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Abstract
Bioenergetics has become central to our understanding of pathological mechanisms, the development of new
therapeutic strategies and as a biomarker for disease progression in neurodegeneration, diabetes, cancer and
cardiovascular disease. A key concept is that the mitochondrion can act as the ‘canary in the coal mine’ by serving
as an early warning of bioenergetic crisis in patient populations. We propose that new clinical tests to monitor
changes in bioenergetics in patient populations are needed to take advantage of the early and sensitive ability of
bioenergetics to determine severity and progression in complex and multifactorial diseases. With the recent
development of high-throughput assays to measure cellular energetic function in the small number of cells that can
be isolated from human blood these clinical tests are now feasible. We have shown that the sequential addition of
well-characterized inhibitors of oxidative phosphorylation allows a bioenergetic profile to be measured in cells
isolated from normal or pathological samples. From these data we propose that a single value – the Bioenergetic
Health Index (BHI) – can be calculated to represent the patient’s composite mitochondrial profile for a selected cell
type. In the present Hypothesis paper, we discuss how BHI could serve as a dynamic index of bioenergetic health
and how it can be measured in platelets and leucocytes. We propose that, ultimately, BHI has the potential to be a
new biomarker for assessing patient health with both prognostic and diagnostic value.
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INTRODUCTION

Complex and chronic diseases with underlying mechanisms in-
volving dysfunctional metabolism are a growing healthcare prob-
lem in the developed world [1–3]. The availability of low-cost
high-calorie foods in combination with a contemporary sedent-
ary lifestyle presents a unique combination of risk factors with
multiple evolving co-morbidities, which increasingly challenges
our healthcare system especially in terms of prediction and man-
agement. Defining energetic health has become a necessity for
healthcare in the 21st Century, and at the present time no clin-
ical test is available to assess this parameter. We hypothesize that
dysfunctional energetics associated with diabetes, cardiovascular
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disease, liver disease, cancer and environmental toxins can be
dynamically assessed using a new parameter: the Bioenergetic
Health Index (BHI) in patient populations. This approach has
the potential to be used as the basis of personalized cell-based
measurements to quantify bioenergetic health.

Our recent findings support an emerging concept that circu-
lating leucocytes and platelets can serve as ‘the canary in the
coal mine’ by acting as early sensors or predictive biomarkers
of mitochondrial function under conditions of metabolic stress
[4–8]. These studies prompted us to begin an integrated approach
in cells isolated from human blood to establish a quantitative as-
say of mitochondrial function that will have the power to predict
disease progression and response to treatment [9]. In the present
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Figure 1 BHI as a dynamic measure of the response of the body to stress
In this scheme, healthy subjects have a high BHI with a high bioenergetic reserve capacity, high ATP-linked respiration
(AL) and low proton leak (PL). The population of mitochondria is maintained by regenerative biogenesis. During normal
metabolism, a sub-healthy mitochondrial population, still capable of meeting the energetic demand of the cell, accumu-
lates functional defects, which can be repaired or turned over by mitophagy. Chronic metabolic stress induces damage
in the mitochondrial respiratory machinery by progressively decreasing mitochondrial function and this manifests as low
ATP-linked respiration, low reserve capacity and high non-mitochondrial (e.g. ROS generation) respiration. These bioener-
getically inefficient damaged mitochondria exhibit increased proton leak and require higher levels of ATP for maintaining
organelle integrity, which increases the basal oxygen consumption. In addition, chronic metabolic stress also promotes
mitochondrial superoxide generation leading to increased oxidative stress, which can amplify mitochondrial damage, the
population of unhealthy mitochondria and basal cellular energy requirements. The persistence of unhealthy mitochondria
damages the mtDNA, which impairs the integrity of the biogenesis programme, leading to a progressive deterioration in
bioenergetic function, which we propose can be identified by changes in different parameters of the bioenergetics profile
and decreasing BHI.

Hypothesis paper, we introduce the BHI concept and its potential
role in the emerging field of translational bioenergetics.

