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Background: Circular RNAs (circRNAs) are a class of non-coding RNAs (ncRNAs) broadly
expressed in cells of various species. However, the molecular mechanisms that link circR-
NAs with laryngeal squamous cell carcinoma (LSCC) are not well understood. In the present
study, we attempted to provide novel basis for targeted therapy for LSCC from the aspect
of circRNA–microRNA (miRNA)–mRNA interaction.
Methods: We investigated the expression of circRNAs in three paired LSCC tissues
and adjacent non-tumor tissues by microarray analysis. Differentially expressed circR-
NAs were identified between LSCC tissues and non-cancerous matched tissues, in-
cluding 527 up-regulated circRNAs and 414 down-regulated circRNAs. We focused on
hsa circ 0059354, which is located on chromosome 20 and derived from RASSF2, and thus
we named it circRASSF2.
Results: circRASSF2 was found to be significantly up-regulated in LSCC tissues and LSCC
cell lines compared with paired adjacent non-tumorous tissues and normal cells. Moreover,
knockdown of circRASSF2 significantly inhibited cell proliferation and migration in vitro,
which was blocked by miR-302b-3p inhibitor. Bioinformatics analysis predicted that there
is a circRASSF2/miR-302b-3p/ insulin-like growth factor 1 receptor (IGF-1R) axis in LSCC
progression. Dual-luciferase reporter system validated the direct interaction of circRASSF2,
miR-302b-3p, and IGF-1R. Western blot verified that inhibition of circRASSF2 decreased
IGF-1R expression. Furthermore, silencing circRASSF2 suppressed LSCC growth in vivo.
Importantly, we demonstrated that circRASSF2 was up-regulated in serum exosomes from
LSCC patients. Altogether, silencing circRASSF2 suppresses progression of LSCC by inter-
acting with miR-302b-3p and decreasing inhibiting IGF-1R expression.
Conclusion: In conclusion, these data suggest that circRASSF2 is a central component
linking circRNAs to progression of LSCC via an miR-302b-3p/IGF-1R axis.

Introduction
Laryngeal squamous cell carcinoma (LSCC) is a common malignancy of the head and neck [1]. The cur-
rent standard treatment for LSCC including debulking surgery, radiation therapy, and chemotherapy have
a moderate effect on early-stage cases; however, the overall 5-year survival rate for patients with advanced
LSCC remains poor [2,3]. The high invasiveness and acquired resistance to chemotherapy lead to severe
recurrence of LSCC [4]. Hence, it is significant to unveil underlying mechanism of LSCC progression and
pathogenesis.

Circular RNAs (circRNAs) are recently identified as members of the non-coding RNA (ncRNAs) fam-
ily that play a significant role in many cancers progression [5,6]. Numerous studies have reported that
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abnormal expressions of circRNAs are closely related to malignant behaviors of various tumors, including LSCC [7,8].
Fan et al. [9] identified 506 differentially expressed circRNAs from human LSCC and normal laryngeal mucosa tissues,
and functional analysis revealed that circ-0044520 and circ-0044529 play important regulatory roles by sponging
miR-4726-5p and miR-4640-5p.

Exosomes are small membrane-derived vesicles with a diameter of approximately 30–150 nm [10]. They play cru-
cial role in tumor proliferation and metastasis as mediators of cell-to-cell communication by transferring and ex-
changing oncogenic molecules, which includes lncRNAs and circRNAs [11,12]. Additionally, exosomal circRNAs as
clinical biomarkers are stable in blood and could be promising novel biomarkers used for the clinical detection [13].
However, the roles and functions of exosomal circRNAs from LSCC cells still remain largely uncovered.

Here, using a circRNA microarray profiling, we report that the expression of circRASSF2 is markedly elevated
both in LSCC tissues and exosomes from LSCC plasma. By modulating miR-302b-3p/insulin-like growth factor 1
receptor (IGF-1R) axis, circRASSF2 enhances the proliferation, migration, and invasion of LSCC cells. Our findings
will provide new insights into the regulatory mechanisms of circRASSF2 in LSCC progression.

Methods
The Cancer Genome Atlas dataset analysis
The data and the corresponding clinical information of patients were collected from the Cancer Genome Atlas
(TCGA) database (http://cancergenome.nih.gov/). We used the edgeR package of R packages to perform the differ-
ence analysis (http://www.bioconductor.org/packages/release/bioc/html/edgeR.html) and used the pheatmap pack-
age of R packages to perform the cluster analysis (https://cran.r-project.org/web/packages/pheatmap/index.html).
Sva R package was used to remove the batch effect. Genes with adjusted P-values <0.05 and absolute fold changes
(FC) > 1.5 were considered differentially expressed genes. Kaplan–Meier survival curves were drawn to analyze the
relationships between genes and overall survival in the survival package. The corresponding statistical analysis and
graphics were performed in R software (R version 3.3.2).

