Although major advancements have made in investigating the aetiology of SLE (systemic lupus erythaematosus), the role of MDSCs (myeloid-derived suppressor cells) in SLE progression remains confused. Recently, some studies have revealed that MDSCs play an important role in lupus mice. However, the proportion and function of MDSCs in lupus mice and SLE patients are still poorly understood. In the present study, we investigated the proportion and function of MDSCs using different stages of MRL/lpr lupus mice and specimens from SLE patients with different activity. Results showed that splenic granulocytic (G-)MDSCs were significantly expanded by increasing the expression of CCR1 (CC chemokine receptor 1) in diseased MRL/lpr lupus mice and in high-disease-activity SLE patients. However, the proportion of monocytic (M-)MDSCs remains similar in MRL/lpr lupus mice and SLE patients. G-MDSCs produce high levels of ROS (reactive oxygen species) through increasing gp91phox expression, and activated TLR2 (Toll-like receptor 2) and AIM2 (absent in melanoma 2) inflammasome in M-MDSCs lead to IL-1β (interleukin 1β) expression in diseased MRL/lpr mice and high-disease-activity SLE patients. Previous study has revealed that MDSCs could alter the plasticity of Th17 (T helper 17) cells and Tregs (regulatory T-cells) via ROS and IL-1β. Co-culture experiments showed that G-MDSCs impaired Treg differentiation via ROS and M-MDSCs promoted Th17 cell polarization by IL-1β in vitro. Furthermore, adoptive transfer or antibody depletion of MDSCs in MRL/lpr mice confirmed that MDSCs influenced the imbalance of Tregs and Th17 cells in vivo. Our results indicate that MDSCs with the capacity to regulate Th17 cell/Treg balance may be a critical pathogenic factor in SLE.

You do not currently have access to this content.