EMERGING CONCEPTS IN BIOENERGETIC
HEALTH

Mitochondria are highly sensitive to stress and respond dynam-
ically to the changes in their cellular microenvironment. The
macromolecules of the mitochondrion, including the respiratory
chain complexes, are susceptible to oxidative damage which ac-
companies inflammation. We propose that failure to remove dam-
aged mitochondria by mitophagy and replace them with healthy
organelles can result in a progressive deterioration in bioenergetic
function which precedes the onset of more severe clinical systems
(Figure 1). The advent of high-throughput respirometry and the
availability of specific mitochondrial inhibitors have stimulated
the development of a method to obtain a bioenergetic profile for

intact cells [10–12]. If bioenergetic health could be measured
from these parameters at the ‘point of care’, it could have both
diagnostic and prognostic value.

The initial reaction to the BHI concept might be ‘how
can bioenergetics in circulating leucocytes and platelets act as
a surrogate or marker of metabolic stress in specific tissues
or organs?’ In part this question has been addressed because
it is well established that diseases, including atherosclerosis,
diabetes and neurodegeneration, are associated with deteriora-
tion in specific mitochondrial parameters and activities in cells
throughout the body, including leucocytes and platelets [5,13–
16]. Of particular interest is the fact that these pathologies
are associated with increased oxidative stress and that mito-
chondria are both a source and target of ROS/RNS (reactive
oxygen species/reactive nitrogen species). These insights, to-
gether with the advent of mitochondrial-targeted drugs, emphas-
ize the need for quantitative methods to integrate these isol-
ated measurements [17]. We propose that an individual’s cellular
bioenergetics can be measured in a clinical setting and used to
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Figure 2 Cellular mitochondrial profile in human monocytes
This assay defines cellular mitochondrial function using the well-defined
inhibitors, oligomycin (Oligo), FCCP and antimycin A (AntiA) [12]. The
interpretation of the different parameters defined by the assay is de-
scribed in the accompanying text. Data is typically normalized to total
protein or cell number in each well. Values are means+−S.E.M., n =
3–5.

generate a single integrated measure of bioenergetic health, i.e.
the BHI.

ESTABLISHING AND INTERPRETING THE
CELLULAR BIOENERGETIC PROFILE

Parameters from the cellular mitochondrial function assay (Fig-
ure 2) give insights into different aspects of mitochondrial func-
tion and below we discuss how these can be used to calculate the
BHI. An important aspect of these mitochondrial parameters that
can be measured from this assay is that they are potentially inter-
active and, taken together, can serve as a sensitive indicator of the
response of cells to oxidative stress and the changing metabolic
programmes associated with their role in inflammation.

Basal oxygen consumption rate
The first measurement is the basal OCR (oxygen consumption
rate) measured in the cells before injection of mitochondrial in-
hibitors. Changes in basal OCR in patients with disease relative to
normal subjects can be interpreted with the information obtained
from the rest of the profile.

ATP-linked OCR and proton leak
After basal measurements are recorded, cells are exposed to oli-
gomycin, which is an inhibitor of ATP synthase. By inhibiting
proton flux through this enzyme, the increased proton gradi-
ent across the mitochondrial inner membrane prevents electron
transport through Complexes I–IV. Oxygen consumption then
decreases accordingly. The remaining rate of mitochondrial res-
piration represents proton leak, i.e. protons pumped during elec-
tron transport that result in oxygen consumption but not ATP
production. An increase in the ATP-linked OCR would indicate
an increase in ATP demand, whereas a decrease would indicate

low ATP demand, a lack of substrate availability and/or severe
damage to oxidative phosphorylation, which would impede the
flow of electrons and result in a lower OCR.

An increase in apparent proton leak could be due to a number
of factors including increased UCP (uncoupling protein) activity,
damage to the inner mitochondrial membrane and/or ETC (elec-
tron transport chain) complexes. This results in the leakage of
protons into the matrix and oxygen consumption in the absence
of normal proton translocation across the inner mitochondrial
membrane by Complexes I, III and IV, a process known as elec-
tron slippage. Increased calcium transport can also manifest as a
change in proton leak. We have also shown that oxidative stress
modifies the bioenergetic parameters and also increases ATP-
linked oxygen consumption and proton leak [12].

