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Sensitive periods and experience-dependent plasticity have become core issues in visual
system development. Converging evidence indicates that visual experience is an indis-
pensable factor in establishing mature visual system circuitry during sensitive periods and
the visual system exhibits substantial plasticity while facing deprivation. The mechanisms
that underlie the environmental regulation of visual system development and plasticity are
of great interest but need further exploration. Here, we investigated a unique sample of
human infants who experienced initial stage blindness (beginning at birth and lasting for
2–8 months) before the removal of bilateral cataracts. Retinal thickness (RT), axial length
(AL), refractive status, visual grating acuity and genetic integrity were recorded during the
preoperative period or at surgery and then during follow-up. The results showed that the
development of the retina is malleable and associated with external environmental influ-
ences. Our work supported that the retina might play critical roles in the development of
the experience-dependent visual system and its malleability might partly contribute to the
sensitive period plasticity.

Introduction
Visual experience from external environment is crucial to the development of the entire visual system
[1,2]. Previous evidence supported that abnormal visual experience causes dramatic functional deficits,
but visual system can retain its plasticity and has the potential to recover, at least in part, after visual depri-
vation during or even beyond the classical sensitive period in adulthood [3-5]. Therefore, the mechanisms
that underlie the regulation of visual system sensitive periods are currently of great interest. Although ev-
idence from researches revealed that the sensitive periods of visual cortex are activated by distinct mech-
anisms [2], insufficient attention has been paid to other main components of the visual system before and
following initial stage blindness [6,7], such as eyeball development. The underlying mechanisms of both
the environmental regulation of visual system development and plasticity need further understanding.

Up to now, three main factors have been thought to hinder research progress on the environmental
regulation of visual system development and its plasticity. First, although evidence obtained from natu-
ral deprivation models occurring in humans has contributed to direct understanding of cortex plasticity
[8-10], human-level investigations of environmental effects on retina and other components of visual sys-
tem are still limited. The results of animal studies cannot necessarily be generalized to humans and may
even differ from the results obtained in humans [11]. Second, the evaluation metrics of development often
fail to assess the entire visual system. In addition to the development of visual cortex, different parts of
the eyeball often present distinct developmental patterns [12-15], therefore, it is important to integrate
them to explore the experience-dependent plasticity of the visual system as a whole. Third, genetic effects
are difficult to be excluded from the analysis. Previous studies have shown that genes play a key role in
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the visual development, as any deficiency of these genes may lead to varying degrees of visual dysplasia [16-20],
presenting a challenge for determining the genetic influence on visual development.

In the present study, we followed a group of human infants who experienced initial stage blindness (beginning
at birth and lasting for 2–8 months) before the removal of bilateral cataracts. Having access to this rare population
provides a unique opportunity to investigate the effect of form-deprivation on human visual system development. In
addition, we examined four critical indicators, namely, retinal thickness (RT), axis length (AL), refractive status and
visual grating acuity, to systematically investigate the visual system development and its plasticity during the sensitive
period. Here, the development of RT is accompanied by fluctuations in retinal functions: receiving and translating
visual information in the visual pathway. We can infer the development of retinal function via RT measurement,
due to the significant correlation between retinal structure and retinal cell function [21]. Measurement of AL and
refractive status can provide valuable assays for the dynamic emmetropization process after birth [22]. Moreover,
grating acuity may be recorded as a valuable metric for the overall visual assessment of infants and young children
[23]. All included children had no family history of visual impairment to mimic the environmental manipulation
processes following initial stage blindness. Whole exome sequencing was used to identify all the potential genomic
deficiencies associated with visual development. The present work may serve as a valuable reference for future studies
of visual system development and provide a fresh paradigm for understanding the developmental process from the
clinicians’ perspective.

