108] and the central nervous system (CNS) [109–116]. These
anti-inflammatory actions of AT2R activation at non-immune tissues and cells largely involve interruption of in-
tracellular signalling pathways that lead to production of pro-inflammatory cytokines, and also through induction
of pathways that elicit production of anti-inflammatory cytokines such as IL-10 [73,75,116]. The cellular and intra-
cellular actions of AT2R have been recently reviewed in detail elsewhere [75,117], and the objective of the current
article is not to re-review them here. Rather, we have utilised a diagram (Figure 3) to illustrate and summarise the
anti-inflammatory actions of AT2R at various tissues/cells, and have included the intracellular signalling pathways that
are likely of importance in these actions. Here, we have emphasised those anti-inflammatory effects that would likely
be important for helping to counter the deleterious overactivation of pro-inflammatory mechanisms in COVID-19
patients, in particular those that subsequently lead to tissue fibrosis. Also included in the diagram are vascular and
CNS actions of AT2R, that are discussed in more detail in subsequent sections of this review.

As shown in Figure 3, literature evidence points to several intracellular steps that lead to a reduction in the pro-
duction of pro-inflammatory cytokines following AT2R stimulation [117]. In brief, agonist-induced AT2R stimula-
tion results in activation of tyrosine and serine/threonine phosphatases via an inhibitory G-protein [118–120]. In
turn, these phosphatases make less nuclear factor-κB (NF-κB) available for translocation to the nucleus, and in-
hibit extracellular signal-regulated kinase 1/2 (Erk 1/2) and Janus kinase (Jak)/signal transducer and activator of
transcription (Stat) pathways through dephosphorylation events [72,120]. The ultimate result is less production of
pro-inflammatory cytokines. On the other hand, AT2R stimulation of tyrosine and serine/threonine phosphatases
and of Rac-α serine-threonine kinase (Akt) elicits activation of endothelial nitric oxide synthase (eNOS) and genera-
tion of nitric oxide (NO) and cyclic guanosine monophosphate (cGMP), the latter exerting anti-inflammatory effects
[121]. While the mechanisms of AT2R-induced IL-10 production are not established, it has been demonstrated that
they require production of NO [102].

In summary, it is clear that activation of AT2R exerts potent anti-inflammatory effects, via direct actions on im-
mune system cells and non-immune tissues. Considering the dysregulated immune system and cytokine-storm ob-
served in COVID-19 disease, selective AT2R agonists may represent a viable approach for alleviating this excessive
pro-inflammatory situation in COVID-19 patients, and in doing so help to reduce the development of downstream
heart, kidney and lung complications (Figure 2).

Endothelial protection and anti-coagulation
Quite early during the pandemic it became clear that COVID-19 patients die not only from viral pneumonia
causing ARDS and hypoxic respiratory failure, but also from cardiovascular complications, thrombotic events and
multi-organ failure [122,123]. A unifying cause for these quite different pathologies may originate from the vascular
endothelium [7–9,124].

Generally, there are two potential causes for endotheliopathy in COVID-19: either direct viral infection of endothe-
lial cells or the so-called cytokine storm as described earlier in this review. Evidence indeed exists for the presence of
both pathomechanisms in COVID-19-associated endotheliitis. Direct viral infection was demonstrated by Varga et
al. and Ackermann et al. in endothelial cells from various vascular beds in biopsies from patients with a severe course
of COVID-19 [10,125]. Regarding endothelial cell injury during COVID-19-induced cytokine storm, it is generally
known, that increased plasma levels of cytokines cause direct cell injury by binding to their respective membrane
receptors and initiating pro-inflammatory signalling cascades and eventually cell apoptosis [55,126,127]. Moreover,
cytokines promote recruitment of cytotoxic leucocytes by increasing expression of adhesion molecules on the surface
of endothelial cells [128].

Regardless of the origin of the pathological changes in endothelial cells in COVID-19, injury of these cells leads
to their dysfunction, which is characterised by a shift of the vascular equilibrium towards more vasoconstriction,
loss of the anti-coagulant state, endothelial cell death and barrier-breakdown with subsequent tissue oedema and
facilitated infiltration of inflammatory cells [8,9]. In addition, inhibition of ACE2 enzymatic activity in COVID-19
prevents degradation of bradykinin by ACE2 thus promoting bradykinin-mediated vascular leakage [129]. These
changes contribute to the development of ARDS, to impaired function of other organs such as kidney, heart or brain
and to thromboembolic complications [8,9].

