Although the existence of a brain renin–angiotensin system (RAS) had been proposed five decades ago, we still struggle to understand how it functions. The main reason for this is the virtual lack of renin at brain tissue sites. Moreover, although renin’s substrate, angiotensinogen, appears to be synthesized locally in the brain, brain angiotensin (Ang) II disappeared after selective silencing of hepatic angiotensinogen. This implies that brain Ang generation depends on hepatic angiotensinogen after all. Rodrigues et al. (Clin Sci (Lond) (2021) 135:1353–1367) generated a transgenic mouse model overexpressing full-length rat angiotensinogen in astrocytes, and observed massively elevated brain Ang II levels, increased sympathetic nervous activity and vasopressin, and up-regulated erythropoiesis. Yet, blood pressure and kidney function remained unaltered, and surprisingly no other Ang metabolites occurred in the brain. Circulating renin was suppressed. This commentary critically discusses these findings, concluding that apparently in the brain, overexpressed angiotensinogen can be cleaved by an unidentified non-renin enzyme, yielding Ang II directly, which then binds to Ang receptors, allowing no metabolism by angiotensinases like ACE2 and aminopeptidase A. Future studies should now unravel the identity of this non-renin enzyme, and determine whether it also contributes to Ang II generation at brain tissue sites in wildtype animals. Such studies should also re-evaluate the concept that Ang-(1-7) and Ang III, generated by ACE2 and aminopeptidase A, respectively, have important functions in the brain.

You do not currently have access to this content.