Background and aims: Long non-coding RNA (lncRNA) FOXD2 adjacent opposite strand RNA 1 (FOXD2-AS1) is aberrantly expressed in various cancers and associated with cancer progression. A comprehensive meta-analysis was performed based on published literature and data in the Gene Expression Omnibus database, and then the Cancer Genome Atlas (TCGA) dataset was used to assess the clinicopathological and prognostic value of FOXD2-AS1 in cancer patients.

Methods: Gene Expression Omnibus databases of microarray data and published articles were used for meta-analysis, and TCGA dataset was also explored using the GEPIA analysis program. Hazard ratios (HRs) and pooled odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess the role of FOXD2-AS1 in cancers.

Results: This meta-analysis included 21 studies with 2391 patients and 25 GEO datasets with 3311 patients. The pooled HRs suggested that highly expressed FOXD2-AS1 expression was correlated with poor overall survival (OS) and disease-free survival (DFS). Similar results were obtained by analysis of TCGA data for 9502 patients. The pooled results also indicated that FOXD2-AS1 expression was associated with bigger tumor size and advanced TNM stage, but was not related to age, gender, differentiation and lymph node metastasis.

Conclusion: The present study demonstrated that FOXD2-AS1 is closely related to tumor size and TNM stage. Additionally, increased FOXD2-AS1 was a risk factor of OS and DFS in cancer patients, suggesting FOXD2-AS1 may be a potential biomarker in human cancers.

Malignant tumors pose a great threat to human health [1]. Each year, there are approximately 14 million new cases of malignant tumors worldwide and more than 8.2 million deaths [2,3]. The prognosis for cancers is still poor, the difficulties of early cancer diagnosis and the lack of tumor-specific targeted drugs is the main reason [4]. Therefore, there is an urgent need for the identification of tumor-specific diagnostic biomarkers.

Long non-coding RNA (lncRNA) was originally discovered during large-scale sequencing of mouse full-length complementary DNA (cDNA) libraries [5], are RNA molecules over 200 nt in length that cannot be translated into proteins [6]. LncRNA was initially considered as noise, but the development of high-throughput sequencing and gene chip technology has revealed that many lncRNAs are abnormally expressed in tumor tissues. These lncRNAs are closely related to tumor resistance, cancer development, invasion and metastasis, suggesting that lncRNAs may be a new class of predictors or therapeutic targets for cancers [7,8]. Some lncRNAs have been identified as prognostic biomarkers for cancer patients, including HOTAIR [9], CRNDE [10], ZEB1-AS1 [11], and PCAT-1 [12].

LncRNA FOXD2 adjacent opposite strand RNA 1 (FOXD2-AS1) is located at chromosome 1p33, and has been linked to deterioration and progression of cancers. FOXD2-AS1 is elevated in several cancers, such as nasopharyngeal carcinoma (NC) [13], hepatocellular carcinoma (HCC) [14–17], gastric cancer (GC) [18], colorectal cancer (CRC) [19,20], non-small cell lung cancer (NSCLC) [21,22] and esophageal squamous cell carcinoma (ESCC) [22–25], breast cancer [26], glioma [27–30] and so on. The overexpression of FOXD2-AS1 has also been associated with clinicopathological characteristics and prognosis of cancers. However, the association between FOXD2-AS1 expression and clinicopathological characteristics in cancers remains controversial, and most studies have been limited by small sample size. Su et al. [31] reported that high FOXD2-AS1 expression was associated with T stage and recurrence, but not with lymph node metastasis and differentiation, and overexpression of FOXD2-AS1 was related to poor overall survival (OS) and disease-free survival (DFS) in bladder cancer. Xu et al. [18] found that FOXD2-AS1 expression was related to tumor size, TNM stage, and lymphatic metastasis, but not to gender, age and differentiation, and overexpression of FOXD2-AS1 was correlated with a high risk of DFS in GC. Bao et al. [32] found no relationship between FOXD2-AS1 and clinicopathological characteristics, but observed that elevated FOXD2-AS1 expression was associated with a poor OS and DFS in ESCC. Interestingly, Ren et al. [33] reported that FOXD2-AS1 was related to Clark level and distant metastasis, however, FOXD2-AS1 was not related to OS or DFS. To date, there has been a meta-analysis about the FOXD2-AS1, however, the studies included were limited [34], so we performed a comprehensive meta-analysis based on GEO datasets and published articles, and assessed the the Cancer Genome Atlas (TCGA) dataset to analysis the clinicopathological and prognostic value of FOXD2-AS1 in patients in pan-cancers.

Search strategy and study selection

PubMed, Web of Science, and EMBASE databases were searched for published articles, and FOXD2-AS1 microarray data were extracted from GEO profiles (http://www.ncbi.nlm.nih.gov/geoprofiles/) and GEO datasets (http://www.ncbi.nlm.nih.gov/gds/). Only GPL570 platform data were used (Affymetrix Human Genome U133 Plus 2.0 Array, HG-U133_Plus_2) to minimize impacts on heterogeneity in later analyses. The databases were searched up to 1 January 2019. The key search words were ‘FOXD2-AS1’ OR ‘Long noncoding RNA FOXD2-AS1’ OR ‘LncRNA FOXD2-AS1’ AND ‘cancers’ or ‘neoplasm’.

We set the inclusion criteria for articles in this meta-analysis as follows: (1) use of qRT-PCR or RNA-seq data to measure the expression of FOXD2-AS1 in tumor tissues; (2) reported association between FOXD2-AS1 expression and clinicopathological characteristics and prognosis; and (3) reported specific hazard ratios (HRs) with 95% confidence interval (CI) or inclusion of sufficient data so that these parameters can be calculated by survival curves.

The exclusion criteria were: (1) conference reports, case reports, reviews, letters, and editorials; (2) studies that only reported the molecular function of FOXD2-AS1; (3) non-human studies in articles; and (4) duplicate articles.

Data extraction and quality assessment

Two investigators (Chaojie Liang and Yongping Zhang) performed the search independently and the identified articles were assessed based on the criteria. The extracted data included clinicopathologcial characteristics, OS, and DFS. Newcastle–Ottawa Scale (NOS) criteria [35] were used to assess the quality of studies. NOS score ≥ 6 was considered high-quality studies, otherwise, the studies were considered as low-quality.

Public data and tools

A web program named GEPIA was used to analyze the relationship between FOXD2-AS1 and prognosis. In GEPIA, one-way ANOVA was used to analyze the expression of FOXD2-AS1, and the Kaplan–Meier method and the log-rank test were used to calculate survival analysis, and the cut-off values were analyzed by GEPIA.

Statistical analyses

Statistical data were analyzed by STATA14.2 software. We extracted the HR value with 95% CI from survival curve data by Engauge Digitizer 10.0. Pooled ORs with 95% CIs were calculated for the association of FOXD2-AS1 expression and clinicopathological features. HRs with 95% CIs were calculated to assess the correlation between FOXD2-AS1 expression and prognosis. Heterogeneity was assessed by I2 test and Q test, and the random effect was performed if the I2 > 50%, and when the I2 < 50%, fixed effect was used. We considered the results significant when the pooled OR or HR values with 95% CI did not overlap 1. Sensitivity analysis or subgroup analysis was performed to analyze the presence of heterogeneity and stability of results, and publication bias was assessed by Begg’s funnel.

Study identification and characteristics

The screening process employed is shown in Figure 1. Twenty-one studies [13,14,16–18,20,21,23,29,31,33,36–45] with a total of 2391 patients were selected. The selected studies included four HCC study, two colorectal cancer (CRC) study, one ESCC study, one tongue squamous cell carcinoma study, one GC study, one NC study, one bladder cancer (BC) study, two glioma studies, one NSCLC study, two cutaneous melanoma (CM) study, and two papillary thyroid carcinoma (PTC) study, one cervical carcinoma (CC) study, one head and neck carcinoma study (HNSC) and one osteosarcoma study (OSC). The studies were selected for inclusion in this meta-analysis based on the inclusion and exclusion criteria. These articles were published from 2017 to 2020, the sample size ranged from 50 to 481 patients, and all studies were from China and published in English or Chinese. All studies scored >6 on the NOS, which indicated that all the studies were of high quality. The details of articles are summarized in Table 1.