Tissue samples
A total of 85 pairs of tumor tissue and adjacent normal tissue from patients subjected to LSCC surgical resection
at The Second Affiliated Hospital of Harbin Medical University from January 2010 to June 2017 were collected. All
the patients were pathologically confirmed and the fresh paired cancerous and adjacent noncancerous tissues were
collected and frozen in liquid nitrogen immediately after they were obtained during the surgical operation, and then
stored at −80◦C to prevent RNA loss. Among them, 3 patients were chosen for profile analysis, and all 85 for quan-
titative real-time PCR (qRT-PCR) validation. Besides, 85 paraffin samples of these LSCC patients were recruited in
the present study, and their paired cancerous and noncancerous tissue blocks were collected. For exosome purifica-
tion, serum samples were collected from LSCC patients and healthy donors from 2015 to 2017. All patients provided
written informed consent in accordance with the Declaration of Helsinki. The study protocol was approved by the
Ethics Committee of The Second Affiliated Hospital of Harbin Medical University.

Cell culture and plasmid transfection
Normal human bronchial epithelial cell (NHBEC) line and human laryngeal cancer cell lines TU686, TU177, Hep-2,
and LSC-1 were obtained from Bena Culture Collection (Beijing, China). All cell lines were routinely cultured in
Dulbecco’s modified Eagle’s medium (DMEM)/F12 (1:1) medium containing 10% fetal bovine serum (Biological
Industries, Nanjing, China), 100 U/ml penicillin (Sigma, St. Louis, MO), and 0.1 mg/ml streptomycin (Sigma) in a
humidified atmosphere of 5% CO2 and 95% air at 37◦C. A six-well plate was seeded with 5 × 105 cells and incubated
for 24 h. The cells were then transfected with the related genes using Lipofectamine™ 2000 (Thermo Fisher Scientific)
according to the manufacturer’s instructions.

Expression profile analysis of circRNAs
Three pairs of paired LSCC and normal tissues were used for circRNA microarray. Tissues specimens were obtained
during operation and immediately frozen at −80◦C until further use. The circRNAs chip (ArrayStar Human circR-
NAs chip; ArrayStar, Rockville, MD, U.S.A.) containing 5639 probes specific for human circRNAs splicing sites was
used. Following hybridization and washing of the samples, five pairs of paired cancerous and adjacent noncancerous
tissues were analyzed on the circRNAs chips. Exogenous RNAs developed by the External RNA Controls Consortium
(ERCC) were used as controls. circRNAs were enriched by digesting linear RNA with RNase R (Epicentre, Madison,
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WI, U.S.A.). Labeled RNAs were scanned using a Agilent Scanner G2505C (Agilent Technologies, Santa Clara, CA,
U.S.A.). The circRNA microarray process was performed by KangChen Biotech, Inc. (Shanghai, China).

qRT-PCR
The total RNA was isolated from tissues and cell lines using TRIzol reagent (Invitrogen, CA, U.S.A.), and exosomal
RNA was extracted from plasma and culture medium using the exoRNeasy Midi Kit (Qiagen, Valencia, CA, U.S.A.)
according to the manufacturer’s protocol. For circRNAs, RNase R was used to degrade linear RNA, which have poly
(A), and amplified by divergent primer. qRT-PCR analysis on circRNA and mRNA was performed using Prime Script
RT reagent Kit (TaKaRa) and SYBR Premix ExTaq II (TaKaRa). GAPDH was used as an endogenous control. TaqMan
MicroRNA Reverse Transcription kit and Taqman Universal Master Mix II (Applied Biosystems) were used to detect
miR-302b-3p and U6 expression. Relative expression values were normalized and calculated to represent FC in gene
expression using relative quantitation as 2−��C

T.

Cell transfection
Cells were seeded in six-well plates and cultured to 60–70% confluence before transfection. According to the man-
ufacturer’s instructions, microRNA (miRNA) mimics, inhibitors (Sangon, China), and siRNA (GeneChem, China)
were transiently transfected using Lipofectamine 2000 (Invitrogen) at a final concentration of 50 nM. The corre-
sponding negative controls were transfected simultaneously under the same condition. Lentiviral-circRASSF2-RNAi
and the negative control lentiviruses were purchased from GeneChem (Shanghai, China) and transfected according
to the manufacturer’s protocol.

Cell Counting Kit-8 assay
Cell proliferation was measured by the cell proliferation reagent cell counting kit-8 (CCK-8) (Roche, Basel, Switzer-
land). After the cells (1 × 103/well) were plating in the 96-well microtiter plates (Corning, NY, U.S.A.), 10 μl CCK-8
regents were added to each well at the time of harvest. Two hours later, the absorbance was recorded at 450 nm to
determine the cell viability.

