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The gene SerpinC1 encodes a serine protease inhibitor named antithrombin III (ATIII).
This protease demonstrates both anticoagulant and anti-inflammatory action. ATIII is the
most important coagulation factor inhibitor, and even minor changes in ATIII can signi-
ficantly alter the risk of thromboembolism. ATIII can also suppress inflammation via a
coagulation-dependent or -independent effect. Moreover, apart from ATIII deficiency, ATIII
and its gene SerpinC1 may also be related to many diseases (e.g. hypertension, kidney dis-
eases). The present review summarizes how ATIII affects the progress of kidney disease and
its mechanism. Further studies are required to investigate how ATIII affects renal function
and the treatment.

Introduction
SerpinC1 is the short name for serpin peptidase inhibitor, clade C (antithrombin), member 1. This gene
encodes 464 amino acids and is located on chromosome 1q23-25.1. It is composed of seven exons that
span 13.4 kb of genomic DNA [1]. SerpinC1 provides instructions for the production of antithrombin
III (ATIII), which is a type of serine protease inhibitor (serpin). Serpins have a well-conserved secondary
structure with an exposed reactive center loop, which interacts with the protease active site to inhibit
protease activity [2].

ATIII, encoded by the gene SerpinC1, is a serine protease inhibitor in the coagulation cascade (Figure
1). It can profoundly accelerate protease inhibition by interacting with a heparin-like substance on the en-
dothelial cell surface. Moreover, ATIII exhibits powerful anti-inflammatory effects, partially by increasing
the production of prostacyclin (PGI2). Even minor changes in SerpinC1 can increase the risk of throm-
boembolism [3]. So far, publications about the relationship of SerpinC1 and the kidney focus primarily
on renal injury caused by ATIII deficiency, as well as the diagnosis and treatment of kidney diseases in-
duced by ATIII deficiency. The present review provides a comprehensive review of the following areas:
(i) the mechanism of ATIII action, (ii) SerpinC1 and diseases, (iii) the relationship between ATIII and
kidney disease, and (iv) ATIII’s potential as a treatment for kidney-related diseases.

The mechanism of ATIII action
Coagulation and hemostasis
ATIII is the most important coagulation factor inhibitor (Figure 1). It is a non-vitamin K-dependent pro-
tease which inhibits coagulation by lysing thrombin and factor Xa [4]. ATIII resembles α1-antitrypsin in
structure, but it inhibits thrombin much more powerfully than elastase does. It also blocks other serine
proteases in the coagulation cascade, including factors XIIa, XIa, IXa, and Xa. The inhibitory effect of
ATIII can be enhanced by heparin, a negatively charged polysaccharide found in mast cells near the walls
of blood vessels and on the surface of endothelial cells. ATIII activity is markedly potentiated by heparin,
which acts as an anticoagulant by accelerating the formation of irreversible complexes between ATIII and
the serine protease-clotting factors [5].
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Figure 1. Bioeffects of ATIII in the coagulation cascade

PL, phospholipid.

Anti-inflammation
In addition to regulating coagulation, antithrombin inhibits inflammation within the vascular endothelium. Some
anti-inflammatory actions of antithrombin are mediated by its anticoagulation action, whereas others are not [5,6].

Coagulation-dependent effect
First, antithrombin can block thrombin-induced inflammatory pathways. It inhibits the activation of platelets and
endothelial cells by thrombin, with both these cells contributing to local inflammation.

Activated platelets stimulate leukocyte activity by secreting cytokines. In response to thrombin, endothelial cells
and platelets express P-selectin, which further promotes the interaction with neutrophils. Then the activated neutro-
phils release enzymes that lead to the exacerbation of coagulation-dependent inflammation [7,8].

Second, ATIII not only blocks the thrombin-induced inflammatory pathway, but also inhibits other proinflammat-
ory coagulation enzymes, e.g. antithrombin inhibits factor Xa-induced production of interleukin (IL)-6 and IL-8, as
well as other molecules involved in monocyte recruitment and adhesion to endothelial cells [6].