Flow diagram of the meta-analysis

Figure 1
Flow diagram of the meta-analysis
Figure 1
Flow diagram of the meta-analysis
Close modal
Table 1
Characteristics of studies included in the meta-analysis
StudyYearCountrySample sizeTumor typeCut-off valueLaboratory methodGender male (Y/N) female (Y/N)Age old (Y/N) young (Y/N)Tumor size: big (Y/N) small (Y/N)Differentiation low (Y/N) high and moderate (Y/N)Lymph node metastasis yes (Y/N) no (Y/N)UICC stage I, II (Y/N) III, IV (Y/N)Survival informationHRNOS score
Chen [132017 China 50 NC Median qRT-PCR NA NA NA NA NA NA OS 2.69 (1.17–5.31) (C) 
                
Bao [232017 China 147 ESCC Median qRT-PCR 56/60 31/35 15//10 19/13 31/35 31/35 OS 1.94 (1.17–3.06) (R) 
       17/14 42/39 58/64 54/61 42/29 42/39 DFS 2.71 (1.53–4.80) (R)  
Rong [212017 China 35 NSCLC NA qRT-PCR 16/8 11/4 12/5 8/5 21/7 21/7 OS 3.12 (2.29–5.56) (R) 
       8/3 13/7 12/6 3/19 2/4 2/4    
Dong [362018 China 124 Glioma NA qRT-PCR 36/40 32/30 29/22 34/52 NA NA OS 3.56 (1.48–5.72) (R) 
       24/24 28/34 31/42 26/12      
Shen [292018 China 29 Glioma Median qRT-PCR NA NA NA NA NA NA OS 1.53 (1.02–3.96) (C) 
                
Su [312018 China 84 BC Median qRT-PCR 34/34 20/16 NA 6/9 14/10 14/10 OS 2.32 (1.07-5.31) (C) 
       8/8 22/26  36/33 28/32 28/32 DFS 2.12 (1.07–5.31) (C)  
Ren [332018 China 124 CM NA qRT-PCR 32/34 35/32 NA NA NA NA NA NA 
       30/28 27/30        
Xu [182018 China 106 GC Median qRT-PCR 31/35 27/30 35/20 37/38 37/36 37/36 DFS 2.28 (1.30–5.78) (R) 
       22/18 26/23 18/33 16/15 16/27 16/27    
Zhang [372018 China 84 PTC NA qRT-PCR NA NA NA NA NA NA OS 1.65 (1.07–3.96) (C) 
                
Chang [142018 China 360 HCC NA qRT-PCR NA NA NA NA NA NA OS 1.63 (1.16–2.52) (R) 
                
Zhu [322018 China 481 CRC Median qRT-PCR NA NA NA NA NA NA OS 1.69 (1.17–2.45) (C) 
                
Chen [392019 China 70 CM Median qRT-PCR NA NA NA NA NA NA OS 3.332 (1.03–6.09) (R) 
                
Lei [162019 China 88 HCC NA qRT-PCR NA NA NA NA NA NA OS 1.96 (1.02–3.96) (C) 
                
Li [402019 China 160 PTC Median qRT-PCR 50/37 28/28 25/27 NA 50/23 35/39 OS 2.043 (1.579–3.01) (C) 
       36/31 64/40 67/41  42/45 57/29    
Ren [412019 China 35 OSC Median qRT-PCR 7/8 NA 15/7 NA NA 5/9 OS 3.06 (1.03–6.98) (C) 
       11/9  3/10   13/8    
Zhang [202019 China 60 CRC Median qRT-PCR NA NA NA NA NA NA OS 2.245 (1.01–4.32) (C) 
                
Xu [422019 China 105 HCC Median qRT-PCR 14/15 23/21 26/14 17/19 NA NA NA NA 
       22/21 13/15 10/22 19/17      
Chen [432019 China 85 HNSC NA qRT-PCR 28/22 21/19 NA NA NA 18/28 NA NA 
       16/19 23/22    25/13    
Dou [442020 China 63 CC Median qRT-PCR NA 17/19 11/13 22/17 19/9 NA OS 1.73 (1.07–4.52) (C) 
        15/12 21/18 10/14 13/22     
Hu [172020 China 60 HCC Median qRT-PCR 9/8 11/9 19/9 16/5 NA 12/26 NA NA 
       20/23 22/18 12/20 15/24  12/10    
Zhou 2020 China 41 TSCC Median qRT-PCR 16/15 11/13 NA 6/1 18/5 1/5 NA NA 
       5/5 10/7  15/19 3/15 20/5    
StudyYearCountrySample sizeTumor typeCut-off valueLaboratory methodGender male (Y/N) female (Y/N)Age old (Y/N) young (Y/N)Tumor size: big (Y/N) small (Y/N)Differentiation low (Y/N) high and moderate (Y/N)Lymph node metastasis yes (Y/N) no (Y/N)UICC stage I, II (Y/N) III, IV (Y/N)Survival informationHRNOS score
Chen [132017 China 50 NC Median qRT-PCR NA NA NA NA NA NA OS 2.69 (1.17–5.31) (C) 
                
Bao [232017 China 147 ESCC Median qRT-PCR 56/60 31/35 15//10 19/13 31/35 31/35 OS 1.94 (1.17–3.06) (R) 
       17/14 42/39 58/64 54/61 42/29 42/39 DFS 2.71 (1.53–4.80) (R)  
Rong [212017 China 35 NSCLC NA qRT-PCR 16/8 11/4 12/5 8/5 21/7 21/7 OS 3.12 (2.29–5.56) (R) 
       8/3 13/7 12/6 3/19 2/4 2/4    
Dong [362018 China 124 Glioma NA qRT-PCR 36/40 32/30 29/22 34/52 NA NA OS 3.56 (1.48–5.72) (R) 
       24/24 28/34 31/42 26/12      
Shen [292018 China 29 Glioma Median qRT-PCR NA NA NA NA NA NA OS 1.53 (1.02–3.96) (C) 
                
Su [312018 China 84 BC Median qRT-PCR 34/34 20/16 NA 6/9 14/10 14/10 OS 2.32 (1.07-5.31) (C) 
       8/8 22/26  36/33 28/32 28/32 DFS 2.12 (1.07–5.31) (C)  
Ren [332018 China 124 CM NA qRT-PCR 32/34 35/32 NA NA NA NA NA NA 
       30/28 27/30        
Xu [182018 China 106 GC Median qRT-PCR 31/35 27/30 35/20 37/38 37/36 37/36 DFS 2.28 (1.30–5.78) (R) 
       22/18 26/23 18/33 16/15 16/27 16/27    
Zhang [372018 China 84 PTC NA qRT-PCR NA NA NA NA NA NA OS 1.65 (1.07–3.96) (C) 
                
Chang [142018 China 360 HCC NA qRT-PCR NA NA NA NA NA NA OS 1.63 (1.16–2.52) (R) 
                
Zhu [322018 China 481 CRC Median qRT-PCR NA NA NA NA NA NA OS 1.69 (1.17–2.45) (C) 
                
Chen [392019 China 70 CM Median qRT-PCR NA NA NA NA NA NA OS 3.332 (1.03–6.09) (R) 
                
Lei [162019 China 88 HCC NA qRT-PCR NA NA NA NA NA NA OS 1.96 (1.02–3.96) (C) 
                
Li [402019 China 160 PTC Median qRT-PCR 50/37 28/28 25/27 NA 50/23 35/39 OS 2.043 (1.579–3.01) (C) 
       36/31 64/40 67/41  42/45 57/29    
Ren [412019 China 35 OSC Median qRT-PCR 7/8 NA 15/7 NA NA 5/9 OS 3.06 (1.03–6.98) (C) 
       11/9  3/10   13/8    
Zhang [202019 China 60 CRC Median qRT-PCR NA NA NA NA NA NA OS 2.245 (1.01–4.32) (C) 
                
Xu [422019 China 105 HCC Median qRT-PCR 14/15 23/21 26/14 17/19 NA NA NA NA 
       22/21 13/15 10/22 19/17      
Chen [432019 China 85 HNSC NA qRT-PCR 28/22 21/19 NA NA NA 18/28 NA NA 
       16/19 23/22    25/13    
Dou [442020 China 63 CC Median qRT-PCR NA 17/19 11/13 22/17 19/9 NA OS 1.73 (1.07–4.52) (C) 
        15/12 21/18 10/14 13/22     
Hu [172020 China 60 HCC Median qRT-PCR 9/8 11/9 19/9 16/5 NA 12/26 NA NA 
       20/23 22/18 12/20 15/24  12/10    
Zhou 2020 China 41 TSCC Median qRT-PCR 16/15 11/13 NA 6/1 18/5 1/5 NA NA 
       5/5 10/7  15/19 3/15 20/5    

Abbreviations: C, HR was estimated by curve; N, no; R, HR was reported; Y, yes.

As shown in Tables 2 and 3, 19 GEO databases with 2265 patients were included in this meta-analysis for OS. There were 11 studies from the United States, 14 studies from Western countries, and 6 studies from Asia. Studies of nine different types of tumors were included in the meta-analysis including lung cancer (n=6), colon cancer (n=3), breast cancer (n=3), ovarian cancer (n=2), diffuse large B-cell lymphoma (DLBCL, n=1), chronic lymphocytic leukemia (CLL, n=1), glioblastoma (GBM, n=1), meningioma (n=1), and melanoma (n=1). We also analyzed ten GEO datasets containing records for 1568 patients to calculate DFS. This analysis included three kind of cancers: colon cancer (n=5), breast cancer (n=3), and lung cancer (n=2).