Colony formation assay
One hundred transfected cells were seeded in six-well plates. After 2 weeks of incubation, colonies (>200 cells per
colony) were stained with Giemsa. The number of colonies was counted. Each experiment was performed in triplicate.

Cell apoptosis analysis
Detecting apoptosis by flow cytometry An annexin V-allophycocyanin (APC)/4’,6-diamidino-2-phenylindole (DAPI)
double staining kit (Thermo Fisher Scientific) was used to analyze cellular apoptosis. Cells were seeded in six-well
plates (5 × 105 cells/well) and then digested with trypsin (Gibco® trypsin-EDTA, Thermo Fisher Scientific), washed
with PBS three times, suspended in 500μl of binding buffer, and then incubated with 5μl of FITC–conjugated annexin
V and 3 μl of PI for 15 min at room temperature in the dark. The stained cells were detected using the BD FACS Aria
II flow cytometer (BD Biosciences, Hercules, CA, U.S.A.).

Cell migration and invasion assay
Cell migration and invasion abilities were measured using the 24-well transwell chambers with 8 μm polycarbonate
membrane (Corning, NY, U.S.A.). Filter was first pre-coated with 500 ng/ml matrigel solution for cell migration assay
(BD, Franklin Lakes, NY, U.S.A.) and incubated for 4 h at 37◦C, then 500 μl of 10% FBS medium was placed in the
lower chamber, and 100 μl serum-free medium was placed in the upper chamber. After cells were incubated at 37◦C
for 14–24 h, cells on the upper membrane surface were scraped off. The cell invasion assay is almost the same to
the migration assay and the only difference is that the filter do not need to be precoated with 500 ng/ml matrigel
solution. Surfaces were fixed with mixture of methanol and glacial acetic acid at the ratio of 3:1 for 30 min and then
dried before they were stained with 15% Giemsa solution for 6–8 h. Then stained cells were observed and counted
using an inverted microscope and an average number within five randomly chosen fields was obtained.

Western blot
Cells were lysed for extraction of total protein. After measurement of protein concentration, the protein was separated
using 10% sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS/PAGE) and transferred on to polyvinyli-
dene difluoride (PVDF) membranes (EMD Millipore, Billerica, MA, U.S.A.). After blocking with 5% non-fat milk,
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the membranes were incubated with primary antibodies: anti-IGF-1R (1:1000, Cell Signaling Technology, Danvers,
MA, U.S.A.) and anti-TSG101 (1:1000, Proteintech, Chicago, U.S.A.), anti-HSP70 (1:2000, Proteintech, Chicago,
U.S.A.) and anti-GAPDH antibody (1:2000; Cell Signaling Technology). Then the membranes were incubated with
horseradish peroxidase–conjugated secondary antibodies. Immunoblot signals were visualized using ECL Plus Kit
(GE Healthcare, Fairfield, CT, U.S.A.) according to the manufacturer’s instructions.

Bioinformatics analysis
Agilent Feature Extraction software (version 11.0.1.1) was used to analyze acquired array images. Data processing
were performed using the R software package. Differentially expressed circRNAs with statistical significance between
two groups were identified through Volcano Plot filtering. Differentially expressed circRNAs between two samples
were identified through Fold Change filtering. The circRNA/microRNA interaction was predicted with Arraystar’s
home-made software based on TargetScan and miRanda.

Luciferase reporter assay
The Luciferase assay was performed in 293T cell lines. Cells were seeded into 24-well plates in triplicate. After 24 h,
the cells were transfected with pmirGLO-circRASSF2-WT (or pmirGLO-circRASSF2-Mut) or pmirGLO-IGF-1R-Wt
(or pmirGLO-IGF-1R-Mut) and miR-302b-3p mimic, or miR-NC using Lipofectamine 3000 (Invitrogen). Luciferase
activity was measured in cell lysates 24 h after transfection using a Dual Luciferase Reporter System (Promega, Madi-
son, WI, U.S.A.).

In vivo study
Five-week-old nude mice were raised and randomly divided into two groups. For injection, 1 × 107 LSC1 cells trans-
fected with sh-circRASSF2 or sh-NC were suspended in 110 μl of serum-free RPMI or DMEM, and injected subcu-
taneously in the flank. Tumor growth was monitored every 2–3 days using a caliper. Tumor volume was calculated
using the following formula: V = length × width2/2). Five weeks later, the mice were killed and the xenografts were
removed. All experimental procedures took place at the Animal Center of The Second Affiliated Hospital of Harbin
Medical University and approved by the Animal Ethics Committee of The Second Affiliated Hospital of Harbin Med-
ical University, and animal experiments were performed following the National Institute of Health Guide for the Care
and Use of Laboratory Animals.

