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Abstract
Pigment epithelium-derived factor (PEDF) is a broadly expressed multifunctional member of the serine proteinase
inhibitor (serpin) family. This widely studied protein plays critical roles in many physiological and pathophysiological
processes, including neuroprotection, angiogenesis, fibrogenesis and inflammation. The present review summarizes
the temporal and spatial distribution patterns of PEDF in a variety of developing and adult organs, and discusses its
functions in maintaining physiological homoeostasis. The major focus of the present review is to discuss the
implication of PEDF in diabetic and hypoxia-induced angiogenesis, and the pathways mediating PEDF’s effects under
these conditions. Furthermore, the regulatory mechanisms of PEDF expression, function and degradation are also
reviewed. Finally, the therapeutic potential of PEDF as an anti-angiogenic drug is briefly summarized.
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INTRODUCTION

Pigment epithelium-derived factor (PEDF), also known as early
population doubling level cDNA-1 [1,2], was originally isolated
from the conditioned medium of cultured human fetal retinal
pigment epithelial cells [3] and found to possess neuronal differ-
entiation properties [4]. It is a highly conserved glycoprotein in
mammals [5] and possesses a reactive centre loop (RCL) [5] that
is a common structural characteristic of the serine proteinase in-
hibitor (serpin) family. Cleavage within the RCL by chymotrypsin
does not impair PEDF’s functions [6], suggesting that PEDF is a
non-inhibitory serpin [6,7]. A decade after PEDF’s identification,
Dawson et al. [8] demonstrated PEDF as a potent endogenous
anti-angiogenic factor. This opened a new era for the exploration
of PEDF’s functions in angiogenic diseases, especially in diabetes
[9–11] and cancer [12–14]. PEDF levels were found to decline in
angiogenic tissues/organs, such as the vitreous, aqueous humors
and retinas from patients with proliferative diabetic retinopathy
(DR) and in tumours from cancer patients [10,15–23]. Interest-
ingly, circulating PEDF levels in proliferative DR patients are
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increased relative to diabetic patients without proliferative DR or
non-diabetic controls [24–27]; this observation possibly reflects
a systemic compensatory response to angiogenesis in proliferat-
ive DR. Thus restoration of PEDF levels within angiogenic sites
could be a promising strategy for the treatment of angiogenesis-
related diseases.

The PEDF protein plays fundamental roles in organogen-
esis [12,28–30] and homoeostatic maintenance of adult tis-
sues/organs [12,14,31–33]. Defects or deficiencies of PEDF ex-
pression are closely associated with progression of angiogenic
diseases [10,15–18,25,27,34,35]. The present review summar-
izes the temporal and spatial distribution of PEDF in mul-
tiple organs during developmental stages and adulthood, and
discusses its implication in diabetic and hypoxia-induced an-
giogenic diseases. In addition, we review PEDF’s anti-angiogenic
mechanisms under these two types of acquired angiogenic con-
ditions. Finally, the regulatory mechanisms of PEDF expres-
sion, function and degradation are reviewed, and the thera-
peutic potential of PEDF in angiogenic diseases is briefly
discussed.
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TISSUE DISTRIBUTION AND PHYSIOLOGICAL
FUNCTIONS OF PEDF

The mRNA encoding the human PEDF (SERPINF1 mRNA) is
expressed in most organs, including the liver, adipose tissue, eye,
heart, kidney, ovary, testis, spleen, skeletal muscle, brain and bone
[36]. Deficient or defective expression of PEDF leads to abnormal
organ development. It was reported that human patients with
undetectable circulating PEDF develop osteogenesis imperfecta
type VI [28,37]. In mouse, global PEDF deficiency does not
affect viability and fertility [12], but leads to pancreatic and
prostatic hyperplasia [12], hepatic steatosis [31] and bone defects
similar to human patients with osteogenesis imperfecta type VI
[29], indicating that PEDF participates in important physiological
events in both humans and animals.

PEDF in the liver
SERPINF1 mRNA is highly expressed in human fetal and adult
livers [36]. In normal human and mouse livers, hepatocytes are
the predominant PEDF-expressing cells [38,39]. In mouse em-
bryonic livers, PEDF protein is detected as early as embryonic
day (E) 12.5, with its expression continuously increasing during
organogenesis and remaining at high levels in adult livers [39].
PEDF regulates lipid metabolism and maintains physiological ho-
moeostasis in mouse livers. Significant accumulation of neutral
lipid and triglyceride is observed in hepatocytes of 1-month-old
PEDF-deficient mice, and is continuously increased with age,
whereas restoration of PEDF decreases triglyceride content in
PEDF-deficient hepatocytes [31]. The regulatory effect of PEDF
on lipid metabolism is mediated by adipose triglyceride lipase
(ATGL) [40]. PEDF activates ATGL to promote adipose lipoly-
sis, which may contribute to insulin resistance in obese subjects
[41] as ATGL-deficient mice do not develop PEDF-induced in-
sulin resistance [40]. PEDF deficiency in the liver also results
in hepatic steatosis as observed in adult PEDF-deficient mice
even under normal feeding conditions [31]. When fed an alcohol-
containing liquid diet, enhanced expression of the fibrotic marker
α-smooth muscle actin is detected in the hepatic perisinusoidal
space of PEDF-deficient mice compared with wild-type controls
[38]. Consistently, in the livers from patients and animal models
with hepatic steatosis, PEDF expression is dramatically down-
regulated [38,42]. Overexpression of PEDF reverses liver fibrosis
[42]. Clinical studies indicate a positive correlation between cir-
culating PEDF levels and insulin resistance in patients who are
morbidly obese [43] or diabetic [44–47]. It is known that in-
sulin resistance leads to compromised hepatic glycogenesis and
gluconeogenesis in both diabetic patients [48,49] and diabetic an-
imals [50]; however, it is currently unknown whether the insulin
resistance-induced aberrant gluconeogenesis and glycogenesis in
the liver is due to elevated PEDF levels in obesity and diabetes.

PEDF in the pancreas
The SERPINF1 mRNA is weakly detected in the human pan-
creas [36]. Higher levels of human PEDF protein are detected in
centroacinar cells and islet cells in comparison with most acinar
cells and ductal cells [51]. PEDF regulates pancreatic vasculature
development, and PEDF deficiency in the pancreas leads to a 2.6-

fold increase in microvessel density and more dilated and thicker
walled blood vessels [12]. In addition, PEDF deficiency can result
in atypical hyperplastic phenotypes in the pancreas, such as en-
larged pancreas, more exocrine glands, less differentiated acinar
epithelial cells, and increased proliferating epithelial cells [12].
Furthermore, PEDF deficiency makes the pancreas more prone
to fibrosis as PEDF-deficient pancreases display significantly in-
creased basal transcription levels of collagen αI, transforming
growth factor β1 and platelet-derived growth factor (PDGF) [32].
Enhanced expression of α-smooth muscle actin is also detected
in both of the pancreatic vessels and ducts of PEDF-deficient
mice [12,32].