Coagulation-independent effect
There is evidence that antithrombin also demonstrates anti-inflammatory action independent of its anticoagulation
activity. The leading mechanism is that antithrombin induces endothelial cells to release PGI2 [5,9–11]. Many stud-
ies have proved that PGI2 demonstrates anti-inflammatory action [12]. PGI2 suppresses not only the aggregation
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and activation of platelets, but also the adhesion of neutrophils to the vessel wall. Moreover, it reduces the produc-
tion of various cytokines and chemokines produced by endothelial cells [13–16]. Other mechanisms include activ-
ation of leukocytes, which inhibit the rolling and adhesion of blood vessel neutrophils and lead to less tissue dam-
age, e.g. ATIII prevents pulmonary vascular injury by inhibiting leukocyte activation in rats that have been given
endotoxin [17].

SerpinC1 and diseases
ATIII deficiency
It has been reported that there are two types of ATIII deficiency: inherited and acquired. The incidence of
ATIII-inherited deficiency is relatively rare (1:10 000) in the general population [18]. However, in patients with throm-
boembolism, the prevalence of ATIII deficiency ranges from 0.5% to 5% [19]. ATIII deficiency is found in 4 − 6% of
young patients with venous thrombosis, which is a risk factor for thromboembolic disease. Lab tests show that both
quantitative and qualitative ATIII deficiencies exist in these patients [20].

Inherited ATIII deficiency is an autosomal dominant disease with a morbidity of around 1/5000. Thromboem-
bolic complications appear around the age of 20. In the fourth to fifth decades of life, two-thirds of the patients
are symptomatic [18,21]. The major complications of ATIII deficiency include idiopathic thrombosis and recur-
rent venous thromboembolism. It has been reported that pregnancy and surgery are risk factors for thromboem-
bolism. At least 220 mutations in the SerpinC1 gene have been found to cause hereditary antithrombin deficiency.
Most of these mutations change single protein-building blocks in antithrombin, which disrupts its ability to con-
trol coagulation. Martinez-Martinez et al. [22] reported that genetic mutations could affect the mobile domains of
antithrombin-induced conformational instability, resulting in protein polymerization that is associated with a severe
clinical phenotype. In addition, a temporal and severe deficiency of antithrombin may contribute to a thrombotic
event.

Hereditary antithrombin deficiency
Hereditary antithrombin deficiency can be divided into types I and II, based on the location of the mutation on the
SerpinC1 gene. Hereditary antithrombin deficiency type I is caused by a SerpinC1 gene mutation that prevents the
hepatic cells from producing antithrombin [23]. Patients with this type of antithrombin deficiency have only one
working copy of the SerpinC1 gene in each cell, which results in the production of approximately half the normal
amount of antithrombin. Affected patients do not have enough antithrombin to inactivate coagulation factors, and
this leads to the increased risk of thromboembolism. Mutations that cause hereditary antithrombin deficiency type II
result in the production of an altered antithrombin with a reduced anticoagulating effect [24]. Individuals with this
type of antithrombin deficiency typically have normal levels of antithrombin in the plasma, but it does not function
properly. Maruyama et al. [25] conclude that the Arg56Cys mutant is responsible for type II heparin-binding site
deficiency. They also hold a view that the Ala459Asp and Pro112Arg mutants are associated with type I antithrombin
deficiency.

Acquired antithrombin deficiency
Acquired deficiency of ATIII can be found in patients who have had liver cirrhosis, liver cancer, nephropathy, dis-
seminated intravascular coagulation (DIC), sepsis, preeclampsia, or trauma, and in patients receiving l-asparaginase,
oral contraceptives, severe toxicants, or heparin therapy [18]. Overall, patients with the acquired type of antithrombin
deficiency are exposed to a high risk of thromboembolism, due to depletion of a protein critical to anticoagulation in
plasma. Low antithrombin levels could be detected not only during but also before the thrombotic event. Acquired
antithrombin deficiency occurs in different medical conditions with a similar risk of thrombosis [26].

Hypertension
Hypertension is a major public health issue and a leading cause of morbidity and mortality [27]. It is a multifactorial
polygenic disease induced by an interplay of genes and environment [28–30]. Previous studies have reported that
inflammation is a risk factor in the development of hypertension [31–34].