Immunohistochemistry
Immunohistochemistry (IHC) analysis was performed under manufacturer’s instructions. Briefly, the slides were in-
cubated with primary antibodies overnight at 4◦C and then incubated with secondary antibodies at room temperature
for 2 h. The expression was evaluated using a composite score obtained by multiplying the values of staining intensi-
ties (0, no staining; 1, weak staining; 2, moderate staining; 3, strong staining) and the percentage of positive cells (0,
0%; 1, <10%; 2, 10–50%; 3, >50%).

Exosome isolation
The plasma was collected and centrifuged at 3000×g for 15 min to remove cells and cellular debris. Exosomes were
isolated using the Exoquick exosome precipitation solution (System Biosciences).

Transmission electron microscopy
Exosomes were suspended in 100μl of PBS and were fixed with 5% glutaraldehyde at incubation temperature and then
maintained at 4◦C until transmission electron microscopy (TEM) analysis. According to the TEM sample preparation
procedure, we placed a drop of exosome sample on a carbon-coated copper grid and immersed it in 2% phospho-
tungstic acid solution (pH 7.0) for 30 s. The preparations were observed with a transmission electron microscope
(Tecnai G2 Spirit Bio TWIN, FEI, U.S.A.).

Statistical analysis
All data were presented as mean +− S.E.M. Two-tailed unpaired Student’s t test was used to analyze the statistical
difference between two groups, P-value less than 0.05 was considered statistically significant.
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Table 1 Association between circRASSF2 and clinicopathological characteristics of LSCC patients

Characteristics circRASSF2 P-value
Low expression (n=32) High expression (n=53)

Age (years)

<60 10 23 0.358

≥60 22 30

Drinking

Yes 9 25 0.111

No 23 28

Smoking

<400 (y×p) 19 24 0.265

≥400 (y×p) 13 29

T-category

T1-T2 23 21 0.006

T3-T4 9 32

Lymph node metastasis

N0 22 20 0.007

N1 or N2 10 33

Differentiation

Well 15 28 0.657

Moderate-to-Poor 17 25

Results
Expression profiles of circRNAs in human LSCC tissues
To identify LSCC-related circRNAs, we analyzed the expression profile consisting of three pairs of LSCC and nor-
mal tissues by using circRNA microarray. As a result, 527 circRNAs were up-regulated, whereas 414 circRNAs were
down-regulated based on the log2 (FCs) ≥2, P<0.05, and FDR < 0.05. The heatmap showed top ten up-regulated and
down-regulated circRNAs between LSCC tissues and non-cancerous matched tissues (Figure 1A), which were then
subjected to validation by RT-qPCR. There was an increasing trend in hsa circ 0059354 (chr20: 4760668-4766974)
levels from non-cancerous matched tissues to LSCC tissues, with more than four-fold change from microarray anal-
ysis. By browsing the human reference genome (GRCh37/hg19), we identified that circ 0059354 is derived from
RASSF2, which is located on chromosome 20, and thus we named it circRASSF2. Next, we examined the expression
of these 10 mostly changed circRNAs in LSCC and matched non-tumor tissue samples from 30 patients to confirm
their expression, and we found that circRASSF2 expression was consistently and significantly increased in LSCC tu-
mor tissues as compared with that in matched controls (Figure 1B; P<0.001).

To investigate the clinical significance of circRASSF2 expression in LSCC patients, the expression of circRASSF2
in LSCC tissues was then confirmed in 85 LSCC patients, and the results showed that circRASSF2 expression was
significantly increased in 78.82% (67 of 85) LSCC tissues as compared with that in the matched non-tumor tis-
sues (Figure 1C; P<0.01). In addition, the up-regulated expression of circRASSF2 was positively associated with
metastasis (Figure 1D; P<0.01). In addition, we explored the association between circRASSF2 expression and LSCC
clinical–pathological characteristics. Correlation regression analysis of 85 samples demonstrated that high expression
of circRASSF2 was significantly correlated with advanced T category (P=0.006) and poor lymph node metastasis
(P=0.007) (Table 1).