Several clinical studies have indeed reported an increase in markers of endothelial dysfunction and coagulation
indices [e.g. von Willebrand factor (VWF) antigen, VWF activity, factor VIII activity, D-dimers, fibrinogen, fibrin
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Figure 3. Anti-inflammatory effects of AT2R activation at organ and intracellular levels

This diagram illustrates the anti-inflammatory effects that have been described following agonist-induced AT2R activation, at both

the whole organ and intracellular levels. Numbers in parentheses next to the organs are reference numbers – see References

list. Abbreviations: Akt, Rac-α serine-threonine kinase; AT2R, angiotensin AT2-receptor; cGMP, cyclic guanosine monophosphate;

eNOS, endothelial nitric oxide synthase; ERK1/2, extracellular signal-regulated kinase 1/2; MKP-1, mitogen-activated protein ki-

nase phosphatase 1; NF-κB, nuclear factor κB; NO, nitric oxide; PP2A, protein phosphatase 2A; SHP-1, Src homology region 2 do-

main-containing phosphatase-1; Stat, signal transducer and activator of transcription. Organ pictures are reproduced from Servier

Medical Art Commons Attribution 3.0 Unported License (http://smart.servier.com). Servier Medical Art by Servier is licensed under

a Creative Commons Attribution 3.0 Unported License.
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degradation product; prolonged prothrombin time and partial thromboplastin time], in patients with COVID-19
[7,122,130]. Importantly, several of these markers correlated positively with the prognosis for the individual patient
[130]. Other studies reported microangiopathy, capillary microthrombi and disseminated intravascular coagulation
by histological examination of post-mortem lungs from COVID-19 patients [125,131].

There is good experimental evidence to support the assumption that AT2R-stimulation will act in a protective
manner in the event of SARS-CoV2 induced endothelial injury, although data from preclinical or clinical studies in
SARS-CoV2-infected individuals is yet to be obtained. The clinical trial with the AT2R-agonist C21 in patients with
COVID-19 (reviewed later in this article) will presumably provide such data [13].

Generally, AT2R-stimulation promotes mechanisms which are beneficial for endothelial function such as activation
of eNOS leading to NO generation or synthesis of the vasodilatory mediator epoxyeicosatrienoic acid from arachi-
donic acid [121,132,133].

Additionally – as reviewed above – stimulation of the AT2R acts anti-inflammatory, which also applies to the vas-
culature. A study by Sampson et al. in human umbilical vein endothelial cells and in ApoE−/− mice fed a high-fat
diet provided an in-depth examination of potential anti-inflammatory effects of AT2R-stimulation by C21 in the
vasculature and found an inhibition of adhesion molecule expression and monocyte adhesion in vitro and an at-
tenuation of leucocyte adhesion in vivo [105]. The authors could further show an AT2R-mediated inhibition of
NF-κB activity resulting in reduced IL-6 and TNFα cytokine expression. This latter observation confirmed prior
reports about an inhibition of the key regulator of cytokine transcription, NF-κB, by AT2R-stimulation in rat fe-
tal vascular smooth muscle cells and human dermal fibroblasts [72,134]. An anti-inflammatory effect in vascula-
ture, i.e. a reduction in monocyte infiltration in aortas from deoxycorticosterone acetate-hypertensive rats, has also
been shown for the ACE2-dependent, endogenous AT2R-agonist Ang-1-9 [135]. Notably, both studies identified
AT2R-mediated, anti-inflammatory effects, which specifically counteracted pro-inflammatory mechanisms relevant
for COVID-19-associated endothelial injury.

As stated above, endothelial barrier breakdown and increased vascular permeability are important factors con-
tributing to tissue oedema, which is a main reason for impaired gas exchange in ARDS [136]. By measuring hy-
draulic permeability in rat mesenteric venules, Ereso et al. could show that AT2R-stimulation by the selective agonist
CGP42112A or by Ang II under concomitant AT1R-blockade attenuated microvascular fluid leakage, which had been
induced by platelet activating factor [137]. Further evidence for a reduction in vascular leakage by AT2R-stimulation
comes from a stroke model in mice, in which treatment with C21 decreased blood–brain barrier (BBB) permeability
and subsequent development of cerebral oedema [111].