Materials and methods
Study population
In total, 39 individuals registered with the Childhood Cataract Program of the Chinese Ministry of Health (CCP-
MOH) [24] were recruited between January 2010 and March 2011 from Zhongshan Ophthalmic Center (ZOC), one
of the largest eye hospitals in China [25]. All participants were born with dense and total bilateral cataracts, diagnosed
(mean age: 2.9 months; range from 1 to 7.5 months) and underwent surgery for bilateral cataract removal (mean age:
3.5 months; range from 2 to 8 months) at an early age. The first prescription of glasses was assigned to the participants
at 1 week after surgery. All the prescription changes in glasses were decided by experienced optometrists. Our partic-
ipants completed their follow-ups at the mean age of 37.8 months, ranging from 20 to 49 months. Apart from their
history of cataracts, all individuals were healthy (e.g. no metabolic diseases, mental retardation or central nervous
diseases) and had no history of inherited diseases.

Longitudinal assessment protocol
The study pipeline is presented in Figure 1. Four critical indicators were measured: (i) RT for functional development
of the retina for receiving and translating visual information, (ii) AL for investigating holistic eye emmetropization
during initial stage blindness, (iii) refractive status for the dynamic emmetropization process after surgery, and (iv)
visual grating acuity for the assessment of the overall visual system development. In addition, we used whole exome
sequencing to determine whether the children had genomic deficiencies for visual development.

AL measurements and baseline VA evaluations were conducted before surgery (Figure 1a) [22,26]. The dense and
total cataracts hindered their preoperative RT measurement; consequently, the first RT measurement was conducted
immediately following the cataract removal during the surgery (Figure 1b). Longitudinal assessments for RT, re-
fraction measurements and VA were conducted postoperatively at 1 week, 1, 3, 6 months and then every 6 months
thereafter (Figure 1c). The final VA was included in the analysis. Each type of examination was conducted by a single
experienced examiner who was blind to the results of previous assessments to minimize potential bias. None of the
assessments were mandatory when the infants were unco-operative or showed poor compliance, and these missing
data were excluded. Our participants completed their follow-ups at the mean age of 37.8 months, ranging from 20 to
49 months. The overview of included clinical records for all patients is presented in Supplementary Table S1.

Ethical approval
The research protocol was approved by the Institutional Review Board/Ethics Committee of Sun Yat-sen University
(Guangzhou, China). Informed written consent was obtained from at least one family member of each participating
child, and the tenets of the Declaration of Helsinki were followed throughout the study. To allow confidential evalua-
tion using a slit-lamp, spectral domain optical coherence tomography (SD-OCT) imaging system, A-scan, retinoscopy
and the Teller VA card during our study, this trial was registered with the Clinical Research Internal Management Sys-
tem of ZOC.
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Figure 1. Pipeline for the investigation of initial stage blindness in children

(a) AL measurements and whole exome sequencing were conducted prior to surgery. (b) The first RT measurement was conducted imme-

diately following cataract removal during the surgery. (c) Longitudinal assessments consisting of RT, refraction and VA measurements were

conducted postoperatively at 1 week, 1, 3, 6 months and every 6 months thereafter. Abbreviation: VA, visual acuity.

IVue OCT for RT measurements
We used an SD-OCT system (iVue SD-OCT; Optovue, Inc., Fremont, CA, U.S.A.) to evaluate the RT. The protocol of
iVue OCT consists of 12 radial scans of length 3.4 mm (452 A scans each) and 6 concentric ring scans ranging from
2.5 to 4.0 mm diameter (587–775 A scans each), all centred on the optic disc. All the images were reprocessed with
a 3D/video baseline. The parameters measured by the software included the optic disc, optic cup, neuroretinal rim,
nerve head volume, cup volume, rim volume, cup-disc area ratio, horizontal cup-disc ratio and vertical cup-disc ratio.
The protocol also generates a polar thickness map, measured along a circle with diameter 3.45 mm and centred on
the optic disc. The procedure provides average in temporal, superior, nasal, inferior quadrants and the overall average
along the entire measurement circle. The peripheral, paracentral and central RTs from the temporal to nasal area were
used in the final analysis.