Genome-wide association studies have identified hundreds of blood pressure-related phenotypes and genomic re-
gions [35,36]. A transcriptome analysis in Dahl salt-sensitive (SS) rats showed that SerpinC1 is a candidate gene for
salt-sensitive hypertension in SS rats [37]. Liang et al. [37] found that 15 expressed sequence tags in the renal cortex
and 39 in the renal medulla were differentially expressed between SS-13BN and all the other three strains (SS, SS-18BN,
and SS-20BN). The differentially expressed genes included SerpinC1. This suggested that the gene SerpinC1 is
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associated with blood pressure. The correlation between SerpinC1 and blood pressure still needs further invest-
igation. Case reports have indicated that SerpinC1 is also related to hypertension. Tomczykowska et al. [38] reported
a significantly lower plasma level of ATIII in hypertensive patients compared with healthy individuals. Furthermore,
ATIII protects against salt-induced hypertension and proteinuria in pregnancy, which is irrelevant to its anticoagulat-
ing effect. ATIII may thus be beneficial for the treatment of preeclampsia [39]. Thrombophilia is a pathologically hy-
percoagulable state. It causes many complications during pregnancy, including preeclampsia, stillbirth, and recurrent
abortions. ATIII deficiency is the major cause of inherited thrombophilia. According to a large-scale, case–control
study, thrombophilia is significantly associated with severe preeclampsia [40]. However, the plasma ATIII level was
not found to be significantly different in patients with preeclampsia or in the control group [41].

The relationship between ATIII and kidney disease
The previous studies about the relationship between SerpinC1 and the kidney focus mainly on the thrombotic dis-
order, which is caused by low ATIII levels resulting from different kidney diseases [42]. Patients who have kidney
diseases often demonstrate a high risk of thrombosis due to the loss of a large amount of ATIII [43]. In patients
whose serum albumin is <2.0 g/dl, the condition is even worse when losing ATIII [42]. Apart from the anticoagu-
lating function, noteworthy ATIII processes include anti-inflammatory properties, which can affect the progression
of kidney disease. Similar to hypertension, the published evidence supports inflammation possibly being one of the
causes of kidney diseases [8,44–48]. Important clues have been shown to link inflammation to the pathogenesis of
diabetic nephropathy. Clues to the involvement of inflammation in diabetes date back 100 years [49,50], when sodium
salicylate was first demonstrated to diminish glycosuria in patients with diabetes. Different inflammatory molecules
are considered to be critical factors in the development of microvascular diabetic complications, including nephro-
pathy [49,50]. Generally, the impact of ATIII on kidney function is mostly based on decreasing hypercoagulative state.
At the same time, the complex relationship with the inflammatory component could also be a cause.

Nephrotic syndrome
Thrombosis and hypercoagulability occur more frequently and present more severely in patients with nephrotic syn-
drome (NS). It can be interpreted as the deficiency of ATIII, which is associated with severe proteinuria [51,52].
Moreover, Blavy and Kouame reported that an obvious decrease in ATIII is found in patients with NS [53]. Citak
et al. [54] reported that a hypercoagulable state and thromboembolism in both the arterial and the venous circula-
tions are relatively more common in patients with NS. It has been reported that the concentration of ATIII depends on
the type of NS. Its level is obviously lower in focal segmental glomerular sclerosis and minimal change nephropathy
compared with other types. As for glomerulonephritis, ATIII can inhibit mesangial cell proliferation by inhibiting the
effect of thrombin. It stimulates DNA synthesis and human mesangial cell growth [55].

Acute and/or chronic kidney injury
For patients with acute kidney injury (AKI), a low ATIII level caused by the consumption leads to diminished protec-
tion against intravascular coagulation and progression of the AKI [42]. In addition, ATIII activity decreases slightly
during the acute stage of acute glomerulonephritis and moderately in the relapse stage of nephrotic syndromes. A
small increase in urinary ATIII antigen levels was noted in the acute stage of glomerulonephritis, with a considerably
bigger increase observed during the relapse stage of the nephrotic syndrome [56]. In rare cases, abnormal antith-
rombin function can lead to bilateral renal infarction, causing severe AKI and subsequently chronic kidney injury.
The abnormal antithrombin function usually results from ATIII deficiency and a prothrombin gene mutation [57].
It is noteworthy that all kinds of nephropathy can decrease plasma ATIII levels as a result of severe proteinuria. Con-
sequently, the low ATIII level can aggravate the renal damage.