Moreover, we analyzed head and neck squamous cell carcinoma (HNSCC) dataset including LSCC from the
TCGA database (tumor group, 519; normal group, 44;), and found that the level of linear mRNA of RASSF2 was
not up-regulated in HNSCC tissues (Figure 1E). However, Kaplan–Meier survival analysis from TCGA HNSCC
datasets suggested that high expression of linear mRNA of RASSF2 in HNSCC tissues is significantly associated with
disease-free survival (DFS) (log-rank test, P=0.005, Figure 1F).

circRASSF2 promotes cell proliferation and migration of LSCC cells in
vitro
To choose the LSCC cell lines used for silencing or overexpression of, we checked the expression of circRASSF2 in
a panel of LSCC cell lines. Compared with normal cell line NHBEC, the abundance of circRASSF2 was significantly
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Figure 1. Deregulated circRNAs in LSCC tumor tissues

(A) The heatmap showed the top ten most increased and decreased circRNAs in LSCC tissues as compared with that in the matched

non-tumor tissues analyzed by circRNAs Arraystar Chip. (B) The levels of circRASSF2 was significantly increased in LSCC tumor

tissues as compared with that in matched non-tumor tissues of 30 LSCC patients. ***P<0.001 (C) The differential expression of

circRASSF2 in LSCC tissues and matched non-tumor tissues of 85 patients as indicated. **P<0.01 (D) The levels of circRASSF2 in

LSCC patients with metastasis were significantly higher than that in patients without metastasis. **P<0.01 (E) RASSF2 expression

in HNSCC and normal samples from the TCGA HNSCC dataset. (F) Kaplan–Meier analyses of the correlations between RASSF2

expression and DFS of 590 patients from the TCGA HNSCC dataset. Log-rank test was used to calculate P values. Abbreviation:

HNSCC, head and neck squamous cell carcinoma.
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increased in various LSCC cell lines, including TU686, TU177, Hep-2, and LSC-1, with LSC1 expressing the highest
level of circRASSF2 (Supplementary Figure S1A). Therefore, LSC1 cells were selected for silencing of circRASSF2,
and TU686 cells were selected for overexpression of circRASSF2.

Hence, we focused on the functional role of circRASSF2. To investigate whether circRASSF2 is essential for LSCC,
we performed a loss-of-function analysis. We knocked down circRASSF2 via specific siRNA targeting the splice
junction of circRASSF2. After transfection with circRASSF2 siRNA into LSC1 cells, experimental validation using
RT-qPCR showed that depletion of circRASSF2 with siRNA resulted in a clear decrease in the expression of cir-
cRASSF2, while RASSF2 mRNA expression was not affected (Figure 2A; P<0.001). In addition, we constructed the
circRASSF2 overexpressing plasmid (pCD-circRASSF2) with circular frame and circRASSF2 sequence, and found
circRASSF2 could be significantly overexpressed in TU686 cells (Figure 2B; P<0.001). CCK-8 assay showed that cir-
cRASSF2 knockdown significantly repressed cell proliferation of LSC1 cells at each time point (72 and 96 h; Figure
2C; P<0.01). We also found that the colony-forming ability of LSC1 cells was significantly repressed by si-circRASSF2
(Figure 2D and Supplementary Figure S1B; P<0.01). Flow cytometric analysis showed that the percentage of apoptotic
cells was significantly induced in circRASSF2 siRNA transduced LSC1 cells than control cells (Figure 2E and Supple-
mentary Figure S1C; P<0.01). Transwell migration and Matrigel invasion assay showed that circRASSF2 knockdown
significantly repressed the ability of cell migration and invasion of LSC1 cells (Figure 2F and Supplementary Figure
S1D; P<0.01). While circRASSF2 overexpression promoted cell colony-forming ability, and inhibited apoptosis of
TU686 cells (Supplementary Figure S1B,C; P<0.01).

circRASSF2 serves as a sponge for miR-302b-3p in LSCC
To investigate the potential miRNAs associated with circRASSF2, TargetScan and miRanda database were used, and
the most potentially complementary binding miRNAs were presented. Among these target miRNAs, we found that
circRASSF2 has a binding site for miR-302b-3p (Figure 3A). Dual-luciferase reporter assay was practiced for the ex-
ploration of whether miR-302b-3p functioned a target of circRASSF2. We discovered luciferase activity was remarked
decreased with the cell transfection of miR-302b-3p mimics and circRASSF2-wt rather than co-transfection of NC
and circRASSF2-wt, meanwhile, cells transfection of miR-302b-3p mimics and circRASSF2-mut had no effects on lu-
ciferase activity (Figure 3B; P<0.01). We examined the expression of miR-302b-3p by qRT-PCR in LSCC and matched
non-tumor tissue samples from 85 patients. The results of qRT-PCR showed lower expression of miR-302b-3p in
LSCC tissues than in matched non-tumor tissues (Figure 3C; P<0.01). Next, we measured the levels of miR-302b-3p
expression in various LSCC cell lines (Figure 3D; P<0.01). LSC1 cells showed the lowest expression of miR-302b-3p,
and TU686 cells showed higher expression of miR-302b-3p, indicating the opposite result to circRASSF2 expression.
Subsequently, the effect of circRASSF2 on miR-302b-3p expression was evaluated in LSC1 cells. However, we could
not found obvious regulation of miR-302b-3p level owing to circRASSF2 knockdown or overexpression (Figure 3E).