Table 2
OS characteristics of studies based on Affymetrix Human Genome U133 Plus 2.0
Type of cancerGEO numberYearCountryNumber of patientsOutcome measureFollow-up (month)Cut-off valueHR
Lung cancer GSE3141 2005 U.S.A. 111 OS 87 Median 1.426 (0.847–2.402) 
Colon cancer GSE17536 2009 U.S.A. 177 OS 142 Median 1.043 (0.657–1.647) 
Colon cancer GSE17538 2009 U.S.A. 232 OS 142 Median 1.326 (0.982–1.992) 
CLL GSE22762 2011 Germany 107 OS 72 Median 2.121 (0.935–4.816) 
Lung cancer GSE30129 2011 France 293 OS 256 Median 1.163 (0.876–1.543) 
Lung cancer GSE31210 2011 Japan 226 OS 128 Median 1.239 (0.738–2.404) 
Lung cancer GSE37745 2012 Sweden 196 OS 187 Median 0.978 (0.704–1.358) 
Lung cancer GSE50081 2013 Canada 181 OS 144 Median 1.458 (0.926–2.298) 
Breast cancer GSE58812 2015 France 107 OS 169 Median 1.491 (0.719–3.09) 
GBM GSE7696 2008 Switzerland 80 OS 72 Median 1.238 (0.754–2.032) 
Meningioma GSE16581 2010 U.S.A. 67 OS 11 Median 2.073 (0.659–7.683) 
Melanoma GSE19234 2009 U.S.A. 44 OS 186 Median 1.574 (0.741–3.865) 
Ovarian cancer GSE19829 2010 U.S.A. 28 OS 115 Median 1.473 (0.829–4.105) 
Breast cancer GSE20711 2011 Canada 88 OS 14 Median 1.108 (0.602–2.441) 
DLBCL GSE23501 2010 U.S.A. 69 OS 72 Median 1.468 (0.792–4.383) 
Lung cancer GSE29013 2011 U.S.A. 55 OS 82 Median 1.282 (0.8031–3.264) 
Colon cancer GSE29623 2014 U.S.A. 65 OS 120 Median 1.151 (0.725–2.528) 
Ovarian cancer GSE30161 2012 U.S.A. 58 OS 127 Median 1.051 (0.643–2.036) 
Breast cancer GSE48390 2014 Taiwan 81 OS 69 Median 1.234 (0.877–4.035) 
Type of cancerGEO numberYearCountryNumber of patientsOutcome measureFollow-up (month)Cut-off valueHR
Lung cancer GSE3141 2005 U.S.A. 111 OS 87 Median 1.426 (0.847–2.402) 
Colon cancer GSE17536 2009 U.S.A. 177 OS 142 Median 1.043 (0.657–1.647) 
Colon cancer GSE17538 2009 U.S.A. 232 OS 142 Median 1.326 (0.982–1.992) 
CLL GSE22762 2011 Germany 107 OS 72 Median 2.121 (0.935–4.816) 
Lung cancer GSE30129 2011 France 293 OS 256 Median 1.163 (0.876–1.543) 
Lung cancer GSE31210 2011 Japan 226 OS 128 Median 1.239 (0.738–2.404) 
Lung cancer GSE37745 2012 Sweden 196 OS 187 Median 0.978 (0.704–1.358) 
Lung cancer GSE50081 2013 Canada 181 OS 144 Median 1.458 (0.926–2.298) 
Breast cancer GSE58812 2015 France 107 OS 169 Median 1.491 (0.719–3.09) 
GBM GSE7696 2008 Switzerland 80 OS 72 Median 1.238 (0.754–2.032) 
Meningioma GSE16581 2010 U.S.A. 67 OS 11 Median 2.073 (0.659–7.683) 
Melanoma GSE19234 2009 U.S.A. 44 OS 186 Median 1.574 (0.741–3.865) 
Ovarian cancer GSE19829 2010 U.S.A. 28 OS 115 Median 1.473 (0.829–4.105) 
Breast cancer GSE20711 2011 Canada 88 OS 14 Median 1.108 (0.602–2.441) 
DLBCL GSE23501 2010 U.S.A. 69 OS 72 Median 1.468 (0.792–4.383) 
Lung cancer GSE29013 2011 U.S.A. 55 OS 82 Median 1.282 (0.8031–3.264) 
Colon cancer GSE29623 2014 U.S.A. 65 OS 120 Median 1.151 (0.725–2.528) 
Ovarian cancer GSE30161 2012 U.S.A. 58 OS 127 Median 1.051 (0.643–2.036) 
Breast cancer GSE48390 2014 Taiwan 81 OS 69 Median 1.234 (0.877–4.035) 
Table 3
DFS characteristics of studies based on Affymetrix Human Genome U133 Plus 2.0
Type of cancerGEO numberYearCountryNumber of patientsOutcome measureFollow-up (month)Cut-off valueHR
Colon cancer GSE14333 2010 Australia 226 DFS 142 Median 1.432 (0.862–2.998) 
Colon cancer GSE17536 2009 U.S.A. 145 DFS 142 Median 1.409 (0.791–2.713) 
Colon cancer GSE17538 2009 U.S.A. 200 DFS 142 Median 1.28 (0.897–2.349) 
Breast cancer GSE21653 2010 France 252 DFS 189 Median 1.38 (0.884–2.154) 
Lung cancer GSE30219 2013 France 278 DFS 256 Median 1.528 (1.053–2.215) 
Colon cancer GSE38832 2014 U.S.A. 92 DFS 111 Median 1.02 (0.273–3.811) 
Lung cancer GSE50081 2013 Canada 177 DFS 144 Median 1.271 (0.733–2.205) 
Breast cancer GSE6532 2007 Canada 87 DFS 202 Median 1.948 (0.923–4.111) 
Colon cancer GSE29623 2014 U.S.A. 53 DFS 120 Median 1.894 (0.513–6.998) 
Breast cancer GSE61304 2005 Singapore 58 DFS 85 Median 1.335 (0.530–3.364) 
Type of cancerGEO numberYearCountryNumber of patientsOutcome measureFollow-up (month)Cut-off valueHR
Colon cancer GSE14333 2010 Australia 226 DFS 142 Median 1.432 (0.862–2.998) 
Colon cancer GSE17536 2009 U.S.A. 145 DFS 142 Median 1.409 (0.791–2.713) 
Colon cancer GSE17538 2009 U.S.A. 200 DFS 142 Median 1.28 (0.897–2.349) 
Breast cancer GSE21653 2010 France 252 DFS 189 Median 1.38 (0.884–2.154) 
Lung cancer GSE30219 2013 France 278 DFS 256 Median 1.528 (1.053–2.215) 
Colon cancer GSE38832 2014 U.S.A. 92 DFS 111 Median 1.02 (0.273–3.811) 
Lung cancer GSE50081 2013 Canada 177 DFS 144 Median 1.271 (0.733–2.205) 
Breast cancer GSE6532 2007 Canada 87 DFS 202 Median 1.948 (0.923–4.111) 
Colon cancer GSE29623 2014 U.S.A. 53 DFS 120 Median 1.894 (0.513–6.998) 
Breast cancer GSE61304 2005 Singapore 58 DFS 85 Median 1.335 (0.530–3.364) 

Prognostic value of FOXD2-AS1 for OS

This meta-analysis included data for a total of 4241 patients. The pooled HR indicated that FOXD2-AS1 expression was closely related to a poor OS (HR = 1.34, 95% CI = [1.20, 1.48], P<0.001, Figure 2), and there was no significant heterogeneity (I2 = 0). In addition, we performed subgroup analysis according to source, region, tumor type and tumor size, as shown in Table 4. The subgroup analysis for source demonstrated that FOXD2-AS1 expression was correlated with a high risk of OS in the GEO data (OS: HR = 1.17, 95% CI = [1.02, 1.33], P<0.05, Figure 3A) and published articles (OS: HR = 1.95, 95% CI = [1.65, 2.25], P<0.05, Figure 3A). Interestingly, the subgroup analysis for region revealed that the expression of FOXD2-AS1 was associated with poor OS only in Asian subjects (OS: HR = 1.85, 95% CI = [1.58, 2.13], P<0.05, Figure 3B), but not in U.S.A. subjects (OS: HR = 1.22, 95% CI = [0.96, 1.48], P>0.05, Figure 3B) or Western subjects (OS: HR = 1.14, 95% CI = [0.94, 1.34], P>0.05, Figure 3B). The subgroup analysis for tumor type demonstrated that elevated FOXD2-AS1 expression was associated with a poor OS in patients with digestive tumors (OS: HR = 1.43, 95% CI = [1.18, 1.68], P<0.05, Figure 4A) and other tumors (OS: HR = 1.65, 95% CI = [1.22, 2.08], P<0.05, Figure 4A), but not in the respiratory system (OS: HR = 1.17, 95% CI = [0.97, 1.37], P>0.05, Figure 4A), the female reproductive system (OS: HR = 1.47, 95% CI = [0.95, 3.08], P>0.05, Figure 4A), or the nervous system (OS: HR = 1.48, 95% CI = [0.95, 2.00], P>0.05, Figure 4A). When subgroup analysis was conducted according to sample size, the pooled HRs indicated that increased FOXD2-AS1 expression was associated with poor OS in both subgroups (OS: HR = 1.30, 95% CI = [1.14, 1.46], P<0.05, n>100, Figure 4B) (OS: HR = 1.34, 95% CI = [1.20, 1.49], P<0.05, n≤100, Figure 4B).