Kidney cancer
Antithrombin is a type of hemostasis activation marker in patients with kidney cancer. Zietek et al. [58] reported that
ATIII activity in the blood of patients with kidney cancer increases, partially as a result of a compensatory mech-
anism saving these patients before thrombembolic complication. The measurement of ATIII in renal carcinoma can
be a prognostic indicator of hemorrhagic and thromboembolic complications. Similarly, ATIII activity increases in
patients with bladder carcinoma. This increase of ATIII activity is associated with an increased risk of hemorrhagic
complications and a reduced risk of thromboembolic complications [59]. The role of ATIII in malignancy of the
urinary system still needs further investigation.
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ATIII as a potential treatment for kidney-related diseases
ATIII is known to play a significant therapeutic role in a variety of kidney diseases such as NS and renal
ischemia–reperfusion (I/R) injury. It inhibits thrombin and other serine proteases generated by the coagulation cas-
cade. High-dose ATIII has been shown to have a strong anti-inflammatory effect in mouse models of endothelial
damage, such as DIC and I/R injury [60].

Hemodialysis
Numerous studies have shown that ATIII has some positive effects on hemodialysis patients. Schrader et al. [42]
reported on ATIII being given to patients with dialysis-dependent renal failure. Supplementation of ATIII can be
beneficial in these patients by reducing the incidence of thrombosis of the extracorporeal system. Schrader et al. [42]
recommended using a low dose of ATIII to reduce the incidence of thrombosis in the extracorporeal system, whereas
a high dose of ATIII should be avoided. Furthermore, Kolb et al. [61] pointed out that hemodialysis itself has some
effect on blood coagulation. The thrombin–ATIII (TAT) complex, as a parameter for forecasting thrombotic events,
was measured during hemodialysis. Predialysis values of the TAT complex were found to be generally elevated in
hemodialysis patients, but only patients with acute renal failure had a constant increase of TAT during hemodialysis.

The reason why ATIII can be used for thrombosis prevention in dialysis patients is that it can reduce the hyperco-
agulable state caused by long-term hemodialysis. A previous study investigated the association between continuous
venovenous hemofiltration using polyacrylonitrile filters and an intrinsic coagulation pathway [62]. It identified that
patients who developed thrombosis within the first 24 h post-hemodialysis had a low baseline level of ATIII and
heparin cofactor II. Moreover, the level of TAT complex rises significantly in these patients [62]. In a study of ATIII
replacement therapy, Schrader et al. [63] found that the dosage of ATIII should be individualized. More recently, an-
other study reported that a single dose of ATIII could be used as a potential alternative anticoagulant for AKI patients
on continuous renal replacement therapy [64].

Kidney transplantation
For patients undergoing kidney transplantation, recombinant antithrombin is considered to have a therapeutic effect.
Cowan et al. [65] reported that recombinant ATIII could be a useful therapeutic agent to ameliorate both early graft
damage and the development of systemic coagulation disorders in pig-to-human xenotransplantation. In a study
of patients undergoing kidney transplantation, Pawlicki et al. [66] found that there was a lower ATIII activity on
postoperative day (POD) 7, and a higher fibrinogen concentration and platelet count on POD 14, in recipients with
a postoperative hematoma than in those who did not develop this complication. Considering that antithrombotic
prophylaxis increases the risk of hemorrhagic complications, it should be used with caution in patients after a kidney
transplantation.