To investigate the role of miR-302b-3p on LSCC carcinogenesis, miR-302b-3p mimics or inhibitor was trans-
fected into LSCC cell lines and the proliferation curves were performed (Supplementary Figure S2A). CCK-8 as-
say showed that TU686 cells transfected with miR-302b-3p inhibitor grew at a dramatically higher rate as compared
with controls, while miR-302b-3p overexpression markedly inhibits the cell growth of LSC1 cells when compared
with cells transfected with miR-nc (Figure 4A,B; P<0.01). Our results showed that the proliferation-suppressing ef-
fect of si-circRASSF2 was reversed by a miR-302b-3p inhibitor (Figure 2C). Collectively, these data indicate that
miR-302b-3p can inhibit LSCC cells proliferation, which inversely correlates with the effects of circRASSF2 in LSCC
cells.

IGF-1R is a direct target of miR-302b-3p
TargetScan, PicTar, and miRanda were then applied used to predict target genes for miR-302b-3p, and IGF-1R was
one of the best candidates. Comparison of the human sequence with other species revealed that the targeting sequence
was highly conserved among different species (Figure 4C). Then, we constructed luciferase reporter assay, the result
showed that miR-302b-3p overexpression significantly reduced the luciferase activity of the IGF-1R-wt, but not the
IGF-1R-mut in 293T cells which confirmed the targeting relationship between miR-302b-3p and IGF-1R (Figure
4D; P<0.01). In addition, we found that increased miR-302b-3p expression dramatically decreased the expression of
IGF-1R in LSC1 cells, while transfection of the miR-302b-3p inhibitor increased the expression of IGF-1R in TU686
cells (Figure 4E and Supplementary Figure S2B). We also found that IGF-1R expression was higher in LSCC tissues
compared with in their normal counterparts (Supplementary Figure S2C). Taken together, the above data suggest that
miR-302b-3p directly regulates oncogene IGF-1R expression in LSCC cells.
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Figure 2. circRASSF2 promotes cell proliferation and migration of LSCC cells in vitro

(A) RT-qPCR for circRASSF2 and RASSF2 in LSC1 cells treated with si-circRASSF2 or si-RASSF2. Data are the means +− S.D.

of three experiments. (B) RT-qPCR for circRASSF2 in TU686 cells transfected with control vector or circRASSF2 overexpression

plasmid. Data are the means +− S.D. of three experiments. (C) CCK-8 assay showed that circRASSF2 knockdown significantly

repressed cell proliferation of LSC1 cells, miR-302b-3p inhibitor abolishes the suppression effect of circRASSF2 knockdown. OD

values are obtained at 24, 48, 72, and 96 h after transfection. (D) Colony formation assay showed that circRASSF2 knockdown

significantly reduced cancer cell colony forming ability of LSC1 cells. (E) Flow cytometric analysis showed that circRASSF2 knock-

down significantly induced apoptosis of LSC1 cells. (F) Transwell assay showed that circRASSF2 knockdown significantly inhibited

the migration ability of LSC1 cells. Data are the means +− S.D.of three experiments. ***P<0.001; **P<0.01.

circRASSF2 regulates IGF-1R by sequestering miR-302b-3p
To identify whether circRASSF2 regulates LSCC cell proliferation and IGF-1R expression by inhibiting miR-302b-3p,
we performed rescue experiments. There was no notable change in IGF-1R expression when cells were simultaneously
treated with a circRASSF2 siRNA and an miR-302b-3p inhibitor (Supplementary Figure S2D), indicating that an
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Figure 3. circRASSF2 serves as a sponge for miR-302b-3p in LSCC

(A) miRNA response elements (MREs) are shown by which circRASSF2 sequesters miR-302b-3p. Mutations were generated in

MREs. (B) Dual luciferase reporter show significant reduction in luciferase activity of the wild-type and luciferase activity is restored

by the mutant sequence. (C) The levels of miR-302b-3p were significantly decreased in LSCC tumor tissues as compared with

that in matched non-tumor tissues of 85 LSCC patients. (D) The levels of miR-302b-3p in LSCC cells, compared with that in a

non-tumorigenic cell, NHBEC. (E) The effect of circRASSF2 knockdown or overexpression on miR-302b-3p expression. Data are

the means +− S.D. of three experiments. **P<0.01.

miR-302b-3p inhibitor could significantly rescue the decrease in IGF-1R induced by silencing circRASSF2. These
data suggested that circRASSF2 regulated the LSCC progression via the miR-302b-3p/IGF-1R axis.

