The effect of duckweed species composition (Lemna aequinoctialis 5505, Landoltia punctata 5506 and Spirodela polyrhiza 5507) in polyculture and monoculture on biomass and starch/protein content were investigated at different levels of temperature, light intensity, nitrogen and phosphorus concentrations. The three growth parameters significantly affect duckweed biomass accumulation. Different combinations of duckweed species greatly varied in starch/protein content. Although all the polycultures showed a median relative growth rate and the majority of the polycultures showed a median and starch/protein content as compared with their respective monocultures, some of the polycultures were found to promote the accumulation of starch/protein at different growth conditions. These findings indicated that proper combination of duckweed species could facilitate desirable biomass accumulation and improve biomass quality. The present study provides useful references for future large-scale duckweed cultivation.

The Lemnaceae (commonly called duckweed) is an aquatic plant that has shown considerable potential in wastewater treatment [1,2]. Duckweed can assimilate nutrients from wastewater and convert them into valuable biomass, primarily composed of starch and protein [3,4]. Under suitable growth conditions, duckweed doubles its biomass in 1–3 days and produces a continued biomass supply for 9–12 months annually [5]. By extrapolating from field-study results, biomass yields of 39.1–105.9 t·ha−1·year−1 (dry biomass) could be achieved for duckweed using wastewater as a nutrient source, exhibiting substantially higher yields than most other potential energy crops [2,6]. Therefore, duckweed is a promising feedstock for various applications including biofuels and animal feed, given its multiple desirable traits in biomass accumulation and wastewater purification.

The duckweed family consists of five genera: Spirodela, Landoltia, Lemna, Wolffia and Wolffiella, comprising about 37 different species [7]. Depending on duckweed species and cultivation conditions, the starch contents of duckweed can vary from 3% to 75% of dry weight, while the protein contents from 15% to 45% [8,9]. Moreover, various geographical isolates within species also showed dramatic differences in capabilities of producing biomass [1,10]. Thus, screening desirable duckweed isolates is crucial for further large-scale applications, especially for establishment of local duckweed cropping system.

In previous studies, biomass production by duckweed was mostly conducted by using only a single species [1113]. However, it is difficult to maintain a single species thoroughly in artificial systems due to common contamination with other species [14,15]. Besides, it is ubiquitous in natural communities that two or more duckweed species clustered together [16,17], indicating polyculture may be a prevailing type of community for duckweed and facilitate their survival. Nevertheless, it remains largely unknown whether a polyculture of different duckweed species influences biomass production. Although Zhao et al. [18] assessed the biomass and starch content of Lemna minor and Landoltia punctata in monoculture and their polyculture under different condition settings, protein contents, major component of duckweed biomass, were not discussed. Additionally, the different combination of duckweed species might potentially affect biomass production. Therefore, systematic studies are essential for understanding the influence of duckweed species diversity on biomass productivity and should provide useful guidance for future industrial applications of duckweed as a feedstock.

In the present study, biomass, starch and protein content of three local duckweed isolates (Lemna aequinoctialis, L. punctata and Spirodela polyrhiza) either in polyculture or as monocultures were investigated under different light intensity, temperature and nutrient concentration. The aim of the present study was to evaluate whether mixed cultivation of duckweed species have positive effect on relative growth rate, starch content and protein content, as compared with a monoculture of duckweed.

Plant material and culture condition

Three duckweed isolates, L. aequinoctialis LC33, L. punctata LC06 and S. polyrhiza LC15, were used as plant materials in the present study. The duckweed were all isolated from Lake Chao, Anhui Province, Eastern China, and identified in our previous study [17]. These isolates were also registered at Rutgers Duckweed Stock Cooperative (RDSC) under the accession numbers of L. aequinoctialis 5505, L. punctata 5506 and S. polyrhiza 5507.

The previously established plants were placed in plastic pot (18 cm ×14 cm ×15 cm) containing one-tenth strength of Hoagland solution (macronutrients: 5.00 mmol·l−1 KH2PO4, 15.00 mmol·l−1 KNO3, 5.00 mmol·l−1 Ca(NO3)2·4H2O and 2.03 mmol·l−1 MgSO4·7H2O; micronutrients: 0.05 mmol·l−1 H3BO3, 0.02 mmol·l−1 MnCl2·4H2O, 0.01 mmol·l−1 ZnSO4·7H2O, 0.01 mmol·l−1 CuSO4·5H2O and 0.01 mmol·l−1 Na2MoO4·2H2O; tartaric acid, 0.02 mmol·l−1). The pH was adjusted to 5.8 throughout the experiment [19].

Experimental design

The plants were grown in a controlled climate chamber under a photoperiod of 16-h light (105 μmol·m−2·s−1; 25°C) and 8-h dark (20°C). The mixed cultures were generated by integrating either two or three of the duckweed species by ratios of 1:1 or 1:1:1. A total of 0.3 initial grams of fresh materials were inoculated to cover the 70% of the water surface with a single layer of fronds [20,21].