The EL-KrasG12D mouse is a transgenic model that spontan-
eously develops pancreatic lesions and non-invasive cystic papil-
lary neoplasms. At the age of 6–12 months, EL-KrasG12D/PEDF-
deficient mice develop more severe acinar ductal metaplasia
and cystic papillary neoplasm compared with age-matched EL-
KrasG12D mice. Moreover, relative to aged controls, aged EL-
KrasG12D/PEDF-deficient mice exhibit more severe pathological
changes such as increased ductal metaplasia, augmented papil-
lary neoplasm frequency, enlarged adipocytes, elevated tubular
complexes and remarkable multifocal dysplastic changes [52].
Although PEDF is known to affect pancreatic vasculature, mor-
phology and function, PEDF’s expression and roles in the pan-
creas under diabetic conditions remain to be elucidated.

PEDF in the lung
The SERPINF1 mRNA is modestly detected in the human fetal
lung, and persists throughout adulthood [36]. PEDF protein
is expressed in human pulmonary epithelia, pulmonary fibro-
blasts/myofibroblasts, alveolar interstitium and bronchoalveolar
lavage fluid [53]. PEDF has been suggested to be an important
regulator of pulmonary angiogenesis and fibrosis. Lung-derived
endothelial cells from PEDF-deficient mice exhibit enhanced mi-
gratory capacity and adherent ability compared with cells from
wild-type mice, which may be ascribed to decreased cell sur-
face integrins and increased vascular endothelial growth factor
(VEGF) secretion [33]. Moreover, both arteriole and venule walls
in PEDF-deficient lungs are thicker [33].

Wild-type mice exposed to hyperoxia from postnatal day 5–
13 develop impaired alveolarization, which is accompanied by
increased PEDF levels mainly in alveolar epithelia [54]. How-
ever, hyperoxia-compromised alveolarization is not detected in
aged-matched PEDF-deficient mice [54], further implying that
increased PEDF levels are the primary causative factor for re-
duced alveolarization. In idiopathic pulmonary fibrosis that is
recently believed to be characterized by impaired angiogenesis
instead of enhanced angiogenesis [55], pulmonary PEDF levels
are dramatically increased and inversely correlated with VEGF
levels and pulmonary microvascular density [53]. It is believed
that increased PEDF levels prohibit pulmonary angiogenesis, thus
exacerbating idiopathic pulmonary fibrosis [53].

PEDF in the bone
SERPINF1 mRNA is highly expressed in adult human bone
marrow [36]. In mice, high levels of PEDF protein are detec-
ted in the epiphyseal cartilage (resting, proliferating and upper
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hypertrophic chondrocytes) and the periosteum (active osteo-
blasts and chondrocytes), suggesting that PEDF is spatially ex-
pressed in areas of endochondral ossification and bone remod-
elling [56]. Interestingly, PEDF protein is distributed in similar
spatial patterns in newborn mice and 5- and 9-week-old mice
[56]. The principal cell types that express and secrete PEDF
are osteoblasts [57] and chondrocytes [56]. PEDF affects bone
formation and resorption by the regulation of osteoblastic and
osteoclastic differentiation [58–60]. PEDF promotes osteoblastic
differentiation by inducing the expression of osteoblastic genes
[58,60]. On the other hand, PEDF impedes osteoclastic differen-
tiation by up-regulating osteoclast-repressive genes [59]. PEDF
also affects bone mineralization [29,58,60]. PEDF treatment in
human mesenchymal stem cells increases alkaline phosphatase
activity that is critical in the mineralization process [60]. Interest-
ingly, mesenchymal stem cells isolated from PEDF-deficient mice
show reduced alkaline phosphatase expression [61]. Moreover,
both PEDF protein and PEDF-derived peptides (residues 40–
64, residues 78–102 and residues 90–114 corresponding to the
full-length immature human PEDF sequence) enhance bone min-
eralization [58,62].

In patients with osteogenesis imperfecta type VI, a disease
characterized by low bone mass and reduced bone strength, a
homozygous frame-shift mutation in exon 4 or a termination
mutation in exon 8 in the SERPINF1 gene is detected, resulting
in undetectable levels of PEDF protein in the circulation [28].
Clinically, the circulating PEDF level is a critical biomarker for
the screening of this disease [63]. Bogan et al. [29] reported
that PEDF-deficient mice exhibited symptoms of osteogenesis
imperfecta type VI patients with significant increases in osteoid
maturation time, unmineralized bone matrix, mineral/matrix ra-
tio and bone fragility. Notably, patients with heterozygous null
mutated SERPINF1 gene possess normal and functional bones,
although their circulating PEDF is significantly lower than that
of control patients with a fully functional SERPINF1 gene [64].

However, circulating PEDF levels should be interpreted with
caution, and not used as the sole biomarker for this disease. Re-
cently, an atypical case of osteogenesis imperfecta type VI was
reported in which the patient had normal serum PEDF levels
and correct SERPINF1 gene sequence, but a heterozygous single
point mutation in the IFITM5 gene [65]. The single point muta-
tion of IFITM5 does not affect its own transcript, instead, it re-
duces the expression and secretion of PEDF in fibroblasts and
osteoblasts isolated from the patient [65]. Why this mutation in
IFITM5 affects PEDF expression and secretion and how it leads
to osteogenesis imperfecta type VI remains unknown.

The Wnt/β-catenin pathway plays a pivotal role in bone form-
ation and homoeostasis [66]. In bone formation, PEDF and
Wnt/β-catenin play similar roles: increased PEDF or activation
of Wnt/β-catenin signalling leads to high bone mass, whereas
decreased PEDF or attenuation of the Wnt/β-catenin signalling
results in low bone mass [29,66]. A recent study reported PEDF as
an agonist of the Wnt/β-catenin pathway in human mesenchymal
stem cells [61]. Another study also reported that treatment of
PEDF in osteocytes induced phosphorylation of glycogen syn-
thase kinase 3β (GSK-3β) and total β-catenin levels [58]. Our
group and another group demonstrated that PEDF is an inhib-

itor of the Wnt/β-catenin pathway in an angiogenic eye model
[67] and a wound-healing model [68]. Discrepancy between these
studies is noted, yet conclusive explanation is unavailable at this
moment and further studies are needed. Notably, in bone-derived
cells, whether PEDF’s stimulative effect on the Wnt/β-catenin
pathway is mediated through low-density lipoprotein receptor-
related protein 6 (LRP6) is not established. In addition, PEDF
strongly inhibits the expression of sclerostin, an inhibitor of
Wnt/β-catenin signalling [69], which might contribute to the ac-
tivation of Wnt/β-catenin signalling observed in osteocytes [58].

