High-mobility group box-1 (HMGB1) plays a context-dependent role in autophagy, which is required for hepatic stellate cells (HSCs) activation. However, the significance of HMGB1-induced HSCs autophagy in liver fibrosis has not been elucidated. Here, we first documented an enrichment of peripheral and intrahepatic HMGB1 signal in hepatitis B virus (HBV)-related liver fibrosis progression, and presented a direct evidence of anatomic proximity of HMGB1 with a-SMA (a marker for HSCs activation) in cirrhotic liver specimens. Then, we demonstrated the autophagy-inducing effects by serum-sourced HMGB1 in both primary murine HSCs and human HSCs cell line (LX-2), reflected by increased number of autophagic vacuoles (AVs) under the transmission electron microscope (TEM) and up-regulated protein expression of lipidated microtubule-associated light chain 3 (LC3-II) (a marker for autophagosome) in Western blot analysis. Intriguingly, there is a possible translocation of endogenous HMGB1 from the nucleus to cytoplasm to extracellular space, during exogenous HMGB1-induced HSCs autophagy. Meanwhile, the dose- and time-dependent effects by recombinant HMGB1 (rHMGB1) in enhancing LX-2 autophagy and fibrogenesis have been revealed with activated extracellular regulated protein kinase (ERK)/c-Jun N-terminal kinase (JNK) mitogen-activated protein kinase (MAPK) and restrained mammalian target of rapamycin (mTOR)/STAT3 signaling pathways. Additionally, the ERK or JNK inhibitor could not only inhibit rHMGB1-induced autophagy and fibrogenesis in LX-2 cells, but also restore the suppressed mTOR and STAT3 pathways. Furthermore, using LC3-siRNA transfected LX-2, we found HMGB1-induced fibrogenesis is dependent on its autophagy-inducing effects. Finally, we elucidated the involvement of extracellular HMGB1-receptor for advenced glycation end product (RAGE) axis and endogenous HMGB1 in exogenous HMGB1-induced effects. Our findings could open new perspectives in developing an antifibrotic therapy by targetting the HSCs autophagy.

You do not currently have access to this content.