The relative growth rate, starch content and protein content of duckweed isolates in polyculture or monoculture were investigated under three different parameters using one-tenth strength of Hoagland solution. Three levels of each parameter were tested: temperature (20, 25 and 30°C); light intensity (30, 75 and 105 μmol·m−2·s−1); and concentration of N and P (35 mg·N·l−1, 15 mg·P·l−1; 3.5 mg·N·l−1, 1.5 mg·P·l−1; and 0 mg·N·l−1, 0 mg· P·l−1). Each parameter was tested separately with the other parameters constant. The relative growth rate and starch/protein content was determined at the end of 12 days. The distilled water was added to replenish evaporated water every day during the experiments. And the growth solution was renewed every 2 days to keep nutrient levels. All experiments were conducted in triplicate.

Biomass analysis

The fresh weight of duckweed was measured as described by Bergmann et al. [10]. The fresh fronds were lyophilized for 24 h using a FreeZone system (2.5 Liter Benchtop, Labconco) to measure the dry weight (DW). The relative growth rate of duckweed was calculated as (ln x12 − ln x0)/t [5], where x12 is fresh weight of plants grown for 12 days, x0 is initial fresh weight and t is cultivation days.

Approximately 10–15 mg of dry duckweed powder was used to measure the starch content using the method described by Zhao et al. [22]. The starch content was determined using the total sugar content (starch content=glucose content × 0.909) as described by Zhang et al. [23].

Crude Protein was measured using the method described by Markus et al. [24], and the protein content was estimated by N × 6.25, where N is the crude protein [25].

Statistical analysis

Data were analysed by SPSS Version 19.0 software (SPSS). The Duncan test was applied to statistically investigate the differences between polyculture and their monoculture in terms of relative growth rate, starch content and crude protein content. All data presented were means of three replicates, and a significance level of 0.05 was applied.

Effect of temperature on duckweed growth

Three duckweed isolates in monoculture or polyculture at different levels of temperature were measured at the end of 12 days to determine the effects of different duckweed species combinations and temperature on plant growth. As shown in Table 1, temperature has an evident impact on duckweed growth in terms of relative growth rates and starch/protein content. In all cases of monoculture or polyculture, the highest relative growth rates and protein content was achieved at 25°C, while the highest starch content was achieved at 20°C (Table 1). This is consistent with previous reports in other duckweed species [18].

Table 1
Relative growth rate, starch content and crude protein content of the duckweed in the mixture and monoculture under different temperature

The relative growth rate and starch/protein content were measured at 12 days after inoculation. Different lower-case letters in the same column denote significant differences according to Duncan test (P<0.05).

Relative growth rate (day−1)Starch content (% DW)Crude protein content (% DW)
Culture20°C25°C30°C20°C25°C30°C20°C25°C30°C
L. aequinoctialis 0.18±0.0071a 0.19±0.0127a 0.17±0.0039a 13.74±0.6400a 12.49±0.0086a 11.13±0.7211a 27.97±0.0979b 32.63±0.2883b 25.82±0.3690a 
L. punctata 0.17±0.0035a 0.19±0.0236a 0.17±0.0032a 15.34b±0.2044b 13.40±0.4143bc 11.67±0.0600ab 26.99±0.2197a 31.91±0.5749a 27.69±0.0998b 
S. polyrhiza 0.16±0.0019a 0.18±0.0029a 0.16±0.0043a 17.18±0.5102c 13.97±0.3055cd 12.79±0.5442c 29.61±0.4492d 36.20±0.1729e 30.54±0.1316de 
L. aequinoctialis+L. punctata 0.17±0.0097a 0.19±0.0139a 0.17±0.0045a 14.99±0.5644b 13.05±0.2795ab 11.30±0.3053a 27.34±0.1480a 32.07±0.3029ab 26.24±0.6183a 
L. aequinoctialis+S. polyrhiza 0.17±0.0071a 0.19±0.0111a 0.18±0.0063a 15.83±1.0633b 13.65±0.6360bc 13.04±0.4792c 31.29±0.2508e 34.52±0.4379d 31.02±0.2356e 
L. punctata+S. polyrhiza 0.17±0.0026a 0.19±0.0213a 0.17±0.0098a 16.15±0.8695bc 14.38±0.2863d 12.39±0.6114bc 28.49±0.4089c 31.41±0.2325c 28.99±0.1270c 
L. aequinoctialis+L. punctata+S. polyrhiza 0.17±0.0032a 0.19±0.0062a 0.18±0.0118a 15.95±0.6753bc 14.01±0.2801cd 12.64±0.0519bc 30.12±0.1141e 33.97±0.3384cd 30.39±0.2213d 
Relative growth rate (day−1)Starch content (% DW)Crude protein content (% DW)
Culture20°C25°C30°C20°C25°C30°C20°C25°C30°C
L. aequinoctialis 0.18±0.0071a 0.19±0.0127a 0.17±0.0039a 13.74±0.6400a 12.49±0.0086a 11.13±0.7211a 27.97±0.0979b 32.63±0.2883b 25.82±0.3690a 
L. punctata 0.17±0.0035a 0.19±0.0236a 0.17±0.0032a 15.34b±0.2044b 13.40±0.4143bc 11.67±0.0600ab 26.99±0.2197a 31.91±0.5749a 27.69±0.0998b 
S. polyrhiza 0.16±0.0019a 0.18±0.0029a 0.16±0.0043a 17.18±0.5102c 13.97±0.3055cd 12.79±0.5442c 29.61±0.4492d 36.20±0.1729e 30.54±0.1316de 
L. aequinoctialis+L. punctata 0.17±0.0097a 0.19±0.0139a 0.17±0.0045a 14.99±0.5644b 13.05±0.2795ab 11.30±0.3053a 27.34±0.1480a 32.07±0.3029ab 26.24±0.6183a 
L. aequinoctialis+S. polyrhiza 0.17±0.0071a 0.19±0.0111a 0.18±0.0063a 15.83±1.0633b 13.65±0.6360bc 13.04±0.4792c 31.29±0.2508e 34.52±0.4379d 31.02±0.2356e 
L. punctata+S. polyrhiza 0.17±0.0026a 0.19±0.0213a 0.17±0.0098a 16.15±0.8695bc 14.38±0.2863d 12.39±0.6114bc 28.49±0.4089c 31.41±0.2325c 28.99±0.1270c 
L. aequinoctialis+L. punctata+S. polyrhiza 0.17±0.0032a 0.19±0.0062a 0.18±0.0118a 15.95±0.6753bc 14.01±0.2801cd 12.64±0.0519bc 30.12±0.1141e 33.97±0.3384cd 30.39±0.2213d 