The relationship between FOXD2-AS1 expression and OS rate

Figure 2
The relationship between FOXD2-AS1 expression and OS rate
Figure 2
The relationship between FOXD2-AS1 expression and OS rate
Close modal

Subgroup analysis of OS

Figure 3
Subgroup analysis of OS

Subgroup analysis by (A) source and (B) region.

Figure 3
Subgroup analysis of OS

Subgroup analysis by (A) source and (B) region.

Close modal

Subgroup analysis of OS

Figure 4
Subgroup analysis of OS

Subgroup analysis by (A) tumor type and (B) sample size.

Figure 4
Subgroup analysis of OS

Subgroup analysis by (A) tumor type and (B) sample size.

Close modal
Table 4
Subgroup analysis of OS by data source, region, tumor type, sample size
SubgroupsNumber of studiesNumber of patientsPooled HR (95% CI)PHetI2(%)P-value
Data source       
  Published articles 16 1976 1.95 (1.65, 2.25) 0.889 0.0 <0.05 
  GEO 19 2265 1.17 (1.02, 1.33) 0.998 0.0 <0.05 
Region       
  U.S.A. 10 906 1.22 (0.96–1.48) 0.994 0.0 >0.05 
  Western 498 1.14 (0.94–1.34) 0.784 0.0 >0.05 
  Asian 18 2837 1.85 (1.58–2.13) 0.442 0.0 <0.05 
Tumor type       
  Respiratory system 1097 1.17 (0.97–1.37) 0.243 24.4 >0.05 
  Digestive system 1716 1.43 (1.18–1.68) 0.538 0.0 <0.05 
  Others 563 1.65 (1.22–2.08) 0.412 1.6 <0.05 
  Female reproductive system 521 1.47 (0.95–3.08) 0.749 0.0 >0.05 
  Nervous system 344 1.48 (0.95–2.00) 0.357 8.6 >0.05 
Sample size       
  >100 15 3008 1.30 (1.14, 1.46) 0.133 29.6 <0.05 
  ≤100 20 1233 1.34 (1.20, 1.49) 0.799 0.0 <0.05 
SubgroupsNumber of studiesNumber of patientsPooled HR (95% CI)PHetI2(%)P-value
Data source       
  Published articles 16 1976 1.95 (1.65, 2.25) 0.889 0.0 <0.05 
  GEO 19 2265 1.17 (1.02, 1.33) 0.998 0.0 <0.05 
Region       
  U.S.A. 10 906 1.22 (0.96–1.48) 0.994 0.0 >0.05 
  Western 498 1.14 (0.94–1.34) 0.784 0.0 >0.05 
  Asian 18 2837 1.85 (1.58–2.13) 0.442 0.0 <0.05 
Tumor type       
  Respiratory system 1097 1.17 (0.97–1.37) 0.243 24.4 >0.05 
  Digestive system 1716 1.43 (1.18–1.68) 0.538 0.0 <0.05 
  Others 563 1.65 (1.22–2.08) 0.412 1.6 <0.05 
  Female reproductive system 521 1.47 (0.95–3.08) 0.749 0.0 >0.05 
  Nervous system 344 1.48 (0.95–2.00) 0.357 8.6 >0.05 
Sample size       
  >100 15 3008 1.30 (1.14, 1.46) 0.133 29.6 <0.05 
  ≤100 20 1233 1.34 (1.20, 1.49) 0.799 0.0 <0.05 

Abbreviation: n, number of sample size.

Prognostic value of FOXD2-AS1 for DFS

The prognostic value of FOXD2-AS1 for DFS of cancer patients was assayed using data that included 13 studies and 2007 patients; and we found a significant relationship between FOXD2-AS1 and DFS (HR = 1.49, 95% CI = [1.22, 1.76], P<0.05, Figure 5).

Forest plot of DFS

Figure 5
Forest plot of DFS
Figure 5
Forest plot of DFS
Close modal

We performed Begg’s funnel plot analysis to assess potential publication bias. As shown in Figure 6, no significant publication bias was identified for OS (P=0.159, Figure 6A) or DFS (P=0.669, Figure 6C). Sensitivity analysis can assess the stability and reliability of meta-analysis results, and can also assess whether the combined results are affected by a single study by calculating the results when individual studies are omitted and determining if the result is within the CI. Sensitivity analysis was performed and the results are shown in Figure 6B,D, indicating the results were robust and reliable.

Begg’s publication bias plots and sensitivity analysis of studies evaluating the relationship between FOXD2-AS1 expression and survival rate

Figure 6
Begg’s publication bias plots and sensitivity analysis of studies evaluating the relationship between FOXD2-AS1 expression and survival rate

(A) Begg’s publication bias of OS. (B) Sensitivity analysis of OS. (C) Begg’s publication bias of DFS. (D) Sensitivity analysis of DFS.

Figure 6
Begg’s publication bias plots and sensitivity analysis of studies evaluating the relationship between FOXD2-AS1 expression and survival rate

(A) Begg’s publication bias of OS. (B) Sensitivity analysis of OS. (C) Begg’s publication bias of DFS. (D) Sensitivity analysis of DFS.

Close modal

Validation of TCGA dataset results

Next, we explored FOXD2-AS1 expression in all cancer types using data from the TCGA dataset. As shown in Figure 7A, FOXD2-AS1 was overexpressed in cholangiocarcinoma (CHOL), colon adenocarcinoma (COAD), lymphoid neoplasm diffuse large B-cell lymphoma (DLBC), esophageal carcinoma (ESCA), pancreatic adenocarcinoma (PAAD), rectum adenocarcinoma (READ), skin cutaneous melanoma (SKCM), stomach adenocarcinoma (STAD), and thymoma (THYM), determining using a |log2FC| cutoff > 1 and a q-value < 0.01. A total of 9502 patients with digestive, respiratory, urinary, female reproductive, blood, and urinary systems cancers were included in the analysis. According to FOXD2-AS1 expression, the patients were divided into two groups according to mean expression by GEPIA. The results indicated that FOXD2-AS1 expression was correlated with a high risk of poor OS (Figure 7B) and DFS (Figure 7C). We also explored the prognostic role of FOXD2-AS1 in different tumor types, such as gastrointestinal (GI; Figure 8A,B), hepatobiliary, and pancreatic cancers (Figure 8C,D). As shown in Figure 8, FOXD2-AS1 expression was related to poor OS in hepatobiliary and pancreatic cancer (Figure 8C), urinary cancer (Figure 8G), and head and neck cancers (Figure 8K). However, no significant association was found between FOXD2-AS1 expression and OS in cancers of the respiratory system (Figure 8E). FOXD2-AS1 expression indicated poor DFS in urinary (Figure 8H), respiratory (Figure 8F), and head and neck tumors (Figure 8L), but FOXD2-AS1 expression was not related to DFS in hepatobiliary and pancreatic cancers (Figure 8D). Interestingly, the high expression of FOXD2-AS1 was related to favorable prognosis in GI (Figure 8A,B) and female reproductive cancers (Figure 8I,J).

The expression of FOXD2-AS1 in TCGA dataset

Figure 7
The expression of FOXD2-AS1 in TCGA dataset

(A) FOXD2-AS1 expression in CHOL, COAD, DLBC, ESCA, PAAD, READ, SKCM, STAD, and THYM, which was analyzed by one-way ANOVA. ‘*’ means log2FC value > 1 and P-value <0.01. (B) OS rate of FOXD2-AS1 expression in TCGA (n=9502, Log-rank P<0.01). (C) DFS rate of FOXD2-AS1 in TCGA cohort (n=9502, Log-rank P<0.01). Red boxes indicate cancer, and gray boxes indicate normal.

Figure 7
The expression of FOXD2-AS1 in TCGA dataset

(A) FOXD2-AS1 expression in CHOL, COAD, DLBC, ESCA, PAAD, READ, SKCM, STAD, and THYM, which was analyzed by one-way ANOVA. ‘*’ means log2FC value > 1 and P-value <0.01. (B) OS rate of FOXD2-AS1 expression in TCGA (n=9502, Log-rank P<0.01). (C) DFS rate of FOXD2-AS1 in TCGA cohort (n=9502, Log-rank P<0.01). Red boxes indicate cancer, and gray boxes indicate normal.