Knockdown of circRASSF2 suppressed tumor growth in vivo
To determine the effect of circRASSF2 in vivo, LSC1 cells stably transfected stable circRASSF2 knockdown
(sh-circRASSF2-LSC1) or negative control (sh-NC-LSC1) were injected into the flanks of nude mice. As shown in
Figure 5A,B, the results showed that circRASSF2 depletion repressed growth rate and tumor weight of xenograft
tumors. In addition, IHC was conducted to determine whether circRASSF2 affects the expression of prolif-
eration marker Ki67 in xenograft tumor tissues (P<0.01). IHC assay showed that the tumors treated with
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Figure 4. IGF-1R is a direct target of miR-302b-3p

(A,B) CCK-8 assay showed that TU686 cells transfected with miR-302b-3p inhibitor grew at a dramatically higher rate as com-

pared with controls, while miR-302b-3p overexpression markedly inhibits the cell growth of LSC1 cells when compared with cells

transfected with miR-nc. (C) MiR-302b-3p is highly conserved across species and binding sites within seed region sequence in

the 3′-UTR of human IGF-1R. (D) Luciferase assay in HEK293 cells. pmirGLOIGF- 1R-wt or pmirGLO-IGF-1R-mt vector was co–

transfected with miR-302b-3p vector. Luciferase activity in pmirGLOIGF-1R-wt group denoted a statistically significant decrease

following ectopic expression of miR-302b-3p. (E) Overexpression of miR-302b-3p suppressed the expression of IGF-1R in LSCA

cells. Data are the means +− S.D. of three experiments. **P<0.01.

sh-circRASSF2-LSC1 displayed a decreased proliferation percentage of Ki-67 positive tumor cells compared with
sh-NC-LSC1 xenografts (Figure 5C,D; P<0.01). Collectively, these results suggested that knockdown of circRASSF2
can suppress LSCC progression in vivo.

CircRASSF2 is secreted by exosomes into serum of LSCC patients
Finally, in our current study, we collected abundant serums from 30 LSCC patients and 22 normal people. After
isolation of serum exosomes by sequential centrifugation, TEM analysis showed that isolated LSCC-secreted exo-
somes had similar morphologies (30–150 nm in diameter) and exhibited a round-shaped appearance (Figure 6A).
The NTA results demonstrated that isolated LSCC-secreted exosomes showed a similar size distribution, and the
peak size range was 80–135 nm. Western blot analysis confirmed the high presence of the exosomal markers TSG101
and HSP70 (Figure 6B). Our results showed that circRASSF2 expression is detectable in extracted serum exosomes
derived from LSCC patients (Figure 6C; P<0.01). Furthermore, there was a significant inverse correlation between
the expression levels of circRASSF2 and miR-302b-3p in serum exosomes derived from LSCC patients (Figure 6D, r
= −0.523; P=0.003).
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Figure 5. Knockdown of circRASSF2 suppressed tumor growth in vivo

(A) circRASSF2 knockdown inhibits LSC1 tumor growth in vivo. The tumor volume curve of nude mice was analyzed. (B) The tumor

weights of nude mice were measured. (C) IHC analysis were performed to examine the expression levels of proliferation marker

Ki-67 in tumors of nude mice. (D) F, Knockdown of circRASSF2 significantly decreased the percentage of Ki-67 positive cells in

tumors of nude mice compared with that of sh-NC-LSC1 xenografts. **P<0.01.

Discussion
The roles of circRNAs in carcinogenesis and cancer progression have attracted much attention, however, the expres-
sion and function of circRNAs in LSCC development are still largely elusive. Thus, the purpose of the present study
was to identify more circRNAs molecules that may be potentially used in the treatment of LSCC patients through
the screening of circRNAs microarray. We analyzed the expression profiles of circRNAs from LSCC and matched
non-tumor normal tissues by microarray, and focused on the role and underlying mechanism of the increased cir-
cRASSF2 expression in LSCC. In our present study, we identified that circRASSF2 was up-regulated in LSCC and
higher expression of circRASSF2 was positively correlated with metastasis of LSCC patients. Our subsequent studies
demonstrate that circRASSF2 knockdown decreased cell proliferation and migration, whereas circRASSF2 overex-
pression had the opposite results. These observations of tumor growth were verified in a mouse xenograft model.
Specifically, we also showed mechanistically that circRASSF2 promotes the progression of LSCC by acting as the
sponge of miR-302b-3p. Finally, we showed that overexpressed circRASSF2 was secreted by exosomes into the serum
of LSCC patients, suggesting that circRASSF2 might be a novel clinical molecular marker for the diagnosis of LSCC
patients.