Maximal OCR and reserve capacity
An uncoupler, such as FCCP (carbonyl cyanide p-
trifluoromethoxyphenylhydrazone), is next used to estimate max-
imal respiration; however, respiratory substrates are provided by
cellular metabolism, which can be physiologically limiting [12].
A high FCCP-stimulated OCR compared with basal OCR indic-
ates that the mitochondria are using less than the maximal rate
of electron transport that can be supported by substrate supply
from the cells. As shown in Figure 2, basal respiration can be
considered a threshold below which the cell cannot sustain oxid-
ative phosphorylation to meet energy demand. In support of this,
we have demonstrated with mitochondrial inhibitors that reserve
capacity is decreased by oxidative stress and, if this threshold
activity cannot be met, glycolysis is then stimulated to meet the
energetic needs of the cell [10,18–21]. The difference between
the basal and maximal respiration is called the spare or reserve
bioenergetic capacity [12,22]. The reserve capacity concept is
well established in the literature. For example, it has been shown
in the heart that, under an increased work load in the physiological
range, mitochondria have a substantial ‘reserve capacity’, which
is depleted under conditions of severe stress, including pressure
overload or ischaemia [23,24]. More recently, we have shown
that, under conditions of oxidative stress, the reserve capacity is
depleted and if the threshold for the basal respiration is breached
then cell death occurs [10,18,20,21,25–27].

Whether cells can utilize the maximal electron transport activ-
ity for ATP synthesis will depend on the capacity of the com-
ponents of the oxidative phosphorylation system, including ATP
synthase, which may be limiting. However, it is important to re-
cognize that mitochondria in excitable cells, such as cardiomyo-
cytes and neurons, are exposed to high fluxes of calcium and other
ions, which will utilize the proton gradient and so increase the rate
of oxygen consumption independent of ATP demand. Taken to-
gether, it is clear that reserve bioenergetic capacity is a cell- and
context-dependent parameter intimately linked to bioenergetic
health whether it is utilized for ATP synthesis or other mito-
chondrial functions. Importantly, a low maximal capacity could
indicate decreased substrate availability or that mitochondrial
mass or integrity is compromised. From a translational perspect-
ive, bioenergetic alterations in monocytes and lymphocytes are
also linked to their changing biology during the progression of
the inflammatory process [28,29].
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Non-mitochondrial OCR
This parameter is an index of oxygen-consuming processes that
are not mitochondrial. In leucocytes, non-mitochondrial OCR is
typically attributed to enzymes associated with inflammation, in-
cluding cyclo-oxygenases, lipoxygenases and NADPH oxidases,
and are regarded as negative indicators of bioenergetic health.
We have shown that non-mitochondrial OCR varies and typically
increases in the presence of stressors, including ROS and RNS,
and it is well established that mitochondria are a target for the
deleterious effects of these reactive intermediates [12,18].

CALCULATION OF THE BHI

In the present paper, we describe one of several possible variants
for a BHI equation, which we designed using the standard statist-
ical framework of LDA (linear discriminant analysis), which is
consistent with the basic principles of bioenergetics. To test its re-
sponsiveness to oxidative stress, monocytes were exposed to the
lipid peroxidation product 4-HNE (hydroxynonenal) as described
below. We have described previously the effects of 4-HNE in cel-
lular bioenergetics in a broad range of cell types [10,21,26,30].
In the 4-HNE example, a low BHI is associated with a lower re-
serve capacity, low ATP-linked respiration and increased proton
leak (Figure 3). Eqn (1) shown below captures positive aspects
of bioenergetic function (reserve capacity and ATP-linked res-
piration) and contrasts these with potentially deleterious aspects
(non-mitochondrial oxygen consumption and proton leak). The
first term in the numerator is the reserve capacity. The larger
the value for reserve capacity the more effectively mitochondria
can meet both the ATP needs of the cell and deal with increased
energetic demand and ionic or metabolic stress [12].

BHI = log
(reserve capacity)a × (ATP-linked)b

(non-mitochondrial)c × (proton leak)d
(1)

The second term in the numerator, ATP-linked respiration,
is a measure of the capacity of the cell to meet its energetic
demands (Figure 1). For the denominator, the proton leak de-
creases mitochondrial efficiency with respect to ATP generation
and is then a negative term. The final term in the denominator is
the non-mitochondrial respiration. Non-mitochondrial oxygen-
consuming processes are not well defined but in these cells they
are predominantly those that originate from pro-oxidant and pro-
inflammatory enzymes such as cyclo-oxygenases, cytochrome
P450s or NADPH oxidases. As increased activity of these pro-
cesses can damage mitochondria, we propose that the BHI will
decrease under conditions of inflammation. The terms a, b, c and
d are exponents (linear in log-space) which modify the relative
weighting of the respiratory parameters.