Close modal

Validation of FOXD2-AS1 expression in TCGA cohort

Figure 8
Validation of FOXD2-AS1 expression in TCGA cohort

(A) OS in GI cancer patients (n=926, Log-rank P=0.013). (B) DFS in GI tumors (n=926, Log-rank P=0.045). (C) OS in hepatobiliary and pancreatic cancer patients (n=578, Log-rank P=0.0014). (D) DFS in hepatobiliary and pancreatic cancer patients (n=578, Log-rank P=0.06). (E) OS in respiratory cancer patients (n=957, Log-rank P=0.23). (F) DFS in respiratory cancer patients (n=957, Log-rank P=0.021). (G) OS in urinary cancer patients (n=1964, Log-rank <0.001). (H) DFS in urinary cancer patients (n=1964, Log-rank =0.001). (I) OS in female reproductive cancer patients (n=1703, Log-rank P=0.0011). (J) DFS in female reproductive cancer patients (n=1703, Log-rank P<0.001). (K) OS in head and neck cancer patients (n=1024, Log-rank P<0.001). (L) DFS in head and neck cancer patients (n=1024, Log-rank P<0.001).

Figure 8
Validation of FOXD2-AS1 expression in TCGA cohort

(A) OS in GI cancer patients (n=926, Log-rank P=0.013). (B) DFS in GI tumors (n=926, Log-rank P=0.045). (C) OS in hepatobiliary and pancreatic cancer patients (n=578, Log-rank P=0.0014). (D) DFS in hepatobiliary and pancreatic cancer patients (n=578, Log-rank P=0.06). (E) OS in respiratory cancer patients (n=957, Log-rank P=0.23). (F) DFS in respiratory cancer patients (n=957, Log-rank P=0.021). (G) OS in urinary cancer patients (n=1964, Log-rank <0.001). (H) DFS in urinary cancer patients (n=1964, Log-rank =0.001). (I) OS in female reproductive cancer patients (n=1703, Log-rank P=0.0011). (J) DFS in female reproductive cancer patients (n=1703, Log-rank P<0.001). (K) OS in head and neck cancer patients (n=1024, Log-rank P<0.001). (L) DFS in head and neck cancer patients (n=1024, Log-rank P<0.001).

Close modal

Association between FOXD2-AS1 and clinicopathological characteristics

The pooled ORs with 95% CI were calculated and are shown in Table 5. The pooled results indicated that high FOXD2-AS1 expression was significantly related to larger tumor size (bigger: small: OR = 2.01, 95% CI = [1.56, 2.84], P<0.001, Figure 9C), lymph node metastasis (yes: no, OR = 2.26, 95% CI = [1.22, 4.22], P<0.001, Figure 9E) advanced TNM stage (I+II: III+IV, OR = 0.44, 95% CI = [0.32, 0.60], P=0.012, Figure 9F). However, no significant relationship was identified between FOXD2-AS1 and gender (male: female, OR = 0.88, 95% CI = [0.67, 1.15], P=0992, Figure 9A), age (>60 vs ≤60, OR = 1.19, 95% CI = [0.93, 1.51], P=0.336, Figure 9B) and low differentiation (low: moderate+high, OR = 1.45, 95% CI = [0.73, 2.88], P=0283, Figure 9D). Begg’s funnel plot analysis showed that there was no publication bias for clinicopathological value (gender (P=0.707), age (P=0.452), tumor size (P=0.308), differentiation (P=0.806), or lymph node metastasis (P=0.308), or TNM stage (P=1)).

Meta-analysis evaluation of the association between FOXD2-AS1 expression and clinicopathological characteristics

Figure 9
Meta-analysis evaluation of the association between FOXD2-AS1 expression and clinicopathological characteristics

(A) Gender; (B) age; (C) tumor size; (D) differentiation; (E) lymph node metastasis; and (F) TNM stage.

Figure 9
Meta-analysis evaluation of the association between FOXD2-AS1 expression and clinicopathological characteristics

(A) Gender; (B) age; (C) tumor size; (D) differentiation; (E) lymph node metastasis; and (F) TNM stage.

Close modal
Table 5
LncRNA FOXD2-AS1 clinicopathological features for cancers
Heterogeneity
Clinicopathological featuresNumber of studiesNumber of patientsPooled OR (95% CI)PHetI2 (%)P-valueModel used
Gender 12 1020 0.88 [0.67, 1.15] 0.992 0.0 0.992 Fixed 
Age 12 1091 1.19 [0.93, 1.51] 0.997 0.0 0.336 Fixed 
Tumor size 801 2.10 [1.56, 2.84] 0.172 0.0 <0.001 Fixed 
Differentiation 812 1.45 [0.73, 2.88] <0.001 73.0 0.283 Random 
Lymph node metastasis 629 2.26 [1.22, 4.22] 0.006 67.1 0.010 Random 
TNM stage 658 0.44 [0.32, 0.60] 0.614 0.0 <0.001 Fixed 
Heterogeneity
Clinicopathological featuresNumber of studiesNumber of patientsPooled OR (95% CI)PHetI2 (%)P-valueModel used
Gender 12 1020 0.88 [0.67, 1.15] 0.992 0.0 0.992 Fixed 
Age 12 1091 1.19 [0.93, 1.51] 0.997 0.0 0.336 Fixed 
Tumor size 801 2.10 [1.56, 2.84] 0.172 0.0 <0.001 Fixed 
Differentiation 812 1.45 [0.73, 2.88] <0.001 73.0 0.283 Random 
Lymph node metastasis 629 2.26 [1.22, 4.22] 0.006 67.1 0.010 Random 
TNM stage 658 0.44 [0.32, 0.60] 0.614 0.0 <0.001 Fixed 

Abbreviations: Fixed, fixed-effects model; Random, random-effects model.

Many recent studies have indicated that lncRNA FOXD2-AS1 may play critical roles in the progression and development of cancers. FOXD2-AS1 may be involved in progression of tumors through sponging of tumor-suppressive microRNAs. Zhu et al. [38] proposed that FOXD2-AS1 could competitively sponge miR-185-5p to affect the expression of cell division control protein 42 (CDC42), suggesting that CDC42 is a potential downstream molecule of FOXD2-AS1 in CRC and that the complex axis of FOXD2-AS1/miR-185-5p/CDC42 modulated the proliferation and invasion of CRC. In accordance with this finding, Shen et al. [29] reported that FOXD2-AS1 regulated the malignancy of glioma via the FOXD2-AS1/miR-185-5p/CCND2 axis. Moreover, in glioma, Dong et al. [36] found that FOXD2-AS1 can act as an endogenous sponge of miR-185, which can bind AKT1 to promote cell proliferation and metastasis. In other cancers, FOXD2-AS1 has been suggested to contribute to migration and invasion of tumors by sponging miR-185-5p [15,28–30,36,38,40,46], miR-25-3p [20], miR-98-5p [47], miR-31 [48], miR-7-5p [49], miR-760 [44], miR-195 [24], miR-145-5p [25], miR-363-5p [13,17], miR-143 [50], miR-485-5p [37], and miR-206 [14]. Recent work has shown that lncRNAs influence the occurrence and development of tumors by regulating gene expression at the transcriptional or post-transcriptional level. Su et al. [31] found that FOXD2-AS1 affects hnRNPL regulation of TRIB3 expression by directly binding to the promoter of TRIB3. In addition, FOXD2-AS1 can form a positive feedback loop with AKT and E2F1 to affect the malignant phenotype of bladder cancer. FOXD2-AS1 can also regulate EMT-related proteins by activating signal pathways such as the Notch [19], Wnt/β-catenin [21], Hippo signaling pathway, mTOR, MAP3K1 and PI3K/AKT [31] pathways. And the meta-analysis demonstrated that the expression of FOXD2-AS1 was associated with the tumor size and lymph node metastasis, which may be contributed by which FOXD2-AS1 function as a oncogenic role on the proliferation, migration, invasion in cancers. The mechanisms of action for FOXD2-AS1 as described in published articles are summarized in Table 6.