A-scan for AL measurements
Before surgery, a contact A-scan (B-SCAN-Vplus/BIOVISION, Quantel Medical, France) was used for AL measure-
ments. The A-scan unit was equipped with a 10-MHz transducer probe, and the velocities were set as follows: 1641 m/s
for the cornea and lens, and 1532 m/s for the aqueous and vitreous humour. Applanation ultrasound was performed
after the instillation of one drop of topical anaesthetic (0.5% ALCAINE, Alcon, U.S.A.) to the lower conjunctiva. Each
eye was measured ten times, and the mean measurements were used in the final analysis.

Refraction and VA measurement
All refractions were conducted using objective retinoscopy and cycloplegia. The spherical equivalent power was in-
cluded in the analysis. All the monocular best corrected visual grating acuity were measured with the glasses using
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a complete set of Teller VA Cards (Stereo Optical Company, Inc., IL, U.S.A.) [27]. The set consisted of 15 cards with
gratings ranging in spatial frequency from 0.32 to 38 cycles/cm in half-octave steps as well as a low vision card and a
blank grey card. Luminance was kept above 10 candela/m2 by utilizing overhead diffused fluorescent lighting and a
spotlight directed towards the ceiling. In addition, the contrast in the cards was approximately 60–70%. Infants were
assessed according to the standard procedure in the operation manual [28,29]. The order of testing eyes (right/left)
was randomized across children.

Exome capture sequencing and variant calling
Genomic DNA was extracted from blood using QIAGEN DNeasy Blood and Tissue Kit (Qiagen, U.S.A.) according
to the manufacturer’s protocol. Isolated genomic DNA from blood was captured by Roche’s Nimblegen SeqCap EZ
Human Exome v2.0 library using in-solution hybridization and PCR to enrich the exomes before sequencing. Illumina
HiSeq X10 was used to perform next generation sequencing to evaluate differences in mutations. The sequencing
reads of each sample were aligned to the human reference genome hg19 assembly using Burrows–Wheeler Aligner
[30], SAMtools and Picard tools. The 1679 known genes associated with human visual development were collected
for genetic analysis (Supplementary Table S2). The snps and indels were detected by HaplotypeCaller according to
the instructions. ANNOVAR was used to annotate all the variants. Variants with a frequency of more than 1% in
dbSNP, 1000 genome, ESP6500 or the in-house database were excluded. PolyPhen-2, SIFT and MutationTaster were
used to predict the effect of protein function of amino acid substitution. In addition to de novo mutations, compound
heterozygous and homozygous mutations were considered based on the recessive model. However, we found no direct
relationship between filtered mutations and visual impairment according to the standards and guidelines for the
interpretation of sequence variants [31].

Statistical analysis
Mixed ANOVA was used to compare RT differences (five retinal areas) between cataract and control groups. An
independent sample t test was used to compare the RT differences between cataract and control groups in each retinal
area. Bonferroni’s method was used to correct α for multiple t test (α’ = α/m, α =0.05 and m is the number of
hypotheses). All statistical tests were two-tailed, and a P-value below 0.05 or corrected α was considered statistically
significant. All statistical analyses were performed using SPSS software, v. 18 (SPSS, Inc., Chicago, IL, U.S.A.).

Results
Retinal development during initial stage blindness
To determine whether the retina shows responsiveness to external environmental influences following initial stage
blindness, we first used SD-OCT to measure the RT of our patients at surgery. Ten healthy retinas as control group
were measured using the same procedure. A total of 56 retinas in cataract group (mean age: 3.5 months; range from 2
to 8 months) and 10 healthy retinas in control group (mean age: 4 months; range from 3 to 8 months) were ultimately
included in this analysis.

The results revealed that the full-layer RT was thicker in the patients than in the control group during the initial
stage blindness (five retinal areas, P=0.012), and the differences were significant in the central fovea of the mac-
ula (full layer in area 3: cataract compared with normal: 201.86 +− 22.12 compared with 176.30 +− 13.39, P=0.002).
Moreover, the results also showed a thickening tendency of the inner layer of the retina of cataract group (five retinal
areas, P=0.036) and the differences were significant in the central fovea of the macula (inner layer in area 3: cataract
compared with normal: 65.43 +− 12.45 compared with 55.70 +− 5.59, P=0.026) (Figure 2). The inner retina layer, con-
taining the nerve fibre layer and ganglion cell layer, may be responsible for functional responses during the initial
stage blindness.