To test the responsiveness of the BHI parameter to stress we
exposed monocytes isolated from a healthy donor to the lipid
peroxidation product 4-HNE. This reactive lipid intermediate
has been found in a broad range of pathological conditions and
damages mitochondria in cells by increasing proton leak and
inhibiting electron transfer [17]. Shown in Figure 3(A) is the
change in the mitochondrial profile following 4-HNE exposure

and the corresponding change in BHI. In this example, the expo-
nent parameters that modify reserve capacity, ATP-linked, non-
mitochondrial and proton leak (a, b, c and d) were obtained by
fitting the bioenergetic responses of monocytes to various con-
centrations of HNE using an LDA to determine the BHI function
that maximizes the contrast between two conditions (Figure 3B).
These data demonstrate that the BHI is responsive to oxidative
stress in human monocytes. Weighting of these parameters can
also be performed based on the relative biological significance or
pathological relevance of individual parameters and differences
in bioenergetic programmes between cell types. For example,
if proton leak is revealed to contribute twice as much to cellu-
lar dysfunction as other parameters, disproportionate weighting
would allow for a more specific and sensitive index.

In general, defects in the ETC will result in a lower BHI
because of lower reserve capacity, ATP-linked respiration or in-
creased uncoupling. It is important to note that cells which show
a decrease in both reserve capacity and an increase in proton leak
and non-mitochondrial respiration can still potentially provide
sufficient ATP to meet the metabolic demands of the cell, but less
efficiently. For this reason, the BHI has prognostic value because
it can identify a progressive deterioration in bioenergetic health
before the threshold at which failure to meet energy demand
occurs.

BHI IN LEUCOCYTES AND PLATELETS

Blood leucocytes and platelets are exposed to many soluble cir-
culatory factors associated with metabolic stress and are, there-
fore, an ideal surrogate for determination of BHI in patients.
Circulating cells, with the exception of erythrocytes and neutro-
phils, contain respiring mitochondria [9]. These cells sense and
respond to systemic metabolic and inflammatory stressors and
are therefore a functional biomarker in translational bioenerget-
ics [5,14,31,32]. Importantly, circulating leucocytes and platelets
have distinct life cycles, which have an impact on the cellu-
lar metabolic programmes they utilize for their evolving biolo-
gical functions. Monocytes are phagocytic cells which survey the
body for sites of inflammation and play an essential role in the
innate immune system [33–35]. Bioenergetic changes in circulat-
ing monocytes could then reflect damage to mitochondria due to
metabolic or oxidative stress, or the metabolic changes associated
with inflammation.

Lymphocytes are a heterogeneous population of cells, which
are normally in a quiescent state and are reliant on mitochondria
to meet their energetic demands [36]. Activation of these cells is
metabolically demanding because it must support clonal expan-
sion, cytokine and antibody production, and is associated with
an increase in both glycolytic activity and mitochondrial oxygen
consumption [29,37–40]. Changes in bioenergetic function in pa-
tient populations can then reflect both metabolic stress and the
changing role of these cells in immunity and inflammation.

Platelets are anuclear cytoplasmic fragments containing active
mitochondria, which are released by resident megakaryocytes in
the bone marrow. These cellular fragments have a short lifetime in
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Figure 3 Change in the BHI of monocytes subjected to oxidative stress
(A) The bioenergetic profiles of freshly isolated CD14+ monocytes from healthy volunteers were exposed to 4-HNE (20 μM
for 1 h at 37 ◦C) before the assay. AntiA, antimycin A; Oligo, oligomycin. (B) The BHI calculated using the mathematical
relationship described in the text from the profile in (A) is demonstrated. Mean data (n = 3–5 replicates) were plotted
with +−S.E.M. (A) and + S.D. (B). #P � 0.0001. All study protocols for collection and handling of human samples were
reviewed and approved by the Institutional Review Board, University of Alabama at Birmingham.

the circulation (5–7 days) and, because their mitochondria cannot
be replaced, they have frequently been used as a bioenergetic
sensor in human subjects [14]. Under circulating conditions, both
oxidative phosphorylation and glycolysis play a role in energy
production in platelets but with minimal reserve bioenergetic
capacity [41].