Table 6
Summary of FOXD2-AS1 with their potential targets, pathways and related microRNAs
Cancer typeExpressionFunctional roleRelated microRNAsDownstream moleculesProtein bindingSignaling pathway
Colorectal cancer [19,20,38up-regulation Cell proliferation, migration, invasion, EMT miR-185-5p/miR-25-3P CDC42/sema4c Notch signaling pathway 
Bladder cancer [31,50up-regulation Tumor growth, accelerate the gemcitabine-resistance miR-143 ABCC3 
NSCLC [21,22up-regulation Cell growth and tumor progression; cisplatin resistance miR-185-5P β-catenin/TCF/SIX1 Wnt/β-catenin signaling 
NC [13up-regulation Cell growth miR-363-5p S100A1 
Glioma [27–30,36,46–48up-regulation Cells proliferation, migration, invasion and EMT, and promoted apoptosis; drug resistance miR-185/miR-185-5 p/miR-98-5p/miR-31 AKT1/CCND2/p53/ CPEB4/CDK1 GREB1 PI3K/AKT 
Gallbladder cancer [51up-regulation Cell proliferation, migration, and invasion MLH1 
CM [33,52up-regulation Cell proliferation, migration, and invasion p-AKT 
GC [18up-regulation Cell growth, cell cycle E2F1/E2F2/CDK4/ EphB3/PCNA EZH2/LSD1 
Papillary thyroid cancer [37,40up-regulation cell proliferation, migration and induce cell apoptosis miR-485-5p/miR-7-5p KLK7/TERT 
HCC [14–17,42up-regulation Cell viability and metastasis;resistance to sorafenib miR-206/miR-185/miR-150-5p ANXA2/CDKN1B EZH2/DKK1 Wnt/β-catenin signaling MAP3K1/AKT 
Breast cancer [26,53up-regulation Cell growth, cell cycle miR-150-5p PFN2 S100 Hippo signaling pathway 
Cervical cancer [39,44up-regulation Cell proliferation, migration miR-760 HDGF CDX1 
Esophagus cancer [25up-regulation Cell viability and invasion miR-145-5p/miR-195 CDK6 AKT/mTOR 
  Cisplatin resistance     
Laryngeal squamous cell [54up-regulation Chemothrapetutic resistance STAT3 
Cancer typeExpressionFunctional roleRelated microRNAsDownstream moleculesProtein bindingSignaling pathway
Colorectal cancer [19,20,38up-regulation Cell proliferation, migration, invasion, EMT miR-185-5p/miR-25-3P CDC42/sema4c Notch signaling pathway 
Bladder cancer [31,50up-regulation Tumor growth, accelerate the gemcitabine-resistance miR-143 ABCC3 
NSCLC [21,22up-regulation Cell growth and tumor progression; cisplatin resistance miR-185-5P β-catenin/TCF/SIX1 Wnt/β-catenin signaling 
NC [13up-regulation Cell growth miR-363-5p S100A1 
Glioma [27–30,36,46–48up-regulation Cells proliferation, migration, invasion and EMT, and promoted apoptosis; drug resistance miR-185/miR-185-5 p/miR-98-5p/miR-31 AKT1/CCND2/p53/ CPEB4/CDK1 GREB1 PI3K/AKT 
Gallbladder cancer [51up-regulation Cell proliferation, migration, and invasion MLH1 
CM [33,52up-regulation Cell proliferation, migration, and invasion p-AKT 
GC [18up-regulation Cell growth, cell cycle E2F1/E2F2/CDK4/ EphB3/PCNA EZH2/LSD1 
Papillary thyroid cancer [37,40up-regulation cell proliferation, migration and induce cell apoptosis miR-485-5p/miR-7-5p KLK7/TERT 
HCC [14–17,42up-regulation Cell viability and metastasis;resistance to sorafenib miR-206/miR-185/miR-150-5p ANXA2/CDKN1B EZH2/DKK1 Wnt/β-catenin signaling MAP3K1/AKT 
Breast cancer [26,53up-regulation Cell growth, cell cycle miR-150-5p PFN2 S100 Hippo signaling pathway 
Cervical cancer [39,44up-regulation Cell proliferation, migration miR-760 HDGF CDX1 
Esophagus cancer [25up-regulation Cell viability and invasion miR-145-5p/miR-195 CDK6 AKT/mTOR 
  Cisplatin resistance     
Laryngeal squamous cell [54up-regulation Chemothrapetutic resistance STAT3 

In addition to exploring the molecular mechanisms of lncRNA FOXD2-AS1, recent studies have also investigated FOXD2-AS1 as a tumor-specific biomarker. Because most previous studies have been limited by small sample size, we performed a comprehensive meta-analysis and TCGA data review. The results demonstrated that the high expression of FOXD2-AS1 was correlated with advanced clinicopathological features such as tumor size and TNM stage. Moreover, the pooled HRs indicated a significant relationship between FOXD2-AS1 and poor OS, and the subgroup analysis indicated FOXD2-AS1 was related to poor OS for different sources and sample size. However, the expression of FOXD2-AS1 was only correlated with poor OS in digestive tumors, and was not correlated in respiratory, female reproductive and nervous system tumors, suggesting that the mechanism of FOXD2-AS1 may be different in various tumors. When we conducted subgroup analysis based on region, FOXD2-AS1 expression was related to poor OS only in Asian population, but not in American and other Western countries, which suggests that FOXD2-AS1 may be only suitable as a biomarker in the Asian population. We next explored the prognostic value of FOXD2-AS1 in the TCGA dataset, and the results indicated that high expression of FOXD2-AS1 was related to poor OS and DFS in 9502 patients. When we assessed the role of FOXD2-AS1 in different tumor types, FOXD2-AS1 was associated with poor OS in hepatobiliary and pancreatic, urinary, and head and neck cancers, but not in respiratory system tumors. Similarly, FOXD2-AS1 was related to poor DFS in urinary tumors, respiratory tumors, and head and neck tumors. Interestingly, the expression of FOXD2-AS1 was related to favorable prognosis in GI and female reproductive tumors, but more studies are needed to verify the mechanism of FOXD2-AS1 action in various tumors.

Some limitations of the present study should be emphasized. First, all of the included articles are from China, so the conclusions may be only applicable to a Chinese or Asian population. However, we also analyzed data from the GEO database and TCGA dataset. There were some differences in the meta-analysis and analysis of the TCGA dataset. In particular, the meta-analysis reported FOXD2-AS1 was related to poor OS in digestive tumors, however, the TCGA data indicated the opposite result. This may reflect differences in the study populations. Overall, studies should include more patients from different regions. Second, some studies, which have not been published, may influence the publication bias. Third, in some articles, the specific HR value was not provided, and we had to extract the HR value from the K–M curve, a process that may introduce some errors. Fourth, the sample size and tumor types included in this analysis are still limited. Fifth, different cut-off values for up-regulated expression of FOXD2-AS1 were applied in these studies, which may contribute to the data heterogeneity.

Although this article has some limitations, the results are meaningful. The pooled results indicate that the high expression of lncRNA FOXD2-AS1 is associated with larger tumor size and advanced TNM stage. FOXD2-AS1 was also related to a poor OS and DFS in solid tumors, so FOXD2-AS1 may be a potential prognostic biomarker for patients with cancers. However, the role of FOXD2-AS1 may vary in various tumor types, race and regions, so more high-quality datasets and articles with large sample size are needed to verify the role of FOXD2-AS1 in different tumor types and regions.

The authors declare that there are no competing interests associated with the manuscript.

This work was supported by the Project Letter of Academic Leader of the First Hospital of Shanxi Medical University [grant number YD1607]; the Scientific Research Project Plan of Shanxi Provincial Health Planning Commission [grant number 2014029]; the Project Letter of Fostering Team for Precision Medical Key Innovation in the First Hospital of Shanxi Medical University [grant number YT1603]; and the Shanxi International Science and Technology Cooperation Project [grant number 2015081039].

Chaojie Liang and Jiansheng Guo were responsible for study design. Yongping Zhang and Zhigang Wei were responsible for literature search. Yu Zhang and Zhimin Wang were responsible for data extraction. Chaojie Liang, Zhigang Wei and Ruihuan Li were responsible for data analysis. Jiansheng Guo and Zhigang Wei were responsible for drafting the manuscript. All authors approved the final version of the manuscript.

