The precise mechanisms underlying resistant hypertension remain elusive. Reduced nitric oxide (NO) bioavailability is frequently documented in chronic kidney disease, obesity, diabetes and advanced age, all of which are risk factors for resistant hypertension. Sympathetic overactivity and chronic activation of the renin–angiotensin system are salient features of resistant hypertension. Interestingly, recent data indicate that renal sympathetic overactivity can reduce the expression of neuronal nitric oxide synthase in the paraventricular nucleus. Reduced NO levels in the paraventricular nucleus can increase sympathetic outflow and this can create a vicious cycle contributing to resistant hypertension. Angiotensin II can reduce l-arginine transport and hence NO production. Reduced NO levels may reduce the formation of angiotensin 1-7 dampening the cardio-protective effects of the renin–angiotensin system contributing to resistant hypertension. In addition, interleukin-6 (IL-6) is demonstrated to be independently associated with resistant hypertension, and IL-6 can reduce NO synthesis. Despite this, NO levels have not been quantified in resistant hypertension. Findings from a small proof of concept study indicate that NO donors can reduce blood pressure in patients with resistant hypertension but more studies are required to validate these preliminary findings. In the present paper, we put forward the hypothesis that reduced NO bioavailability contributes substantially to the development of resistant hypertension.

You do not currently have access to this content.