Retinal dynamic development following initial stage blindness
Then, we further investigated the dynamic changes in RT after surgery following the initial stage blindness. Four
of the representative patients available with continuous follow-up records are presented (Figure 3a). As shown in
Figure 3b, RT of our patients all experienced a slight decrease during the first week after surgery and a tendency to
continuously increase during the following year. The dynamic RT changes during the first postoperative week might
be mainly caused by the onset of vision while the continuously developmental tendency later demonstrates the retinal
malleability.

We then evaluated the long-term retinal development by comparing the RT acquired during surgery with the RT at
last follow-up among all the patients with available records. As shown in Figure 4a, all subjects showed a substantial
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Figure 2. RT during surgery compared with those of normal controls

The RT was thicker in the cataract patients than in the control group during the initial stage blindness and the differences were significant

in the central fovea of the macula (full layer and inner layer in retinal area 3). (Bar graphs represent S.D.; retina area 1, temporal peripheral

area; 2, temporal paracentral area; 3, central fovea of the macula; 4, nasal paracentral area; 5, nasal peripheral area).

increase in RT at last follow-up (mean age: 33 months; range from 20 to 49 months). Meanwhile, the RT in a group
of 14 healthy retinas (mean age: 36 months; range from 21 to 47 months) was measured for comparison (Figure 4b).
The RT values of the patients showed no significant differences with those of the control group in five retinal areas
(P=0.77) and in each retinal area (five regions from temporal to nasal respectively, cataract compared with control:
274.25 +− 21.62 compared with 266.64 +− 18.05, P=0.41; 280.13 +− 20.52 compared with 291.29 +− 16.62, P=0.20;
224.13 +− 14.62 compared with 231.61 +− 30.26, P=0.53; 299.75 +− 14.46 compared with 302 +− 23.28, P=0.81; 302.88 +−
14.71 compared with 297.93 +− 27.77, P=0.66). These results indicated that although our patients exhibited individual
differences in the growth of the retina throughout the longitudinal assessment, the retinal development of our patients
ultimately reached a normal level.

AL development
We used all the available presurgery AL data from 30 eyes to investigate holistic eye emmetropization during ini-
tial stage blindness. To determine the normal rate of AL development, the referenced curve-fitting value of the
age-matched normal distribution range was used for comparison (1 month: 17.00 +− 0.40, 95% CI: 16.916–18.484,
99% CI: 16.670–18.730; 3 months: 19.03 +− 0.58, 95% CI: 17.893–20.167, 99% CI: 17.536–20.524; 9 months: 20.23 +−
0.64, 95% CI: 18.976–21.484, 99% CI: 18.581–21.879) [22,26]. As shown in Figure 5, the presurgery AL of our pop-
ulation was distributed mainly in the normal curve range. Therefore, the AL development before the onset of vision
in our samples was considered to be similar to the normal level.

Refractive dynamic development following initial stage blindness
Refractive status was evaluated following the onset of vision. All the refractive changes of 64 eyes are presented in
Figure 6a. Normal emmetropization of refractive media is generally considered to be 3–6 dioptres during the first 4
years after birth. Refractive changes of less than 3 dioptres are considered undergrowth, whereas refractive changes
of more than 6 dioptres are considered overgrowth [32]. The results showed that the majority of our patients (54 eyes,
84.4%) exhibited normal refractive development following initial stage blindness.