We have previously assessed the mitochondrial profile of these
cell types and it is clear that each are unique in their mitochon-
drial and glycolytic programmes [9]. Consequently, interpreta-
tion of translational studies using isolated blood leucocytes and
platelets should take into account that mitochondrial function dif-
fers between these cell types. The advantage of this approach is
that platelets, lymphocytes and monocytes can act as differential
sensors or biomarkers of mitochondrial dysfunction in different
pathologies, thus increasing the breadth and diagnostic versatility
of the BHI. For example, because the protein levels of Complexes
III and IV are low in platelets, this cell type can serve as a sentinel
for defects in these respiratory chain complexes compared with
monocytes and lymphocytes, which have higher levels of these
complexes [9]. It follows from these data that the BHI is likely
to be different between leucocytes and platelets isolated from
human blood.

MITOCHONDRIAL VARIABILITY IN HUMAN
SUBJECTS AND THE BHI

Mitochondrial dysfunction can promote altered energy expendit-
ure and systemic inflammation that modifies susceptibility to
energy-based pathologies associated with oxidative stress such
as obesity and diabetes [42,43]. Mitochondrial proteins are en-
coded by both nuclear and mitochondrial genomes, and genetic
changes in either the nucleus or mtDNA (mitochondrial DNA)
can potentially alter mitochondrial bioenergetics and result in

individual variation in the BHI within healthy populations. Ge-
netic variations, either nuclear or mitochondrial, can also result
in lower mitochondrial mass or function, which are exacerbated
by aging, exposure to environmental toxins, lifestyle and dis-
ease risk factors [44–46]. Importantly, ‘normal’ genetic variation
within mtDNA can be associated with changes in mitochondrial
function and disease susceptibility that will be intertwined with
cellular bioenergetics and inflammation [45,47–49]. Future stud-
ies investigating whether a relationship exists between the BHI
and mtDNA haplotype or haplogroup are therefore of interest.

DYNAMIC ASPECTS OF BHI MEASUREMENT

The role of metabolic stress in chronic disease development may
be mediated through an inability to repair cellular damage from
ROS (i.e. oxidative stress) that has been worsened by mitochon-
drial damage and heightened by systemic inflammation. In turn,
this can damage bioenergetics in leucocytes and platelets, thereby
allowing them to be sensors of bioenergetic health, as outlined in
Figure 1 [28].

As discussed above, the critical factors which modify the
BHI include changes in cellular metabolism that are responsive
to changes in the environment (e.g. caloric intake and physical
activity), those that can influence oxidant and/or inflammatory
response, and racial differences in disease susceptibility due to
differences in mitochondrial and nuclear genomes. This also sug-
gests that the differential influence of factors such as genetic
determinants, age, lifestyle and existing physiology/pathology in
human health will be consolidated in the BHI for each individual.
An important implication of this concept is that mitochondrial
tests do not have to be localized to specific organs or tissues (e.g.
liver or skeletal muscle), but can be assessed by an integrated
test of bioenergetic function in cells isolated from an individual’s
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blood. Refinements of the basic approach to measuring cellular
energetics and parameters that could be included into the BHI cal-
culation included glycolysis and the measurement of the response
to different substrates.

FUTURE OUTLOOK

In this Hypothesis paper our intent is to introduce the concept
of the BHI and one possible equation for illustrative purposes.
The benefit of using a data-driven definition of the BHI by fit-
ting distinct bioenergetic parameters is that the general concept
of the BHI can be adapted to different clinical settings. In this
case we chose LDA for two reasons. First, it has a simple
mathematical form [eqn(1)] and secondly, it can also be in-
terpreted as conforming to Gaussian clustering. For the BHI
defined over two conditions, e.g. normal compared with disease,
each sample’s BHI can be translated into the probability of the
sample being normal, which also aids in the clinical applica-
tion. As clinical data sets become available, other approaches
to calculating the BHI can be explored. Indeed, the precise for-
mulation of the BHI equation will require an extensive clinical
trial with normal subjects and patients and the appropriate in-
formatics analysis which we, and others, are in the process of
obtaining.

The overall goal is to establish the BHI as a new universally
deployed clinical test for assessing bioenergetic dysfunction es-
pecially early in disease progression before significant pathology
and/or acutely prior to life-threatening conditions. If successful,
the BHI test will then become an important approach to integ-
rating personalized medicine with state-of-the-art translational
bioenergetics.
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