Finally, a few studies have suggested that the AT2R has anti-thrombotic effects, which could help to counteract
the pro-coagulant state in COVID-19. Chabielska et al. described that the AT1R-blocker Losartan significantly re-
duced thrombus weight in a model of vena cava thrombosis in Wistar rats with two-kidney, one-clip induced renal
hypertension [138]. The effect of Losartan was blocked by the AT2R-antagonist PD123319 indicating that indirect
AT2R-stimulation by elevated levels of Ang II acting on the unopposed AT2R was the underlying mechanism of the
Losartan effect.

Interestingly in the context of COVID-19 induced hypercoagulability, a study by Balia et al. found an inhibitory ef-
fect of AT2R-stimulation on LPS-induced tissue factor expression in peripheral blood mononuclear cells [139]. Apart
from mononuclear cells, tissue factor is also highly expressed by vascular, subendothelial cells and is essential for the
initiation of the clotting cascade in response to inflammation or tissue injury [140]. Tissue factor on monocytes, which
is increased by elevated cytokine levels and also by Ang II, plays a key role in triggering disseminated intravascular
coagulation and thrombotic microangiopathy in bacterial or viral sepsis [140]. Increased tissue factor expression on
monocytes has also been shown for patients with a severe course of COVID-19, and expression levels correlated with
severity of disease [141]. Consequently, experimental data by Balia et al. showing an AT2R-mediated reduction in
tissue factor expression on monocytes points to a potential therapeutic effect of AT2R-agonists in COVID-19 related
coagulopathy, which, however, still needs to be proven in clinical studies [139].

Anti-fibrotic effects of AT2R activation
It is established that pulmonary inflammation is a major causative factor in the development of pulmonary fibrosis
[142,143]. As indicated in Figure 2 one of the major long-term outcomes in COVID-19 is the development of pul-
monary fibrosis [66–69], likely due to the hyperinflammatory state. In fact, pulmonary fibrosis is one of the patholog-
ical situations in which AT2R agonists may have beneficial effects for COVID-19 patients. This assumption is based
on several preclinical studies in which AT2R-agonists were proven to have profound anti-fibrotic activity within many
disease states, including pulmonary-, cardiac-, renal-, aortic and pancreatic fibroses. These anti-fibrotic actions have

© 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons
Attribution License 4.0 (CC BY).

2997

D
ow

nloaded from
 http://port.silverchair.com

/clinsci/article-pdf/134/22/2987/897801/cs-2020-0922c.pdf by guest on 10 April 2024



Clinical Science (2020) 134 2987–3006
https://doi.org/10.1042/CS20200922

recently been extensively reviewed [117,144], and so the description of all of these actions will not be recapitulated
here. Rather, we focus on the pulmonary anti-fibrotic actions, that are likely of direct importance to patients with
COVID-19 disease.

Two preclinical studies have demonstrated that the AT2R agonist C21 prevents and reverses pulmonary fibrosis.
In the first, daily systemic treatment of rats with C21 beginning 2 weeks after induction of pulmonary fibrosis with
monocrotaline reversed interstitial and perivascular fibrosis [26]. In addition, C21 treatment decreased transforming
growth factor-β mRNA expression, which was greatly increased in the monocrotaline-treated rats [26]. In the second
study from the same group, pulmonary fibrosis was induced in rats by intra-tracheal administration of bleomycin and
systemic C21 administration began either at the same time as bleomycin (prevention) or 3 days later (treatment); in
both cases, C21 administration continued on a daily basis for 2 weeks. In the prevention paradigm, C21 significantly
attenuated the formation of pulmonary fibrosis and in the treatment paradigm, fibrosis progression was almost com-
pletely stopped from the start of the day of the treatment [82]. Associated markers of fibrosis, such as collagens 1
and 3, connective tissue growth factor, IL-13, and tissue inhibitor of matrix-metalloproteinases were all reduced by
C21-treatment [82].

The importance of these findings is manifold: they not only proved the principle that AT2R activation by an agonist
is beneficial in pulmonary fibrosis, they also laid the groundwork for the development of C21 as a potential therapeutic
for idiopathic pulmonary fibrosis [145]. In addition to the above described anti-fibrotic actions, the attenuating effects
of AT2R agonists on pulmonary inflammation will presumably have a preventive effect with regard to the development
of pulmonary fibrosis in patients with a severe, hyperinflammatory courses of COVID-19 [26,82,97]. However, this
assumption will have to be proven in future clinical studies. The ongoing trial with C21 in patients with COVID is
most likely too short (7 days treatment) and does not include enough patients to detect any potential effects of C21
on the development of pulmonary fibrosis [13].