PEDF in the kidney
SERPINF1 mRNA is moderately expressed in human fetal kid-
neys, and its level declines in adult human kidneys [36]. In human
kidneys, PEDF protein is predominantly detected in tubules and
with less intensity in glomeruli [70]. In mouse kidneys, PEDF
protein localizes in the renal vasculature, interstitial spaces, glom-
eruli and tubules [71]. In rat kidneys, PEDF protein levels con-
tinuously increase with age [72]. In neonatal rats, PEDF protein
is restricted to glomerular and capillary mesenchyme and en-
dothelial cells of the nephrogenic zones [72]. By postnatal day
7, PEDF is also detected in the Bowman’s capsules of maturing
glomeruli locating at the inner cortical region [72]. The first de-
tection of PEDF in podocytes close to the innermost region is
at postnatal day 14 [72]. In adult rats, high levels of PEDF are
predominantly detected in glomerular podocytes and endothelial
cells, and vascular endothelial cells [72,73]. It is noteworthy that
PEDF protein expression persists in all types of blood vessels in
the kidneys throughout all fetal stages and adulthood. The sig-
nificance of PEDF in renal vascular development has been well
demonstrated, as renal microvessel density of PEDF-deficient
mice is greatly increased compared with that in wild-type con-
trols [12,14]. In a diabetic rat model, renal PEDF levels are sig-
nificantly decreased [73], although PEDF levels in the kidneys
of diabetic patients have not been measured. Clinical studies
have shown that PEDF levels are closely correlated with vascular
dysfunction-associated renal diseases. In patients with chronic
kidney disease, plasma PEDF levels are significantly increased
compared with those of patients without chronic kidney dis-
ease [74]. Moreover, in both Type 1 and Type 2 diabetes, serum
PEDF levels correlate positively with serum creatinine concen-
trations [44,45,47], and inversely with glomerular filtration rate
[44,47,75]. It is still unclear what roles PEDF plays in these renal
diseases and whether its roles are related to its effects in the
vasculature.

PEDF in the eye
The PEDF protein is detected in the human eye from early em-
bryonic stages [76]. In very early stage of human fetal devel-
opment, PEDF is restricted to the granules of retinal pigment
epithelial (RPE) cells, the ganglion cell layer and sporadic cells
in the neuroblastic layer [76]. In later human fetal stages, PEDF
protein is found in RPE cells, corneal epithelia and endothelia, cil-
iary body non-pigmented epithelia and muscle, horizontal cells in
the outer part of the inner nuclear layer, differentiating photore-
ceptors and apical cytoplasm of differentiating cones [76]. In
adult human retinas, PEDF protein localizes in rods and cones,
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the inner nuclear layer, ganglion cell layer and inner plexiform
layer. The choroid, corneal epithelia and endothelia, ciliary body
non-pigmented epithelia and muscle, RPE cells and photorecept-
ors are also PEDF-positive [76]. In the macula of monkeys at
all ages, the SERPINF1 mRNA is detected in the ganglion cell
layer and RPE cells, with the highest level present at the fo-
vea [77]. Abundant PEDF protein is also found in the monkey
interphotoreceptor matrix surrounding rod and cone outer seg-
ments, with lower levels detected in the vitreous and aqueous
humors due to the polarized and directional secretion of PEDF
towards the neural retina by RPE cells [78]. A number of studies
have reported very high levels of PEDF expression in RPE cells
[76–78], and polarized PEDF secretion is closely associated with
the polarization and maturation of RPE cells [78–80]. As high
levels of PEDF are found in the interphotoreceptor matrix, vit-
reous and aqueous humors in species such as the cow [81–83] and
human [76,83], purification from these sources was a common
way to obtain PEDF before the eukaryotic expression system of
PEDF was established. In mouse embryonic stages, PEDF pro-
tein is firstly detected at E14.5 in the inner plexiform layer and
RPE cells, followed by detection at E18.5 in the ganglion cell
layer, inner nuclear layer, ciliary body and choroid [84]. In rats,
Serpinf1 mRNA is localized in the lens epithelia, RPE cells, cili-
ary epithelia, retinal ganglion cells and sporadic cells of the inner
nuclear layer, and PEDF protein is identified in RPE cells, corneal
epithelia and endothelia, ciliary epithelia, the nerve fibre layer,
ganglion cell layer and inner and outer plexiform [85].

PEDF affects retinal vasculature via its anti-angiogenic prop-
erties. Compared with wild-type controls, the retinas of PEDF-
deficient mice display the following changes: a faster vascular
expansion rate from postnatal day 3 to 7, significantly increased
deep vascular plexi at postnatal day 10 and a slightly increased
endothelial cell/pericyte ratio at postnatal day 21 [30]. Adult
PEDF-deficient mice at the age of 3 months also exhibit a 5.2-fold
increase of retinal microvessel density and malpositioned vessels
[12]. In addition, PEDF deficiency results in more severe vessel
obliteration in the oxygen-induced retinopathy (OIR) model [30].
In a mouse model of DR, loss of PEDF results in a 2-fold increase
of acellular capillaries [86]. In contrast, genetic overexpression of
PEDF in mice significantly suppresses retinal neovascularization
in the OIR model [87]. Similarly, adeno-associated virus overex-
pressing PEDF dramatically represses retinal neovascularization
in an insulin-like growth factor 1 (IGF-1) transgenic mouse model
[88]. In addition to the retina, PEDF and PEDF-derived peptides
have also been demonstrated to strongly inhibit choroidal neovas-
cularization [87,89–91] and corneal neovascularization [8,92–
94]. Taken together, these studies indicate that PEDF is indeed a
potent endogenous angiogenic inhibitor in the eye.

Lack of PEDF has subtle impacts on mouse retinal develop-
ment, differentiation and function under normal conditions [30].
Yet PEDF plays an important supporting role in promoting retinal
differentiation and maintaining retinal function. PEDF exhibits
a pro-cone trophic action in a chicken rosetted retinal spheroids
model by inducing cone opsin expression and decreasing rod
numbers [95]. PEDF also promotes the differentiation and mat-
uration of RPE cells [96]. In cultured heterogenic cell clusters
from rat retinas, the RPE cell population is dramatically increased

by PEDF accompanied with the following changes: increase in
size, loss of vacuolization, acquisition of a more epithelium-like
appearance, enhanced cell adhesion property and increased ma-
ture pigment granules [96]. Moreover, overexpression of PEDF
causes bone marrow stromal cells to differentiate to RPE cells
[97]. In addition, the neurotrophic function of PEDF promotes
the survival of retinal neurons [98,99], retinal progenitor cells
[80], RPE cells [100] and photoreceptors [98,100–103]. Notably,
the cytoprotective effect of PEDF in retinal cells is reported to be
mediated via the PEDF receptor (PEDF-R) [104]. Thus PEDF is
indeed a demonstrable retinal protective factor.

IMPLICATION OF PEDF IN DIABETIC AND
HYPOXIA-INDUCED ANGIOGENIC DISEASES

Angiogenesis is involved in many physiological and pathological
processes, and is stimulated by angiogenic factors [105]. An-
giogenic stages are composed of endothelial activation, sprouting,
regression and maturation [106]. PEDF exerts its anti-angiogenic
effects primarily by targeting endothelial cells. PEDF’s functions
in tumour angiogenesis have been reviewed by Hoshina et al.
[107], Manolo et al. [108] and Becerra and Notario [109]. Rych-
lic et al. [110] and Liu et al. [111] have reviewed PEDF’s roles in
cardiovascular angiogenesis. In the present review, we focus on
PEDF’s functions in two major types of acquired angiogenesis:
diabetic angiogenesis and hypoxia-induced angiogenesis.