Visual grating acuity assessment
To ensure the overall visual functional development of our population, Teller VA cards were used to assess the visual
grating acuity of 60 eyes after surgery. The final VA was used for the analysis. A normal distribution of monocular
grating acuity and a referenced prediction limit were used [27]. Our subjects showed improvements observed in VA
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Figure 3. Dynamic developmental pattern of the retina following initial stage blindness

(a) Continuous retinal changes of four representative patients with complete RT follow-up records are presented. During the first week

after surgery, the RT underwent a slight thinning. From postoperative week 1 to month 12, the RT exhibited dynamic development. (b)

Developmental trend of RT is presented for each retinal area. (Retina area 1, temporal peripheral area; 2, temporal paracentral area; 3,

central fovea of the macula; 4, nasal paracentral area; 5, nasal peripheral area; T1, in-surgery; T2, week 1; T3, month 1; T4, month 6; T5,

month 12).

(Figure 6b) and the mean acuity of our patients was below normal mean value and began to fell outside the normal
range approximately 2 years of age.

Genetic integrity of visual system development
Visual system development and maturation should be considered in the context of interactions between the environ-
ment and heredity. All the included patients had no family heredity. Furthermore, no similar disease history (am-
blyopia or visual dysplasia) was observed in their immediate family members. Sampling investigation using whole
exome sequencing was conducted for seven children and their parents to confirm whether these children had the ge-
nomic deficiencies for visual system development. We sequenced the coding regions and all exon–intron boundaries
for the 1679 known genes associated with human visual development (Supplementary Table S2). However, we found
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Figure 4. End point development of the retina in patients compared with that in normal controls

(a) The RT at the last follow-up (green) was compared with the baseline RT during surgery (grey). Increase in RT were observed in all

representative patients. (b) No significant differences of RT in all the five retinal areas were observed between the patients and control

groups. (Bar graphs represent S.D.; mos, months; retina area 1, temporal peripheral area; 2, temporal paracentral area; 3, central fovea of

the macula; 4, nasal paracentral area; 5, nasal peripheral area).

no direct relationship between filtered mutations and visual impairment according to the standard guidelines for the
interpretation of sequence variants [31].

Discussion
Visual experience is thought to mediate and drive visual system development. Infants are born with rudimentary
visual capabilities and require sufficient visual experience early in life to reach optimal levels of visual functioning
as adults [33]. However, each year, millions of infants worldwide suffer from visual deprivation. These populations
face the risk of irreversible amblyopia and numerous vision impairments [34-36]. Thus, it is important to investigate
the mechanisms of environmental regulation of visual system development and its experience-dependent plasticity,
which may provide further evidence to develop a comprehensive method for assessing the visual recovery potential
in blind children.
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Various components of the eyeball have been shown to undergo periods of experience-dependent development,
with evidence from both human and non-human/animal experiments indicating that prolonged deprivation of form
vision leads to increased AL and myopia [37,38]. Moreover, initial stage blindness also influences the functional and
morphological maturation of the retina, including its synaptic density and bipolar cell structure [39]. However, little
is known about how these diverse parts of the visual system are interrelated and interact with each other.

In summary, our findings demonstrate that retina is malleable and associated with external environmental influ-
ences. Laties and colleagues once posited that the retina may participate in the postnatal regulation of eye growth to
minimize refractive error [40,41]. Previous studies have shown that the axial overgrowth and myopia caused by visual
form deprivation can be manipulated by altering peripheral retinal defocus [42]. In addition, early retinal changes
are reflected in retinotopically specific plasticity, which can be assessed by visual cortical thickness [34,43]. Both neu-
rochemical and immunocytochemical experiments in chickens and monkeys suggest that definable retinal neurons
participate in the regulatory pathway controlling eye growth [41]. All these lines of evidence suggest that the retina
may act as an intact connection to the anterior segment optic system as well as the visual cortex during early visual
development (sketch map shown in Figure 7a). The ‘bridge’ role of the retina may be functionally consistent with that
of dopamine receptors, which are thought to regulate synapse formation, synaptic transmission and light adaptation
in the experience-dependent development of the retina [44,45].