CDC42

cell division control protein 42

CI

confidence interval

CLL

chronic lymphocytic leukemia

DFS

disease-free survival

ESCC

esophageal squamous cell carcinoma

FOXD2-AS1

FOXD2 adjacent opposite strand RNA 1

GC

gastric cancer

GI

gastrointestinal

HCC

hepatocellular carcinoma

HR

hazard ratio

lncRNA

long non-coding RNA

NC

nasopharyngeal carcinoma

NOS

Newcastle–Ottawa Scale

NSCLC

non-small cell lung cancer

OR

odds ratio

OS

overall survival

TCGA

the Cancer Genome Atlas

1.
Siegel
R.L.
,
Miller
K.D.
and
Jemal
A.
(
2017
)
Cancer statistics, 2017
.
CA Cancer J. Clin.
67
,
7
30
[PubMed]
2.
Chen
W.
,
Zheng
R.
,
Baade
P.D.
,
Zhang
S.
,
Zeng
H.
,
Bray
F.
et al.
(
2016
)
Cancer statistics in China, 2015
.
CA Cancer J. Clin.
66
,
115
132
[PubMed]
3.
Torre
L.A.
,
Sauer
A.M.
,
Chen
M.S.
Jr
,
Kagawa-Singer
M.
,
Jemal
A.
and
Siegel
R.L.
(
2016
)
Cancer statistics for Asian Americans, Native Hawaiians, and Pacific Islanders, 2016: converging incidence in males and females
.
CA Cancer J. Clin.
66
,
182
202
[PubMed]
4.
Ferlay
J.
,
Soerjomataram
I.
,
Dikshit
R.
,
Eser
S.
,
Mathers
C.
,
Rebelo
M.
et al.
(
2015
)
Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012
.
Int. J. Cancer
136
,
E359
386
[PubMed]
5.
Okazaki
Y.
,
Furuno
M.
,
Kasukawa
T.
,
Adachi
J.
,
Bono
H.
,
Kondo
S.
et al.
(
2002
)
Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs
.
Nature
420
,
563
573
[PubMed]
6.
Wilusz
J.E.
,
Sunwoo
H.
and
Spector
D.L.
(
2009
)
Long noncoding RNAs: functional surprises from the RNA world
.
Genes Dev.
23
,
1494
1504
[PubMed]
7.
Mercer
T.R.
,
Dinger
M.E.
and
Mattick
J.S.
(
2009
)
Long non-coding RNAs: insights into functions
.
Nat. Rev. Genet.
10
,
155
159
[PubMed]
8.
Angrand
P.O.
,
Vennin
C.
,
Le Bourhis
X.
and
Adriaenssens
E.
(
2015
)
The role of long non-coding RNAs in genome formatting and expression
.
Front. Genet.
6
,
165
[PubMed]
9.
Abdeahad
H.
,
Avan
A.
,
Pashirzad
M.
,
Khazaei
M.
,
Soleimanpour
S.
,
Ferns
G.A.
et al.
,
2018
The prognostic potential of long noncoding RNA HOTAIR expression in human digestive system carcinomas: a meta-analysis
.
J. Cell. Physiol.
234
,
10926
10933
[PubMed]
10.
Liang
C.
,
Zhang
B.
,
Ge
H.
,
Xu
Y.
,
Li
G.
and
Wu
J.
(
2018
)
Long non-coding RNA CRNDE as a potential prognostic biomarker in solid tumors: a meta-analysis
.
Clin. Chim. Acta
481
,
99
107
[PubMed]
11.
Liang
C.
,
Liu
J.
,
Ge
H.
,
Xu
Y.
,
Li
G.
and
Wu
J.
(
2018
)
The clinicopathological and prognostic value of long non-coding RNA ZEB1-AS1 in solid tumors: a meta-analysis
.
Clin. Chim. Acta
484
,
91
98
[PubMed]
12.
Liang
C.
,
Qi
Z.
,
Ge
H.
,
Liang
C.
,
Zhang
Y.
,
Wang
Z.
et al.
(
2018
)
Long non-coding RNA PCAT-1 in human cancers: A meta-analysis
.
Clin. Chim. Acta
480
,
47
55
[PubMed]
13.
Chen
G.
,
Sun
W.
,
Hua
X.
,
Zeng
W.
and
Yang
L.
(
2018
)
Long non-coding RNA FOXD2-AS1 aggravates nasopharyngeal carcinoma carcinogenesis by modulating miR-363-5p/S100A1 pathway
.
Gene
645
,
76
84
[PubMed]
14.
Chang
Y.
,
Zhang
J.
,
Zhou
C.
,
Qiu
G.
,
Wang
G.
,
Wang
S.
et al.
(
2018
)
Long non-coding RNA FOXD2-AS1 plays an oncogenic role in hepatocellular carcinoma by targeting miR206
.
Oncol. Rep.
40
,
3625
3634
[PubMed]
15.
Chen
Z.
,
Zhang
Z.
,
Zhao
D.
,
Feng
W.
,
Meng
F.
,
Han
S.
et al.
(
2019
)
Long noncoding RNA (lncRNA) FOXD2-AS1 promotes cell proliferation and metastasis in hepatocellular carcinoma by regulating MiR-185/AKT axis
.
Med. Sci. Monit.
25
,
9618
9629
[PubMed]
16.
Lei
T.
,
Zhu
X.
,
Zhu
K.
,
Jia
F.
and
Li
S.
(
2019
)
EGR1-induced upregulation of lncRNA FOXD2-AS1 promotes the progression of hepatocellular carcinoma via epigenetically silencing DKK1 and activating Wnt/β-catenin signaling pathway
.
Cancer Biol. Ther.
20
,
1007
1016
[PubMed]
17.
Hu
W.
,
Feng
H.
,
Xu
X.
,
Huang
X.
,
Huang
X.
,
Chen
W.
et al.
(
2020
)
Long noncoding RNA FOXD2-AS1 aggravates hepatocellular carcinoma tumorigenesis by regulating the miR-206/MAP3K1 axis
.
Cancer Med.
9
,
5620
5631
[PubMed]
18.
Xu
T.P.
,
Wang
W.Y.
,
Ma
P.
,
Shuai
Y.
,
Zhao
K.
,
Wang
Y.F.
et al.
(
2018
)
Upregulation of the long noncoding RNA FOXD2-AS1 promotes carcinogenesis by epigenetically silencing EphB3 through EZH2 and LSD1, and predicts poor prognosis in gastric cancer
.
Oncogene
37
,
5020
5036
[PubMed]
19.
Yang
X.
,
Duan
B.
and
Zhou
X.
(
2017
)
Long non-coding RNA FOXD2-AS1 functions as a tumor promoter in colorectal cancer by regulating EMT and Notch signaling pathway
.
Eur. Rev. Med. Pharmacol. Sci.
21
,
3586
3591
[PubMed]
20.
Zhang
M.
,
Jiang
X.
,
Jiang
S.
,
Guo
Z.
,
Zhou
Q.
and
He
J.
(
2019
)
LncRNA FOXD2-AS1 regulates miR-25-3p/Sema4c axis to promote the invasion and migration of colorectal cancer cells
.
Cancer Manag. Res.
11
,
10633
10639
21.
Rong
L.
,
Zhao
R.
and
Lu
J.
(
2017
)
Highly expressed long non-coding RNA FOXD2-AS1 promotes non-small cell lung cancer progression via Wnt/beta-catenin signaling
.
Biochem. Biophys. Res. Commun.
484
,
586
591
[PubMed]
22.
Ge
P.
,
Cao
L.
,
Yao
Y.J.
,
Jing
R.J.
,
Wang
W.
and
Li
H.J.
(
2019
)
lncRNA FOXD2-AS1 confers cisplatin resistance of non-small-cell lung cancer via regulation of miR185-5p-SIX1 axis
.
Onco Targets Ther.
12
,
6105
6117
23.
Bao
J.
,
Zhou
C.
,
Zhang
J.
,
Mo
J.
,
Ye
Q.
,
He
J.
et al.
(
2018
)
Upregulation of the long noncoding RNA FOXD2-AS1 predicts poor prognosis in esophageal squamous cell carcinoma
.
Cancer Biomarkers
21
,
527
533
24.
Liu
H.
,
Zhang
J.
,
Luo
X.
,
Zeng
M.
,
Xu
L.
,
Zhang
Q.
et al.
(
2020
)
Overexpression of the long noncoding RNA FOXD2-AS1 promotes cisplatin resistance in esophageal squamous cell carcinoma through the miR-195/Akt/mTOR axis
.
Oncol. Res.
28
,
65
73
[PubMed]
25.
Shi
W.
,
Gao
Z.
,
Song
J.
and
Wang
W.
,
Silence of FOXD2-AS1 inhibited the proliferation and invasion of esophagus cells by regulating miR-145-5p/CDK6 axis
.
Histol. Histopathol.
2020
,
18232
26.
Jiang
M.
,
Qiu
N.
,
Xia
H.
,
Liang
H.
,
Li
H.
and
Ao
X.
(
2019
)
Long non-coding RNA FOXD2-AS1/miR-150-5p/PFN2 axis regulates breast cancer malignancy and tumorigenesis
.
Int. J. Oncol.
54
,
1043
1052
[PubMed]
27.
Zhao
Q.S.
,
Ying
J.B.
,
Jing
J.J.
and
Wang
S.S.
(
2020
)
LncRNA FOXD2-AS1 stimulates glioma progression through inhibiting P53
.
Eur. Rev. Med. Pharmacol. Sci.
24
,
4382
4388
[PubMed]
28.
Dong
H.
,
Cao
W.
and
Xue
J.
(
2019
)