CNS effects of AT2R activation
The most common neurological complications of severe COVID-19 are encephalitis and ischaemic stroke [146,147].

Ischaemic stroke associated with COVID-19 disease occurs in patients of all ages, with more severe strokes, worse
functional outcomes and higher mortality rates than are seen in a comparable group of non-COVID-19 patients
[148–152]. Thus far, it appears that the major causes for these ischaemic strokes are derived from the hyperinflam-
matory state and resulting coagulopathy observed in COVID-19 patients, which lead to thromboembolism [153],
neurovascular endothelial dysfunction, BBB breakdown, and consequent generalised activation of the CNS innate
immune system [149]. Cardiomyopathy, and consequent intracardiac formation of thrombi, which may travel to the
brain, is another potential cause of ischaemic stroke in COVID-19 [153].

AT2R agonists appear well-positioned to be of significant benefit to COVID-19 patients who have developed is-
chaemic strokes. Preclinical studies in rats and mice from multiple independent investigative teams, using several
different models of ischaemic stroke, have demonstrated the efficacy of AT2R agonists applied post-stroke in reduc-
ing the severity of intracerebral infarcts, and improving behavioural/neurological outcomes [110–112,115,154–158].
Details of these studies and the mechanisms of neuroprotection have been reviewed by us, recently [159]. The fac-
tor that might make AT2R agonists a viable approach for ischaemic stroke in COVID-19 patients is their multiple
modes of action against stroke that include neuroprotective, vascular and regenerative aspects [159]. The neuropro-
tective aspects include anti-inflammatory, anti-apoptotic and anti-oxidant effects [159]. Thus, in COVID-19 induced
strokes AT2R agonist-induced anti-inflammatory and anti-oxidant effects might not only help to depress the cytokine
storm, alleviate neurovascular endothelial dysfunction and coagulation, but also suppress the generalised activation
of the innate CNS immune system. A further mode of action of AT2R agonists in ischaemic stroke is restoring BBB
integrity – a clear benefit in severe pro-inflammatory conditions where the BBB is compromised [111]. A final im-
portant aspect is that our group has demonstrated that an AT2R agonist (C21) can be applied directly to the brain via
an intranasal (nose to brain) route, where it exerted significant protective effects against ischaemic stroke in a rodent
model [157]. Such a delivery system can easily be replicated in humans.

To summarise, based upon preclinical findings there is strong potential that AT2R agonists may be effective in at
least alleviating the severity of ischaemic strokes in COVID-19 patients. The caveat is that thus far, there has been no
clinical evaluation of the actions of AT2R agonists in human stroke patients.

Clinical trial of C21 in patients with COVID-19
The non-peptide, orally active AT2R-agonist C21 (Vicore Pharma, Gothenburg, Sweden; now also termed as VP01)
has been tested for safety and efficacy in a Phase II clinical trial in patients with COVID-19, the so called ATTRACT
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Table 1 Inclusion and exclusion criteria for the ATTRACT trial

Inclusion criteria Exclusion criteria

Written informed consent, consistent with ICH-GCP
R2 and local laws, obtained before the initiation of
any trial related procedure

Any previous experimental treatment for COVID-19

Diagnosis of coronavirus (SARS-CoV)-2 infection
confirmed by polymerase chain reaction (PCR) test <

4 days before Visit 1 with signs of an acute
respiratory infection

Need for mechanical invasive or non-invasive ventilation

Age: >18 and <70 years Concurrent respiratory disease such as COPD (chronic obstructive pulmonary disease), IPF
and/or intermittent, persistent or more severe asthma requiring daily therapy or any subjects that
have had an asthma flare requiring corticosteroids in the 4 weeks (28 days) prior to COVID-19
diagnosis

CRP >50 and <150 mg/l Participation in any other interventional trial within 3 months prior to Visit 1

Admitted to a hospital or controlled facility (home
quarantine is not sufficient)

Any of the following findings at Visit 1:
- Positive results for hepatitis B surface antigen (HBsAg), hepatitis C virus antibody (HCVAb) or
human immunodeficiency virus 1+2 antigen/antibody (HIV 1+2 Ag/Ab
- Positive pregnancy test

In the opinion of the Investigator, the subject will be
able to comply with the requirements of the protocol

Clinically significant abnormal laboratory value at Visit 1 indicating a potential risk for the subject if
enrolled in the trial as evaluated by the Investigator