PEDF-Rs in angiogenic regulation
PEDF-R (also known as ATGL/desnutrin/iPLA2-ζ /TTS2.2), en-
coded by the PNPLA2 gene in humans, is the first identified
receptor for PEDF [112]. PEDF-R is expressed in human ocular
tissues (fetal and adult RPE layers and retinas) [112], human Y-
79 cells [112,113], RPE cells (including ARPE-19 and hTERT)
[112,114], 661W (a mouse photoreceptor cell line) [115], hu-
man adipose tissue and 3T3-L1 cell line [112], bovine retina and
RPE cells [114,116], rat R28 (a photoreceptor precursor cell line)
[112], and a RGC-derived cell line [112,114,117]. PEDF-R me-
diates multiple activities of PEDF [40,104,118–123]. There is
no direct evidence showing that PEDF’s anti-angiogenic activit-
ies are mediated through PEDF-R in endothelial cells; however,
it has been demonstrated that PEDF induces the expression of
apoptotic Fas ligand (FasL) by regulating nuclear factor κB (NF-
κB) in endothelial cells [124], and that the regulation of NF-κB
by PEDF is PEDF-R-dependent [118]; thus it may be possible
that PEDF exerts its anti-angiogenic activities through PEDF-R
in endothelial cells.

Laminin receptor (LR) is another receptor identified to me-
diate PEDF’s anti-angiogenic effects [125]. Knockdown of LR
attenuates PEDF-induced endothelial cell apoptosis and migra-
tion [125]. A triple phosphomimetic mutant of PEDF, possessing
more potent anti-proliferative, anti-migratory and pro-apoptotic
effects in endothelial cells, exhibits higher binding affinity to
LR, but not to PEDF-R compared with wild-type PEDF, suggest-
ing that enhanced anti-angiogenic properties of the PEDF triple
phosphomimetic mutant are mediated through LR [126].

F1-ATP synthase was also found to convey PEDF’s anti-
angiogenic activities. In endothelial cells, PEDF binds to the
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β-subunit of the F1-ATP synthase in a specific, reversible and
saturable manner (Kd = 1.51 nM in real-time surface plasmon
resonance assay, Kd = 3.04–4.97 nM in bovine retinal endothelial
cells), resulting in a reduced F1-ATP synthesis activity and sub-
sequently lower ATP levels, which impedes the energy supply for
angiogenic events in endothelial cells [127].

Some serpins are known to bind to LRPs: SERPINE1
[128], SERPINE2 [129] and SERPINA1 [130] bind to LRP1;
SERPINE1 [128] and SERPINA3 [130] bind to LRP2; and
SERPINA3K binds to LRP6 [131]. Our previous study also
demonstrated that PEDF binds to LRP6 [67], a co-receptor of
the Wnt/β-catenin pathway that plays important pathogenic roles
in retinal inflammation, neovascularization and vascular leakage
in angiogenic eye models [67,87,131–133]. PEDF-deficient OIR
retinas show enhanced activation of the Wnt/β-catenin pathway
compared with wild-type OIR retinas [67], whereas transgenic
overexpression of PEDF in mouse attenuates the Wnt/β-catenin
signalling and neovascularization in the OIR and laser-induced
choroidal neovascularization models [87].

An additional group of atypical non-canonical ‘receptors’,
also known as extracellular proteins, has been reported to af-
fect PEDF’s angiostatic functions. PEDF binds to collagen I,
which might modulate the integrin–collagen I interaction, thus
affecting endothelial cell adhesion and docking [134,135]. In ad-
dition, PEDF binds to collagen II [134], collagen III [136] and
glycoaminoglycans [137–140], which are also very likely to fa-
cilitate PEDF’s anti-angiogenic functions.

Role of PEDF in diabetic angiogenesis
DR and diabetic nephropathy are diabetes-related angiogenic dis-
eases. Proliferative DR is characterized by increased formation of
immature vessels in the retina and vitreous, which can ultimately
lead to intra-retinal or pre-retinal haemorrhage [141]. In the kid-
neys from 50-day-old diabetic rats, average capillary areas per
glomerulus, capillary length and capillary numbers are signific-
antly increased [142]. Diabetic angiogenesis is induced by factors
including hyperglycemia, hypoxia, imbalanced redox states, elev-
ated non-enzymatic glycosylation and nitration, etc. [141]. Not-
ably, compared with either non-diabetic individuals or diabetic
patients with non-proliferative DR, PEDF levels are markedly de-
creased in the vitreous, retinas and aqueous humors of diabetic pa-
tients with proliferative DR [10,15,16,18,143–149]. PEDF levels
are also decreased in the kidneys from Type 1 diabetic mice and
rats [47,71,73,150]. In contrast, PEDF levels in the circulation are
significantly increased in diabetic patients relative to non-diabetic
patients [24,25,27,44,45,47,151], and positively correlated with
the severity of diabetic complications [24,27,44,47,151].

PEDF counteracts angiogenesis in both proliferative DR
[152–154] and diabetic nephropathy [155]. Compared with other
endogenous anti-angiogenic factors such as thrombospondin, en-
dostatin and angiostatin, PEDF is more effective in inhibiting
endothelial cell migration [8]. Activation of the p38 mitogen-
activated protein kinase (p38 MAPK) mediates PEDF’s anti-
migratory effect in bovine aorta endothelia cells [126]. The re-
ceptor that transmits PEDF’s effect to p38 MAPK was reported to
be LR [126]. Matrix metalloproteinases 2/9 (MMP-2/9) promote
angiogenesis by degrading the extracellular matrix, thus mobil-

izing endothelial cells [156]. PEDF down-regulates the activities
of MMP-2/9 in the aqueous humor of a proliferative DR model
[88].

In addition, PEDF inhibits the proliferation of endothelial
cells by regulating the MAPK/extracellular-signal-regulated
kinase (ERK) pathways [126,153,157–159]. The Wnt/β-catenin
pathway is activated in diabetic angiogenesis [160] and promotes
endothelial cell migration and proliferation via its targets VEGF
[161] and MMPs [162–164]. As demonstrated by ligand-binding
assays and co-immunoprecipitation, PEDF binds to LRP6, a
co-receptor in the Wnt/β-catenin pathway, and suppresses Wnt
signalling in ARPE-19 and Müller cells [67].

Quenching oxidative stress is another mechanism by which
PEDF inhibits diabetic angiogenesis. PEDF suppresses nicotin-
amide adenine dinucleotide phosphate oxidase activity in the ret-
inas of diabetic rats [152] and rats with retinal hyper-permeability
induced by advanced glycation end-products (AGEs) [165]. Sim-
ilarly, in ex vivo endothelial cell cultures, PEDF directly sup-
presses reactive oxygen species generation by inhibiting NADPH
oxidase activity elicited by AGEs [165,166], tumour necrosis
factor α [167] and angiotensin II [168]. Moreover, in bovine ret-
inal endothelial cells, PEDF activates peroxisome-proliferator-
activated receptor γ (PPAR-γ ), which then up-regulates uncoup-
ling protein 2 and subsequently decreases mitochondria-derived
reactive oxygen species [169].

In addition to endothelial cells, pericyte loss has been well es-
tablished to contribute to the angiogenic progression in DR [170].
PEDF protects pericytes against apoptosis induced by high gluc-
ose, H2O2, AGEs and oxidized low-density lipoprotein through its
antioxidant and anti-inflammatory activities [171–173]. In addi-
tion, survival and proliferation of pericytes require endothelium-
derived PDGF-BB [174]. PEDF promotes the proliferation of
pericytes via up-regulating the expression of PDGF-BB [175].