Renal ischemia–reperfusion injury
Emerging evidence suggests that ATIII regulates renal I/R injury. ATIII can not only inactivate thrombin and other
serine proteases in the coagulation cascade, but also suppress the inflammatory response of the immune system
[67,68]. Maeda et al. [60] showed that high-dose ATIII alters the consequences of vascular injury by reducing mural
thrombus formation and limiting the inflammatory reaction of the vessel wall, without exerting a prolonged inhib-
itory effect on positive vascular remodeling. The treatment with ATIII reduces inflammatory cell infiltration, as de-
termined by the CD11b + cell density in the adventitial area. Appropriate use of ATIII in patients with acute vascular
injury or undergoing procedures that have a risk of vascular endothelial injury will result in rapid and effective repair
of the damaged vessels [60]. According to other studies about renal I/R injury, the coagulation system is activated
2 h after injury and the activity of coagulation reaches a peak at 12 h [69]. In this process, plasma ATIII levels start
to decline at 2 h and reach their lowest point at around 12 h, and then start to recover [69]. Another study showed
that ATIII can significantly increase PGI2 levels in cultured human umbilical vein endothelial cells [5]. Moreover,
ATIII is also reported to reduce renal I/R injury in rats [70]. A study by Ozden et al. [70] found that antithrombin
strongly suppressed the accumulation of lipid peroxidation products and neutrophils. Mizutani et al. [10] reported
that antithrombin could suppress I/R injury by inhibiting leukocyte activation and, therefore, improve the blood flow
of kidneys and reduce vascular permeability. The study proved that antithrombin inhibits the activation of leuko-
cytes via an increased production of PGI2. Recently, Wang et al. [71] found that patients with low ATIII activity had
a higher risk of developing AKI after cardiac surgery. This indicates that SerpinC1 significantly reduced the risk of
renal damage caused by I/R injury.
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Table 1: Summary of potential treatments for kidney-related diseases

Clinical condition Effect of concentrated treatment with antithrombin

Hemodialysis • Reduces the hypercoagulable state of blood

Kidney transplantation • Defensive function: ameliorates both early and late graft damage

• Development of systemic coagulation disorders

Renal I/R injury • Inactivates thrombin and other serine proteases of the coagulation cascade

• Anti-inflammatory effects

Nephritic syndrome • Prevents thrombosis

Sepsis/SIRS/MODS • Prevents fibrin deposition and controls inflammation

Nephrotic syndrome
Clinical evidence supports a therapeutic role for ATIII in NS patients [72,73]. Hypercoagulability is a recognized
complication of NS, which commonly affects the venous system. Arterial thrombosis has rarely been reported and,
in the literature, only six cases of arterial thrombosis have been reported in adults [72]. The outcome in these cases
was unsatisfactory because of the high rate of limb loss and recurrence of thrombosis. The successful treatment is
reported of a 39-year-old patient with arterial thrombosis who had anticoagulant therapy of 1000 units of ATIII [72].
Another study points out that, for children with a high risk of arterial thrombosis, it might be advisable to adopt the
prophylactic ATIII therapy before the use of albumin and diuretics [73].

Sepsis, SIRS, and MODS
ATIII can be used to treat many other diseases. First, ATIII can prevent lung and kidney failure in sepsis. It can
inhibit fibrin deposition and decrease inflammation in sepsis, thereby limiting damage to the lungs and kidneys.
Second, ATIII can reduce inflammatory responses such as the systemic inflammatory response syndrome (SIRS) and
multiple organ dysfunction syndrome (MODS) [74]. As one of the most vulnerable organs in SIRS and MODS, the
kidney benefits from ATIII treatment [74]. Third, it has been reported that ATIII therapy can help improve kidney
diseases such as renal shock [75]. Finally, Sokratov [76] reported that the administration of ATIII-enriched plasma
to rabbits with acute Masugi nephritis inhibited prothrombinase formation, and increased the release of component
C3 from the kidneys.

Conclusion
ATIII demonstrates both anticoagulant and anti-inflammatory actions within the vascular endothelial environment.
Therefore, its deficiency can lead to activation of the coagulation cascade and/or inflammatory pathway, by increasing
intravascular consumption and endothelial leakage. Furthermore, ATIII plays a significant role in kidney disease. It
affects renal function in various ways and, therefore, ATIII deficiency can result in acute or chronic renal damage.
ATIII also shows great value in treating kidney disease (Table 1). As recent studies have focused on the value of ATIII
in kidney diseases, the role of ATIII in patients with kidney disease is much clearer than before. Despite the reported
role for ATIII in anti-inflammatory processes, further investigations are needed to explore how ATIII affects the renal
function and treatment of kidney disease. The role of ATIII in kidney injury appears to be complex because few studies
have been carried out to explore this area. In the present review, we summarized the latest studies of the relationship
between ATIII and kidney disease, which may help to improve future diagnosis and treatment.
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