Cancer metastasis often leads to death and therapeutic resistance. This process involves the participation of a variety of cell components, especially cellular and intercellular communications in the tumor microenvironment (TME). Using genetic sequencing technology to comprehensively characterize the tumor and TME is therefore key to understanding metastasis and therapeutic resistance. The use of spatial transcriptome sequencing enables the localization of gene expressions and cell activities in tissue sections. By examining the localization change as well as gene expression of these cells, it is possible to characterize the progress of tumor metastasis and TME formation. With improvements of this technology, spatial transcriptome sequencing technology has been extended from local regions to whole tissues, and from single sequencing technology to multimodal analysis combined with a variety of datasets. This has enabled the detection of every single cell in tissue slides, with high resolution, to provide more accurate predictive information for tumor treatments. In this review, we summarize the results of recent studies dealing with new multimodal methods and spatial transcriptome sequencing methods in tumors, to illustrate recent developments in the imaging resolution of micro-tissues.

This content is only available as a PDF.
This is an Accepted Manuscript; not the final Version of Record. You are encouraged to use the final Version of Record that, when published, will replace this manuscript and be freely available under a Creative Commons licence.