Role of PEDF in hypoxia-induced angiogenesis
In hypoxic disease states, the activation of hypoxia-inducible
factor 1 (HIF-1) precedes the occurrence of angiogenesis. Hyp-
oxia stabilizes HIF-1α to form a heterodimer with HIF-1β [176],
which then activates the transcription of pro-angiogenic genes
[177,178]. OIR is a widely used ischaemia-induced retinal an-
giogenesis model [179]. In OIR mouse retinas, HIF-1 and VEGF
are up-regulated [180] and trigger the occurrence and progres-
sion of retinal angiogenesis that peaks between postnatal day
17–21 [179]. In contrast, PEDF is down-regulated in the choroid
and RPE cells of this model from postnatal day 13–17 [181].
Similarly, in the retinas of OIR rats, PEDF levels are decreased
with its lowest levels detected at postnatal day 16, which is co-
incidental with the peak expression of VEGF in the retinas of
the same model [11]. To provide in vivo evidence of PEDF’s
anti-angiogenic activities in the OIR model, we generated PEDF
transgenic (PEDF-tg) mice that overexpressed PEDF. Compared
with wild-type OIR retinas, PEDF-tg OIR retinas display a
significant reduction in retinal neovasculature [87]. In contrast,
PEDF-deficient OIR retinas exhibit more prominent VEGF over-
expression [30,67] and more severe angiogenesis relative to
wild-type OIR retinas [30]. Laser-induced choroid neovascu-
larization is another hypoxia-triggered angiogenic model [182].
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Our group and other groups found that overexpression or deliv-
ery of PEDF or PEDF-derived peptide dramatically suppressed
choroidal neovascularization [87,90,91,183,184].

PEDF suppresses hypoxia-induced angiogenesis by either dir-
ectly targeting HIF-1 or regulating the expression or the signalling
cascades of HIF-1’s target genes. It is reported that PEDF blocks
HIF-1 nuclear translocation and represses VEGF promoter activ-
ity under hypoxic conditions in retinal capillary endothelial cells
[153]. However, the mechanism by which PEDF inhibits HIF-
1 nuclear translocation remains unknown. Regulatory effects of
PEDF on the expression of HIF-1 target genes and their signalling
are summarized below.

VEGF is a target gene of HIF-1, with a hypoxia-response ele-
ment located at its promoter region [185,186]. Our group and oth-
ers demonstrated that PEDF decreased the expression of hypoxia-
induced VEGF in retinal capillary endothelial cells, Müller cells
and an angiogenic eye model [93,153]. VEGF/kinase insert do-
main receptor (KDR) is a crucial angiogenic pathway, and PEDF
was reported to disrupt this pathway. Our previous study has
shown that PEDF competes with VEGF for binding to KDR in
retinal capillary endothelial cells, muting the angiogenic events of
the VEGF/KDR pathway [153]. In addition, VEGF/FMS-like tyr-
osine kinase 1 (Flt-1) signalling was demonstrated to be essential
for the survival of human dermal microvascular endothelial cells
[187]. PEDF treatment activates γ -secretase in bovine retinal
microvascular endothelial cells, which then triggers the cleavage
of Flt-1 and mutes the phosphorylation of Flt-1 [188], leading
to suppressed VEGF/Flt-1 signalling which is required for the
viability [187] and tube formation ability of endothelial cells
[188]. In addition, increased concentrations of the extracellular
domain of Flt-1 trap and sequester VEGF in the extracellular mat-
rix [188,189], resulting in less available VEGF and subsequent
attenuated VEGF/KDR signalling.

Basic fibroblast growth factor (bFGF) is a potent angiogenic
factor regulated by HIF-1 [190,191]. bFGF activates nuclear
factor of activated T-cells (NFAT), an angiogenic transcription
factor, to promote angiogenic events in human microvascular
endothelial cells and human umbilical vein endothelial cells
(HUVECs) [192]. In response to PEDF treatment, the associ-
ation between c-Jun N-terminal kinase 2 (JNK-2) and NFAT
cytoplasmic 2 (NFATc2) is significantly increased in endothelial
cells, which leads to elevated cytoplasmic retention of NFATc2
and decreased nuclear levels of NFAT to promote angiogenesis
[192]. In addition, bFGF induces bovine aorta endothelial cell
migration, whereas PEDF treatment activates p38 to counteract
bFGF-stimulated endothelial cell migration [126].

MMP-2 expression is modulated by HIF-1 in human somatic
endothelial cells and HUVECs [193–195]. In addition, hypoxia
affects the activation [196,197] and expression [197,198] of
MMP-9 in mouse cerebral microvasculature, in retinal cells and
in HUVECs. PEDF was demonstrated to suppress the expression
and activities of MMP-2/9 in the retinas with severe neovascular-
ization [88]. Interestingly, PEDF’s regulatory effect on MMP-2/9
expression is also reported in a spontaneous pancreatic carcinoma
model [52].

Plaminogen activator inhibitor-1 (PAI-1) is another an-
giogenic factor under the regulation of HIF-1, with hypoxia-

response elements located at its promoter region [199–202].
PEDF suppresses PAI-1 transcription in HUVECs [203]. Inter-
estingly, even under normal conditions, PEDF significantly de-
creases mRNA levels of PAI-1 in HUVECs [203]. Furthermore,
the activity of plasma-derived PAI-1 is also substantially reduced
by PEDF in rats [204].

Common mechanisms for the anti-angiogenic
activities of PEDF in diabetic and hypoxic
conditions
In addition to the anti-angiogenic pathways mentioned above,
a number of studies have demonstrated that under dia-
betic and hypoxic conditions, the common mechanisms by
which PEDF inhibits angiogenesis are via promotion of en-
dothelial cell death [9,124–126,159,192,205–214]. Both full-
length PEDF [9,124,126,159,192,205–211] and PEDF-derived
peptides [125,212–214] were reported to induce apoptosis of en-
dothelial cells in in vitro culture or in angiogenic animal models.
The apoptotic pathways in endothelial cells stimulated by PEDF
are summarized as below (Figure 1).

The Fas/FasL interaction leads to programmed cell death
[215]. Fas is constitutively expressed at low levels on the cell
surface of quiescent endothelial cells. In angiogenic states, high
concentrations of angiogenic stimulators increase cell surface
presentation of Fas in activated endothelial cells [209,216]. PEDF
induces the transcription and cell surface display of FasL in
human dermal microvascular endothelial cells [209], leading
to enhanced Fas/FasL interaction and subsequent activation of
caspase 8-dependent apoptotic signalling. This action of PEDF
on FasL has been suggested to be through activation of NF-
κB [124]. In a bFGF-induced corneal neovascularization model,
PEDF inhibits new vessel growth in wild-type mice, but not in
FasL-deficient or Fas-deficient mice [209], further demonstrating
that Fas/FasL mediates PEDF’s anti-angiogenic effects. However,
Fas/FasL/caspase-8 is not the only pathway to mediate PEDF’s
apoptotic effects in endothelial cells. It has been reported that
deficiency of FasL or Fas does not attenuate the inhibitory effect
of PEDF on hypoxia-induced angiogenesis in OIR retinas [217].
Moreover, a FasL-neutralizing antibody does not abolish PEDF-
induced apoptosis in HUVECs [208], implying that alternative
pathway(s) is(are) mediating PEDF’s pro-apoptotic effects under
these circumstances.