It is well known that during sensitive periods, the visual system is vulnerable to the harmful effects of deprivation
but still has the potential to recover. This recovery potential, called plasticity, is a crucial factor in establishing mature
circuitry [2]. We found that the retina has a latent thickening tendency during initial stage blindness, which might
reflect an attempt to functionally compensate for the insufficient visual stimulation and to prepare for the potential
following signal penetration (sketch map shown in Figure 7c). Recent studies indicated that during initial stage blind-
ness, the increasing expression of amacrine cells is triggered, with nerve growth factors and brain-derived neurotropic
factors also involved to induce retinal light adaptation and contrast enhancement [46]. All these functional responses
might be involved in our dynamic procedure. After surgery, retinal compensation disappeared, and the development
of retina was gradually recovering. This commutation activity of the retina might partly explain its recovery potential
during sensitive periods. Retina may presumably extend to the decompensation stage during long-term visual depri-
vation accompanied with abnormal development of anterior segment optic system and visual cortex, thereby leading
to irreversible visual impairments (sketch map shown in Figure 7b).

Our study has three implications. First, the visual system development should be considered as a whole, with the
retina acting as a bridge that connects the external environment with each visual system component, from the ante-
rior segment optic system to the visual cortex. Second, the intrinsic reason that accounts for visual plasticity might be
a compensation process, as the dynamic changes of RT in our study reflect functional adaptation in response to the
initial stage blindness. Third, we tentatively propose that RT might be used as a sensitive indicator of abnormal visual
stimulation as well as plasticity, which provides a valuable reference of recovery potential assessing and appropriate
timing of intervention for blind children.

The results of our study should be cautiously interpreted within the context of two main limitations. First, our
study primarily measures the effects of initial stage blindness on the retina but not the brain. Vision is a collaborative
function of the retina and the brain. Therefore, dramatic changes of visual cortex correlated with the retina might
be detected if the brain was investigated as well, which might account for the reason why a part of our patients have
lags in visual function development. Second, we used two control groups for the comparison of RT at surgery and at
the last follow-up. Although an age and number matched parallel group of control is a better choice for comparison,
measuring the RT using SD-OCT is not necessary for a healthy child and therefore it is impractical to set a parallel
control group for such a long-term follow-up study.

Previous studies reported that the fellow eye of unilateral congenital cataract patients, which is likely to have a
normal retina, shows deficits in various aspects of vision [47]. Therefore, potential factors including biased interocular
competition might influence the plasticity as well, which remains to be investigated in the future. Moreover, additional
long-term and complete records including visual cortex examinations are required, to further confirm our findings
and investigate the effect of age, which could explain why the VA of our patients begins to fall outside the normal
range approximately 2 years of age [48]. Meanwhile, future researches on visual cortex examination and additional
measures for retinal function will provide further understanding of visual system development.

c© 2017 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons
Attribution Licence 4.0 (CC BY-NC-ND).
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Figure 7. The retina plays a crucial role in visual system development and the dynamic changes of RT might account for

sensitive period plasticity in humans

(a) The retina acts as a bridge connecting the external environment and visual system components from the anterior optic segment to

the visual cortex. (b) The retina will extend to the decompensation stage while experiencing long-term deprivation, accompanied with

the anterior optic segment and visual cortex undergoing fluctuating changes, thus leading to irreversible vision impairment. (c) The retina

accompanied with other visual system parts, has a latent thickening tendency during initial stage blindness to functionally compensate

for the insufficient visual stimulations. As soon as the external signals reach the retina and visual system successfully (after surgery), the

compensation disappeared and returned to the normal developmental tendency.
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Clinical perspectives
• Visual system development and its plasticity in the critical period should be considered within the

context of the entire visual system and the interactions between the environment and heredity;
however the rarity of cases and the limited evaluation metrics have previously hindered empirical
investigations on this issue.

• In the present study, we followed a group of human infants who experienced initial stage blind-
ness before the removal of bilateral cataracts, with results showing that the retina is susceptible
to external environment influences and has an ability to recover following the onset of vision,
besides its malleability might be the potential basis for critical period plasticity.

• The present work may serve as a valuable reference for future studies in visual system devel-
opment and provides a fresh paradigm for understanding the developmental process from the
clinicians’ perspective.
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