Males and females Concurrent serious medical condition with special attention to cardiac or ophthalmic conditions
(e.g. contraindications to cataract surgery), which in the opinion of the Investigator makes the
subject inappropriate for this trial

Malignancy within the past 3 years with the exception of in situ removal of basal cell carcinoma
and cervical intraepithelial neoplasia grade I

Treatment with any of the medications listed below within 1 week prior to Visit 1:
- Strong Cytochrome p450 (CYP) 3A4 inducers (e.g. rifampicin, phenytoin, St. John’s Wort,
phenobarbital, rifabutin, carbamazepine, anti- HIV drugs, barbiturates)
- Warfarin

Pregnant or breast-feeding female subjects

Female subjects of childbearing potential not willing to use contraceptive methods as described
in detail in the study protocol

Male subjects not willing to use contraceptive methods as described in detail in the study
protocol

Subjects known or suspected of not being able to comply with this trial protocol (e.g. due to
alcoholism, drug dependency or psychological disorder)

trial (https://www.clinicaltrials.gov/ct2/show/NCT04452435 and https://vicorepharma.com/the-attract-study/) [13].
The trial was completed on 13 October 2020 (final data collection date for primary outcome measure), but has not
yet reported any results (status on 13 November 2020). ATTRACT is a randomised, triple-blind, placebo-controlled
trial with parallel design, for which 106 patients were enrolled and randomised to receive either placebo or C21
(100 mg twice daily) po. Treatment duration was 7 days, and C21 or placebo were added on top of standard of care
medication. With regard to inclusion and exclusion criteria, it is important to note that only a specific subgroup
of patients diagnosed for COVID-19 was eligible for recruitment, which were patients hospitalised for COVID-19
associated, respiratory symptoms, but not requiring intensive care or mechanical invasive or non-invasive ventilation.
This specific subgroup of patients was most likely selected for targeting patients with a developing or already existing
hyperinflammatory response, but not yet suffering from life-threatening complications. Primary outcome was defined
as the change in C-reactive protein (CRP) from treatment start to the end of the 7-day treatment period, i.e. the trial
has mainly tested, whether AT2R-stimulation is able to attenuate the inflammatory reaction in COVID-19 and prevent
or milden the cytokine storm. More detailed inclusion and exclusion criteria can be found in Table 1. The study was
performed as a multi-centre trial located in the U.K. and India. ATTRACT is expected to report in late 2020.

Conclusions
The COVID-19 pandemic that is a result of infection with the SARS-CoV-2 coronavirus is affecting millions of people
and the death toll has now exceeded 1.3 million victims. It is one of the major challenges in medical research of our
time and one of the biggest unmet medical needs. In an enormous effort, scientists all over the world are trying to
develop vaccines and effective treatments to bring down the number of COVID-19 associated fatalities and severe
courses of disease and to get us all back to a life with normal social interactions and daily routines.

One approach in the search for a treatment of COVID-19 is to find drugs that counteract the imbalance of the RAS
in this disease, which is caused by loss of enzymatic activity of ACE2, the enzyme which serves as the binding site for
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cellular entry of SARS-CoV-2. The result of SARS-CoV-2/ACE2 binding is that there is a weakening of the protective
arm of the RAS and an overactivation of the classical, AT1R-dependent arm of the RAS.

Based on a multitude of preclinical studies, which are reviewed in this article, we propose, that stimulation of the
angiotensin AT2R with respective agonists may be a promising approach for the treatment of COVID-19. This is for
two main reasons, one of which is a compensation for the loss of endogenous, ACE2-mediated synthesis of AT2R- and
Mas-agonists by application of an exogenous, synthetic AT2R-agonist. Due to an intense cross-talk between the AT2R-
and the Mas-dependent protective arms of the RAS, it can be assumed that application of an AT2R-agonist will also
enhance signalling of and protection by Mas. Second, preclinical evidence points to a therapeutic and protective effect
of AT2R-agonists in many COVID-19 associated pathologies such as inflammation (cytokine storm), lung injury and
fibrosis, endotheliitis, coagulopathy and stroke.

Our theoretical considerations regarding a rationale for AT2R-agonists for the treatment of COVID-19 may soon be
proven right or wrong, since the non-peptide AT2R-agonist C21 has been tested in a Phase II clinical trial in patients
with moderately severe COVID-19 (with hospitalisation but no ICU treatment). The study will presumably report
first results by the end of 2020.
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