Another PEDF-elicited apoptotic pathway is the
LR/JNK/NFAT/cellular FLICE-like inhibitory protein (c-
FLIP)/caspase 8 signalling pathway. Both wild-type PEDF
[126,192] and a triple phosphomimetic mutant of PEDF [126]
activate JNKs in bovine aortic endothelial cells and HUVECs.
The receptor that transmits PEDF’s effect to JNKs is probably
LR, as activation of JNKs is positively correlated with binding
affinities of PEDF to LR, but not with those to PEDF-R
[126]. Activated JNKs directly bind to NFATc2, resulting in
cytoplasmic retention of NFATc2. Cytoplasmic retention of
NFATc2 compromises the availability of NFAT in the nucleus as
a transcription factor, which in turn leads to insufficient transcrip-
tion of c-FLIP. As c-FLIP is an endogenous inhibitor of caspase
8, attenuated expression of c-FLIP results in enhanced activity
of caspase 8 and subsequent endothelial cell apoptosis [192].
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Figure 1 Molecular mechanisms for the anti-angiogenic activities of PEDF
(A) PEDF blocks the survival, proliferation and migration of endothelial cells (ECs). PEDF binds to LRP6, an essential
co-receptor of the Wnt/β -catenin pathway, which attenuates β -catenin nuclear translocation and subsequently the ex-
pression of angiogenic genes such as VEGF and MMPs. PEDF competes with VEGF for binding to KDR, inhibiting the
downstream angiogenic Akt/MAPK and NFAT/c-FLIP pathways. The VEGF/Flt-1 signalling is critical for EC survival. PEDF
elicits γ -secretase to cleave Flt-1, resulting in suppressed survival signalling of ECs. PEDF also binds to the β -subunit of
F1-ATP synthase and inhibits the production of ATP, which is indispensable for EC angiogenic events. (B) PEDF promotes
the apoptosis of ECs. PEDF activates JNKs through LR. Activated JNKs in the cytosol have higher binding affinity to NFATc2,
resulting in cytosolic retention and thus less NFAT in the nucleus as a transcription factor that is required to promote the
expression of an anti-apoptotic factor c-FLIP. PEDF also binds to LR to activate p38, which leads to activation of PPAR-γ .
PEDF also activates PPAR-γ via the mediation of MEK5/Erk5. Activated PPAR-γ then stimulates p53 expression to induce
EC apoptosis. NF-κB is another target gene of PPAR-γ . Increased NF-κB is able to up-regulate FasL expression to promote
EC apoptosis via the Fas/FasL pathway. Moreover, NF-κB displaces NFAT and binds to the promoter of the c-FLIP gene,
resulting in reduced levels of c-FLIP. Interestingly, PEDF also stimulates NF-κB via a PPAR-γ -independent pathway, i.e. by
inducing IκB degradation. Red lines represent inhibition of pathways whereas continuous green arrows show activation
of pathways. Broken green arrows illustrate activations of pathways whose detailed signalling cascades are currently not
fully understood. Erk5, orphan MAPK; UCP-2, uncoupling protein 2.

The LR/p38/PPAR-γ /apoptosis pathway also mediates
PEDF’s pro-apoptotic effects in endothelial cells. PEDF binds
to LR [126] to activate p38 in bovine aortic endothelial cells and
HUVECs [126,208,210,218]. Ho et al. [208,210] demonstrated
that PEDF-stimulated p38 induces the expression and activity
of PPAR-γ in HUVECs. Activation of PPAR-γ then induces
p53 expression in HUVECs [208,210] to induce endothelial cell
apoptosis [208,210]. In addition, PEDF also activates PPAR-γ
via the MAPK/ERK kinase 5 (MEK5)/ERK5/PPAR-γ pathway
[159]. PEDF induces Erk5 phosphorylation via MEK5, which
then activates PPAR-γ [159]. PEDF-stimulated PPAR-γ not only
induces the expression of p53 in HUVECs [208,210], but also
promotes the expression and activity of NF-κB in human dermal
capillary endothelial cells to suppress angiogenesis [159].
Interestingly, PPAR-γ -independent activation of NF-κB by
PEDF was also reported: PEDF can induce the phosphorylation
and degradation of inhibitor of κB kinase (IκB) in HUVECs
[124]. As a result, activated NF-κB binds to the FasL promoter

and initiates FasL transcription [124]. Moreover, PEDF-elicited
NF-κB also displaces NFAT and binds to the promoter region
of c-FLIP, resulting in decreased transcription of c-FLIP and
enhanced endothelial cell apoptosis [124].

REGULATION OF PEDF EXPRESSION,
FUNCTION AND DEGRADATION

PEDF levels decline in angiogenic tissues/organs [10,15–
18,34,35]. In contrast, circulating PEDF levels increase in both
Type 1 and Type 2 diabetes relative to patients without dia-
betes [24–27,44,45,47], which might be indicative of a systemic
compensatory response to the decreased expression of PEDF
in angiogenic tissues/organs. Understanding how PEDF levels
are regulated may shed light on its roles in physiological and
pathophysiological conditions. In the present review we discuss
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Figure 2 Regulation of PEDF expression, function and degradation
(A) Transcriptional regulation of human SERPINF1/rodent Serpinf1. Six RAREs are located at −1000 to −1 bp of the SER-
PINF1/Serpinf1 promoter region. In the presence of ATRA, RAR/RXR heterodimers bind to RAREs, dissociate from NCoR1,
and recruit co-activators to activate SERPINF1/Serpinf1 transcription. In the absence of agonists, RAR/RXR heterodimers
associate with NCoR1, which suppresses SERPINF1/Serpinf1 transcription. At least one ER-binding site is located at
−864/+63 bp of the SERPINF1 promoter. Oestrogens induce ERs to form either heterodimers or homodimers to bind to
the ER-binding site, triggering/suppressing SERPINF1 transcription depending on cell types and tissues. In addition, at
least one GRE is found at −1721/+38 bp of the SERPINF1/Serpinf1 promoter. GCs bind to GRs and promote GR nuclear
translocation, which then initiates SERPINF1/Serpinf1 transcription via the promoter region GRE. Three micropthalmia-as-
sociated transcription factor (MITF)-binding regions are identified within the first intron of the SERPINF1 gene. MITF binds
to the MITF-binding sites and up-regulates the transcription of SERPINF1. (B) Down-regulation of PEDF by hypoxia. Under
hypoxic conditions, expression and activities of MMP-2/9 are increased, which promote the degradation of PEDF protein.
In addition, a HIF-1-independent pathway to degrade PEDF was also reported. Hypoxia stimulates the autophagosome to
down-regulate PEDF levels. Continuous green arrows represent gene transcription activation, whereas broken yellow arrows
illustrate either activation or suppression of gene transcription depending on context. GCs, glucocorticoid/glucocorticoid
analogues; GR, glucocorticoid receptor; GRE, glucocorticoid response element; NCoR1, nuclear receptor co-repressor 1.

documented pathways that regulate PEDF levels (Figure 2), how-
ever, other mechanisms may also participate in the regulation of
PEDF expression, function and degradation.