As a novel class of ncRNAs, accumulating evidence suggests that circRNAs may be used as tumor biomarkers and
regulators [14]. It has been elucidated that some circRNAs may be potential biomarkers for the diagnosis of various
cancers. Zhang et al. [15] found that circLARP4 was down-regulated in gastric cancer tissues and inhibited the prolif-
eration and invasion of gastric cancer cells by sponging miR-42435. Chen et al. [16] showed that circRNA 100290 was
up-regulated in oral cancer and functioned as sponge of the miR-29 family. However, the expression and biological
function of circRNAs in LSCC are poorly understood. In our study, used a high-throughput microarray platform to
evaluate circRNA expression profiles in LSCC patients. We first demonstrated that circRASSF2 was an important cir-
cRNA frequently up-regulated in LSCC tissue, contributing to the aggressive clinical LSCC phenotype. Importantly,
further functional studies showed that circRASSF2 promoted cell proliferation and migration of LSCC cells.
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Figure 6. CircRASSF2 is secreted by exosomes into serum of LSCC patients

(A) CircRASSF2 was secreted into exosomes derived from serum of LSCC patients. A representative image of exosome (indicated

by red arrows) derived from serum of LSCC patients detected from electron microscope. (B) WB showing the expression of TSG101

and HSP70, which are the markers of exosome from purified serum exosome. (C) RT-qPCR for the abundance of CircRASSF2 in

serum exosomes. The levels of CircRASSF2 in serum exosomes from LSCC patients were significantly higher than that in normal

individuals; (D) the expression levels of CircRASSF2 were negatively correlated with that of miR-302b-3p in the exosomes extracted

from serum of LSCC patients. Data are the means +− S.D. of three experiments. **P<0.01.

It is well known that competing endogenous RNA (ceRNA) network is an important regulatory model and cir-
cRNAs could act as a ceRNA through regulating miRNAs [17]. Based on bioinformatics analysis, it was assumed
that the circRASSF2/miR-302b-3p/IGF-1R axis plays a pivotal role in LSCC progression. Bioinformatics analy-
sis and luciferase reporter assay indicated that circRASSF2 could sponge miR-302b-3p, and IGF-1R was the tar-
get of miR-302b-3p. Cytological function experiment revealed that circRASSF2 and miR-302b-3p have reverse
effects in cell phenotype. A miR-302b-3p inhibitor could rescue biological changes induced by silencing of cir-
cRASSF2. Taken together, the study revealed that a circRASSF2/miR-302b-3p/IGF-1R axis exists in LSCC, and
that circRASSF2 negatively regulates miR-302b-3p. The aberrantly up-regulated circRASSF2 accompanied with
down-regulated miR-302b-3p may be potentially used for early diagnosis and determining prognosis in LSCC pa-
tients.

Exosomes are membrane vesicles of an average 30–100 nm diameter, containing miRNA, mRNA, and proteins,
and are released by cells into the extracellular microenvironment [18]. Recently, it has been shown that circRNAs can
be secreted by serum exosome from cancer cells into circulation, with unknown pathological functions [19]. Here,
we performed TEM to reveal the shapes and size of exosomes from plasma of LSCC patients. Notably, we found that
the highly expressed circRASSF2 could be examined to serum exosomes of LSCC patients.

Conclusions
In summary, we provided an efficient way to screen for valuable oncofetal molecules associated with LSCC.
Our current work revealed that the circRASSF2 was an oncogenic factor that promotes tumorigenesis by
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serving as a ceRNA to regulate IGF1R expression by sponging miR-302b-3p. Further understanding of the
circRASSF2/miR-302b-3p/IGF-1R axis may provide a novel therapeutic strategy for LSCC in the future.

Clinical perspectives
• The molecular mechanisms of LSCC carcinogenesis are not fully understood, and the roles of circR-

NAs in LSCC still remain largely uncovered.

• We identified that circRASSF2 was up-regulated in LSCC and higher expression of circRASSF2 was
positively correlated with LSCC patients metastasis. Our subsequent studies demonstrate that cir-
cRASSF2 knockdown decreased cell proliferation and caused a dramatic decrease in cell colony
formation, whereas circRASSF2 overexpression has the opposite results. These observations of tu-
mor growth were verified in a mouse xenograft model. Specifically, we also showed mechanistically
that circRASSF2 promotes the progression of LSCC by acted as the sponge of miR-302b-3p. Finally,
we showed that overexpressed circRASSF2 was secreted by exosomes into the serum of LSCC pa-
tients.

• CircRASSF2 is a central component linking circRNAs to progression of LSCC via a
miR-302b-3p/IGF-1R axis.
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