Long noncoding FOXD2-AS1 is activated by CREB1 and promotes cell proliferation and metastasis in glioma by sponging miR-185 through targeting AKT1
.
Biochem. Biophys. Res. Commun.
508
,
1074
1081
[PubMed]
29.
Shen
F.
,
Chang
H.
,
Gao
G.
,
Zhang
B.
,
Li
X.
and
Jin
B.
(
2018
)
Long noncoding RNA FOXD2-AS1 promotes glioma malignancy and tumorigenesis via targeting miR-185-5p/CCND2 axis
.
J. Cell. Biochem.
120
,
9324
9336
[PubMed]
30.
Shen
F.
,
Chang
H.
,
Gao
G.
,
Zhang
B.
,
Li
X.
and
Jin
B.
(
2019
)
Long noncoding RNA FOXD2-AS1 promotes glioma malignancy and tumorigenesis via targeting miR-185-5p/CCND2 axis
.
J. Cell. Biochem.
120
,
9324
9336
[PubMed]
31.
Su
F.
,
He
W.
,
Chen
C.
,
Liu
M.
,
Liu
H.
,
Xue
F.
et al.
(
2018
)
The long non-coding RNA FOXD2-AS1 promotes bladder cancer progression and recurrence through a positive feedback loop with Akt and E2F1
.
Cell Death Dis.
9
,
233
[PubMed]
32.
Zhu
Y.
,
Li
B.
,
Liu
Z.
,
Jiang
L.
,
Wang
G.
,
Lv
M.
et al.
(
2017
)
Up-regulation of lncRNA SNHG1 indicates poor prognosis and promotes cell proliferation and metastasis of colorectal cancer by activation of the Wnt/beta-catenin signaling pathway
.
Oncotarget
8
,
111715
111727
[PubMed]
33.
Ren
W.
,
Zhu
Z.
and
Wu
L.
(
2018
)
FOXD2-AS1 correlates with the malignant status and regulates cell proliferation, migration, and invasion in cutaneous melanoma
.
J. Cell. Biochem.
120
,
5417
5423
[PubMed]
34.
Zhou
L.
,
Li
Z.
,
Shao
X.
,
Yang
B.
,
Feng
J.
,
Xu
L.
et al.
(
2019
)
Prognostic value of long non-coding RNA FOXD2-AS1 expression in patients with solid tumors
.
Pathol. Res. Pract.
215
,
152449
[PubMed]
35.
Stang
A.
(
2010
)
Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses
.
Eur. J. Epidemiol.
25
,
603
605
[PubMed]
36.
Dong
H.
,
Cao
W.
and
Xue
J.
(
2018
)
Long noncoding FOXD2-AS1 is activated by CREB1 and promotes cell proliferation and metastasis in glioma by sponging miR-185 through targeting AKT1
.
Biochem. Biophys. Res. Commun.
508
,
1074
1081
[PubMed]
37.
Zhang
Y.
,
Hu
J.
,
Zhou
W.
and
Gao
H.
(
2018
)
LncRNA FOXD2-AS1 accelerates the papillary thyroid cancer progression through regulating the miR-485-5p/KLK7 axis
.
J. Cell. Biochem.
[PubMed]
38.
Zhu
Y.
,
Qiao
L.
,
Zhou
Y.
,
Ma
N.
,
Wang
C.
and
Zhou
J.
(
2018
)
Long non-coding RNA FOXD2-AS1 contributes to colorectal cancer proliferation through its interaction with microRNA-185-5p
.
Cancer Sci.
109
,
2235
2242
[PubMed]
39.
Chen
D.Z.
,
Wang
T.F.
,
Dai
W.C.
,
Xu
X.
and
Chen
P.F.
(
2019
)
LncRNA FOXD2-AS1 accelerates the progression of cervical cancer via downregulating CDX1
.
Eur. Rev. Med. Pharmacol. Sci.
23
,
10234
10240
[PubMed]
40.
Li
H.
,
Han
Q.
,
Chen
Y.
,
Chen
X.
,
Ma
R.
,
Chang
Q.
et al.
(
2019
)
Upregulation of the long non-coding RNA FOXD2-AS1 is correlated with tumor progression and metastasis in papillary thyroid cancer
.
Am. J. Transl. Res.
11
,
5457
5471
[PubMed]
41.
Ren
Z.
,
Hu
Y.
,
Li
G.
,
Kang
Y.
,
Liu
Y.
and
Zhao
H.
(
2019
)
HIF-1α induced long noncoding RNA FOXD2-AS1 promotes the osteosarcoma through repressing p21
.
Biomed. Pharmacother.
117
,
109104
[PubMed]
42.
Xu
K.
,
Zhang
Z.
,
Qian
J.
,
Wang
S.
,
Yin
S.
,
Xie
H.
et al.
(
2019
)
LncRNA FOXD2-AS1 plays an oncogenic role in hepatocellular carcinoma through epigenetically silencing CDKN1B(p) via EZH2
.
Exp. Cell Res.
380
,
27
204
43.
Chen
W.
,
Sun
S.G.
,
Jiang
M.X.
,
Li
S.S.
and
Yuan
K.
(
2019
)
FOXD2-AS1 is corelated with clinicopathological parameter of laryngeal carcinoma and promote cancer cell proliferation
.
Lin Chuang er bi Yan Hou Tou Jing Wai Ke Za Zhi = J. Clin. Otorhinolaryngol. Head Neck Surg.
33
,
436
440
44.
Dou
X.
,
Zhou
Q.
,
Wen
M.
,
Xu
J.
,
Zhu
Y.
,
Zhang
S.
et al.
(
2019
)
Long noncoding RNA FOXD2-AS1 promotes the malignancy of cervical cancer by sponging microRNA-760 and upregulating hepatoma-derived growth factor
.
Front. Pharmacol.
10
,
1700
[PubMed]
45.
Zhou
G.
,
Huang
Z.
,
Meng
Y.
,
Jin
T.
,
Liang
Y.
and
Zhang
B.
, (
2020
)
Upregulation of long non-coding RNA FOXD2-AS1 promotes progression and predicts poor prognosis in tongue squamous cell carcinoma
.
J. Oral Pathol. Med.
[PubMed]
46.
Ni
W.
,
Xia
Y.
,
Bi
Y.
,
Wen
F.
,
Hu
D.
and
Luo
L.
(
2019
)
FoxD2-AS1 promotes glioma progression by regulating miR-185-5P/HMGA2 axis and PI3K/AKT signaling pathway
.
Aging
11
,
1427
1439
[PubMed]
47.
Gu
N.
,
Wang
X.
,
Di
Z.
,
Xiong
J.
,
Ma
Y.
,
Yan
Y.
et al.
(
2019
)
Silencing lncRNA FOXD2-AS1 inhibits proliferation, migration, invasion and drug resistance of drug-resistant glioma cells and promotes their apoptosis via microRNA-98-5p/CPEB4 axis
.
Aging
11
,
10266
10283
[PubMed]
48.
Wang
J.
,
Li
B.
,
Wang
C.
,
Luo
Y.
,
Zhao
M.
and
Chen
P.
(
2019
)
Long noncoding RNA FOXD2-AS1 promotes glioma cell cycle progression and proliferation through the FOXD2-AS1/miR-31/CDK1 pathway
.
J. Cell. Biochem.
120
,
19784
19795
[PubMed]
49.
Liu
X.
,
Fu
Q.
,
Li
S.
,
Liang
N.
,
Li
F.
,
Li
C.
et al.
(
2019
)
LncRNA FOXD2-AS1 functions as a competing endogenous RNA to regulate TERT expression by sponging miR-7-5p in thyroid cancer
.
Front. Endocrinol.
10
,
207
50.
An
Q.
,
Zhou
L.
and
Xu
N.
(
2018
)
Long noncoding RNA FOXD2-AS1 accelerates the gemcitabine-resistance of bladder cancer by sponging miR-143
.
Biomed. Pharmacother.
103
,
415
420
[PubMed]
51.
Gao
J.
,
Dai
C.
,
Yu
X.
,
Yin
X.B.
,
Liao
W.J.
,
Huang
Y.
et al.
(
2020
)
Silencing of long non-coding RNA FOXD2-AS1 inhibits the progression of gallbladder cancer by mediating methylation of MLH1
.
Gene Ther.
[PubMed]
52.
Ren
W.
,
Zhu
Z.
and
Wu
L.
(
2019
)
FOXD2-AS1 correlates with the malignant status and regulates cell proliferation, migration, and invasion in cutaneous melanoma
.
J. Cell. Biochem.
120
,
5417
5423
[PubMed]
53.
Huang
P.
and
Xue
J.
(
2020
)
Long non-coding RNA FOXD2-AS1 regulates the tumorigenesis and progression of breast cancer via the S100 calcium binding protein A1/Hippo signaling pathway
.
Int. J. Mol. Med.
46
,
1477
1489
[PubMed]
54.
Li
R.
,
Chen
S.
,
Zhan
J.
,
Li
X.
,
Liu
W.
,
Sheng
X.
et al.
(
2020
)
Long noncoding RNA FOXD2-AS1 enhances chemotherapeutic resistance of laryngeal squamous cell carcinoma via STAT3 activation
.
Cell Death Dis.
11
,
41
[PubMed]

Author notes

*

These authors contributed equally to this work.

This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).