Transcriptional regulation
Transcription of human SERPINF1/ rodent Serpinf1 genes is reg-
ulated by the binding of transcription factors to corresponding
promoters. At −1000 to −1 bp of the human SERPINF1 pro-
moter region, six retinoic acid-response elements (RAREs) have
been identified [219]. In the presence of all-trans retinoic acid
(ATRA), heterodimers formed by retinoic acid receptors (RARs)
and retinoid X receptors (RXRs) bind to RAREs, dissociate from
co-repressors and recruit co-activators [219], leading to active
transcription of the SERPINF1/Serpinf1 gene. ATRA-induced
expression of the SERPINF1/Serpinf1 gene was reported in hu-
man retinal pigment epithelia and cancer cells [220,221], bovine
retinal endothelial cells [220], mouse and rat neurons and neuron-
derived cancer cells [220]. On the other hand, when agonists
are absent, the nuclear receptor co-repressor 1 associates with
the RAR/RXR heterodimer and recruits repressive complex to
the RAREs, resulting in reduced transcription of the SERPINF1
gene [219]. In addition, the SERPINF1 promoter contains at least
one oestrogen receptor (ER)-binding site located at −864/+63 bp
[222,223]. ER has two isoforms that are recognized as ERα and
ERβ. In the presence of agonists, ERs form either heterodimers or

homodimers and then translocate into the nucleus, functioning as
transcription factors. Oestrogen agonists, such as 17β-oestradiol
and ginsenoside Rb1, significantly induce the transcription of
SERPINF1 in human Müller cells [224] and HUVECs [223].
17β-Oestradiol-induced suppression of SERPINF1 transcription
was also reported in human ovarian epithelial cells [222], human
endometrial cells [225] and rhesus retinal capillary endothelial
cells [226]. Activation or repression of SERPINF1 transcrip-
tion probably depends on differential binding of ER heterodi-
mers/homodimers to the promoter in different cell types or tis-
sues. Corticosteroids and analogues, such as dexamethasone or
triamcinolone, also regulate SERPINF1/Serpinf1 expression via
the glucocorticoid-response element located at the promoter re-
gion. It has been reported that there is at least one dexamethasone-
binding site located at −1721/+38 bp of the human SERPINF1
gene [227]. Up-regulation of SERPINF1/Serpinf1 by corticos-
teriod analogues has been reported in a variety of cell types:
HUVECs [228], primary human trabecular meshwork cells [229],
human ARPE-19 cells [228], mouse 3T3-L1 cells [227], mouse
Müller glial cells [220] and rat glioma cells [220]. Morever,
three micropthalmia-associated transcription factor-binding re-
gions are identified within the first intron of the human SERPINF1
gene [230]. Up-regulation of PEDF by microthalmia-associated
transcription factor is observed in human melanoma cell lines
[230], primary melanocytes [230] and human RPE cells [231].
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Post-translational modification
Mature PEDF protein can undergo post-translational modifica-
tions such as N-terminal pyroglutamate blocking [232], phos-
phorylation [233,234] and glycosylation [81,232,235]. PEDF
contains a conserved glycosylation motif N-X-L across species
[5]. An N-linked glycosylation site is found in both human and
bovine PEDF [81,232,235]. However, the role of N-linked glyc-
osylation in PEDF function is yet to be investigated. It is re-
ported that human PEDF protein could be phosphorylated by
casein kinase 2 (CK2) and protein kinase A (PKA) [233]. CK2
phosphorylates PEDF at Ser24 and Ser114, whereas PKA phos-
phorylates Ser227 to a lesser extent [233]. The PEDF mutant
S24E/S114E mimicking the CK2 phosphorylation exhibits en-
hanced anti-angiogenic effects, but decreased neurotrophic activ-
ities. In addition, the PEDF mutant S227E, which mimics the
PKA phosphorylation, displays attenuated anti-angiogenic ef-
fects and intact neurotrophic activities [233,234]. PEDF isoforms
with different molecular masses have been identified [83,235–
237]. These isoforms display differential biological activities
[235,236]. The machinery for PEDF isoform production and the
mechanisms for the different activities of these isoforms of PEDF
are presently unknown.

Secretory regulation
The physiological concentration of PEDF in the human plasma
is approximately 5 μg/ml (100 nM) [232]. The C-terminus
(residues 415–418), RCL (residues 373–380), and hydrophobic
core (Asn391–Thr403) corresponding to β-sheet B were found to be
essential for human PEDF secretion [238]. The C-terminus trun-
cated PEDF that lacks Arg416-Gly-Pro418 is secreted to a lesser
extent compared with wild-type PEDF, and removal of Pro415-
Arg-Gly-Pro418 completely abolishes PEDF secretion [238]. The
transcription levels of these SERPINF1 truncated mutants are
similar to that of wild-type SERPINF1, but the PEDF mutant
protein lacking Pro415 is only detected in the endoplasmic re-
ticulum, whereas wild-type PEDF protein localizes to both the
endoplasmic reticulum and the Golgi, suggesting that Pro415 at
the C-terminus is essential for transporting PEDF protein from
the endoplasmic reticulum to the Golgi [238]. Removal of RCL
(�373–380) also results in insufficient secretion due to impaired
PEDF protein transport from the endoplasmic reticulum to the
Golgi [238]. In addition, replacement of Gly376 and Leu377 with
alanine within the RCL completely abolishes PEDF secretion,
suggesting that the RCL plays an important role in the inter-
action of PEDF with the quality control mechinary within the
endoplasmic reticulum [238]. Moreover, amino acid mutations
of the hydrophobic core of β-sheet B results in no PEDF secre-
tion, which is also due to compromised protein transport from the
endoplasmic reticulum to the Golgi [238]. Interestingly, secretion
of PEDF is predominantly apical in polarized RPE cells, which
is an indicator of RPE polarization and full function [78–80].
Polarized and directional secretion of PEDF towards the neural
retina by RPE cells results in abundant accumulation of PEDF
in the interphotoreceptor matrix, and vitreous and aqueous hu-
mors [76,81–83]. The mechanism for polarized PEDF secretion
in RPE cells is unknown.

Degradative regulation
PEDF levels decrease in many disease conditions relative to
non-disease conditions. Two degradative pathways regulating
PEDF levels have been identified. Under hypoxia, the transcrip-
tion factor HIF-1 is activated and induces the expression and
activities of MMP-2/9 [193–198]. MMP-2/9 have been repor-
ted to proteolyze PEDF in a variety of cells including retinal
cells [38,181,239,240]. A HIF-1-independent pathway to degrade
PEDF was also reported, where hypoxia stimulated the autopha-
gosome to down-regulate PEDF levels [241].

POTENTIAL CLNICAL APPLICATIONS OF
PEDF AS AN ANGIOGENIC INHIBITOR

On the basis of clinical correlations between circulating PEDF
levels and diabetic angiogenesis, PEDF has been proposed as
a biomarker for the assessment of angiogenesis progression in
diabetic patients [24,27,44,47]. A Phase I clinical trial identified
that PEDF had therapeutic effects in wet age-related macular
degeneration, and the effect of PEDF as an anti-angiogenic agent
in this model was promising [242]. Still, the potential of PEDF
as an anti-angiogenic drug awaits further support from future
clinical trials. In the present review, we provide a summary of
possible strategies that may help explore the therapeutic potential
of PEDF as an angiostatic factor.

Prior studies suggest that modification of PEDF protein may
be a feasible therapeutic strategy. PEDF phosphomimetic mutants
S24E/S114E [233] and S24E/S114E/S227E [234] exhibit en-
hanced anti-angiogenic effects compared with wild-type PEDF.
The mature human PEDF protein (not including the 20-amino-
acid signal peptide) contains 36 serine, 10 tyrosine and 29 threon-
ine residues that can potentially be modified by phosphomimet-
ics. Whether phosphomimetics at those sites will enhance the
anti-angiogenic effects of PEDF in humans remains to be in-
vestigated. It was reported that binding to collagen I [134,135]
potentiates PEDF’s anti-angiogenic activities. PEDF is also cap-
able of binding to collagen II [134], collagen III [136] and gly-
coaminoglycans [137–140]. Therefore modifications to enhance
PEDF binding affinities to collagens and glycosoaminoglycans
may be an additional strategy to improve PEDF’s anti-angiogenic
activity.

Development of PEDF isoforms or variants with enhanced
anti-angiogenic properties is another alternative method. PEDF
isoforms are found to exhibit different activities [235,236].
PEDF isoforms can result from different post-translational modi-
fications, such as glycosylation by different oligosaccharides
[232,235,243], N-terminal pyroglutamate blockage [232,243]
and multiple phosphorylations [233,234]. Generation of PEDF
isoforms via post-translational modifications provides another
way to enhance the anti-angiogenic effects of PEDF.

Another strategy is to develop PEDF-derived peptides that
possess potent anti-angiogenic activities. Peptide-based thera-
peutics are expected to be superior to full-length protein-based
medicine in the following aspects: improved water solubility,
higher production yield and purity by chemical synthesis,
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Table 1 Properties and amino acid positions of human PEDF-derived peptides in relation to angiogenesis
Note: numbering of amino acids corresponds to the full-length human PEDF sequence, i.e. 418 amino acids including the
20-amino-acid signal peptide.

Properties Positions and references Cell or animal models used

Binding to PEDF receptor Residues 44–77 [119,125,213,245], 44–121
[113], 46–70 [125], 78–121 [113,116,213]

Human Y-79, HuBMECs, T24 human urinary bladder
carcinoma cells, HUVECs, human PC-3 cells and
bovine retina plasma membrane

Binding to extracellular matrix Residues 44–418 [134] Not assayed

Neuron differentiation/neurotrophy Residues 23–381 [6], 32–380 [6], 44–121 [6],
44–229 [6], 44–267 [6], 44–418 [246],
78–121 [113,213,247,248], 98–114 [213]

Human Y-79, embryonic rat motor neurons and human
PC-3 cells

Neuroprotection Residues 78–121 [154,247,249], 82–121
[250]

Human Y-79, embryonic rat motor neurons, diabetic
retinal ganglion layer cells, rat organotypic spinal
cord culture, mouse hypoxic retinal RGC layer,
diabetic/ischaemic mouse inner plexiform layer and
quinolinic acid-induced neurotoxicity in rat model

Anti-inflammation Residues 60–77 [154], 78–121 [71,154],
82–121 [250]

Mouse retinal glial cells, mouse microglia, diabetic
mouse vitreous and streptozotocin-induced diabetic
mouse kidney

Anti-angiogenesis/anti-
vasopermeability
(anti-migration/anti-proliferation)

Residues 36–46 [213], 44–77
[91,212,213,251,252], 46–70 [125], 59–77
[212], 60–77 [154], 63–77 [212], 78–121
[154,253], 90–114 [62], 98–114 [213],
195–418 [254], 387–411 [62], 388–393
[93], 394–400 [93]

HuBMECs, b-FGF-induced corneal angiogenesis model,
corneal micropocket assay, DIVAA, HUVECs, BRCEC,
murine endothelial cells SVEC-4-10, mouse cornea,
Akita mouse retina, matrigel plug assay on nude
mouse, mouse corneal angiogenesis, PC-3 prostate
cancer xenografts, Renca RCC exograft,
VEGF-induced retinal vascular permeability mouse
model, chicken embryo chorioallantoic membrane
model OIR mouse model and laser-induced
choroidal neovascularization rat model

Pro-apoptosis (in endothelial cells
and tumour cells)

Residues 36–46 [213], 44–77
[212,213,245,251], 46–70 [125], 54–77
[212], 59–77 [212], 78–121 [213], 98–114
[213]

HuBMECs, bFGF-induced corneal angiogenesis model,
BRCEC, human microvascular EC, T24 human
urinary bladder carcinoma cells, HUVECs, mouse
cornea, PC-3 cells, PC-3 prostate tumor xenograft
and Renca RCC exograft

and lower immunogenicity [244]. Nevertheless, peptide-based
medicines have their own disadvantages such as short half-lives.
As summarized in Table 1, many functional PEDF-derived
peptides possess anti-angiogenic activities, whereas the rest
display biological activities that might be beneficial for the
organism under diabetic and hypoxia-induced angiogenesis.

Overall, the anti-angiogenic effects and other beneficial prop-
erties of PEDF make it an attractive candidate as a clinical thera-
peutic agent for angiogenesis. However, PEDF-induced insulin
resistance and inflammation remain as potential concerns for its
therapeutic applications. A previous study by Crowe et al. [41]
showed that acute PEDF treatment in lean mice produced com-
promised insulin sensitivity in the skeletal muscle and liver. More
importantly, prolonged systemic PEDF administration resulted
in diabetogenic effects, including increased lipolysis and sub-
sequent ectopic lipid deposition in the skeletal muscle and liver
[41]. In addition, some studies reported that PEDF promoted
the expression of inflammatory factors and cytokines in rat mi-
croglia [255,256] and neonatal rat astrocytes [257]. Furthermore,
the anti-angiogenic effects of PEDF are not always favourable in
diabetic complications. For instance, elevated PEDF levels in the
circulation of patients with Type 1 [27,44] and Type 2 diabetes
[26,45,47,258] may lead to deficient peripheral angiogenesis and

defective wound healing, which might worsen diabetic symptoms
such as diabetic foot ulcers. This concept is supported by a re-
cently published report [68] that increased plasma PEDF levels
are detected in Type 2 diabetic patients with diabetic foot ulcers
compared with diabetic patients without diabetic foot ulcer, and
neutralizing PEDF in diabetic mice accelerates wound healing
by increasing angiogenesis. It is currently unclear whether in-
creased PEDF levels in the circulation play a pathogenic role, or
are a compensatory response to angiogenic diseases. To circum-
vent the systemic side effects, direct administration of PEDF into
the angiogenic tissues/organs for the treatment of proliferative
DR or other angiogenic diseases is a potential delivery approach.
Further efforts are needed to confirm the potential clinical ap-
plication of PEDF.

CONCLUSIONS

PEDF is a multifunctional serpin present in almost all tis-
sues/organs and is involved in the maintenance of a variety of
physiological functions. PEDF deficiency is known to play patho-
genic roles in a number of diseased processes. Notably, PEDF
levels are changed in diabetic and hypoxia-induced angiogenic
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diseases, which are believed to exacerbate the diseases. With
broad activities and functions, PEDF has great clinical potential
for disease diagnosis, treatment and prognosis prediction. How-
ever, its clinical application, especially its potential to combat
pathological angiogenesis, remains to be explored.
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