The relative growth rates of L. aequinoctialis, L. punctata and S. polyrhiza at the optimal temperature (25°C) was 0.19, 0.19 and 0.18 day−1 respectively (Table 1). The relative growth rates of all polycultures were between those of the corresponding duckweed isolates in monoculture, suggesting that polycultures had no advantage of relative growth rate over monocultures at different levels of temperature. This is in accord with the previous study regarding the polyculture of L. minor OT and L. punctata OT [18].

The starch content in all the combinations decreased as the temperature increased from 20 to 30°C (Table 2). This is in accord with previous findings that low temperature resulted in more starch accumulation [18]. The highest starch content was achieved by S. polyrhiza (17.18%) at 20°C. Three polycultures exhibited higher starch contents than those of their monocultures, namely L. punctata+S. polyrhiza (14.38%, at 25°C), L. aequinoctialis+L. punctata+S. polyrhiza (14.01%, at 25°C) and L. aequinoctialis+S. polyrhiza (13.04%, at 30°C). These values, however, are not statistically significant to one another. The rest of polycultures at different levels of temperature showed median starch contents compared with their monocultures. Taken together, mixed cultures did not have a significant advantage over the monoculture in terms of starch content.

Table 2
Relative growth rate, starch content and crude protein content of the duckweed in the mixture and monoculture under different light intensity

The relative growth rate and starch/protein content were measured at 12 days after inoculation. Different lower-case letters in the same column denote significant differences according to Duncan test (P<0.05).

Relative growth rate (day−1)Starch content (% DW)Crude protein content (% DW)
307510530751053075105
Cultureμmol·m−2·s−1μmol·m−2·s−1μmol·m−2·s−1μmol·m−2·s−1μmol·m−2·s−1μmol·m−2·s−1μmol·m−2·s−1μmol·m−2·s−1μmol·m−2·s−1
L. aequinoctialis 0.11±0.0320a 0.18±0.0192a 0.19±0.0137a 6.50±0.2533a 11.60±0.2156a 13.15±0.1872a 16.17±0.1414ab 29.53±0.2635a 33.73±0.3812c 
L. punctata 0.11±0.0073a 0.17±0.0172a 0.18±0.0092a 7.04±0.3780ab 12.94±0.2100b 15.48±0.2219cd 15.76±0.1220a 30.14±0.2158b 32.27±0.2988a 
S. polyrhiza 0.10±0.0337a 0.16±0.0185a 0.15±0.0101a 7.35±0.2509bc 13.84±0.2397d 16.28±0.3378e 17.21±0.0691cd 32.60±0.1946e 36.82±0.6453e 
L. aequinoctialis+L. punctata 0.12±0.0013a 0.18±0.0059a 0.18±0.0121a 6.78±0.2835ab 13.06±0.2218bc 15.69±0.5655de 16.09±0.0825ab 30.09±0.1523b 32.89±0.4836b 
L. aequinoctialis+S. polyrhiza 0.11±0.0311a 0.18±0.0192a 0.19±0.0093a 6.84±0.3421ab 11.81±0.3364a 14.81±0.5229bc 16.55±0.3152bc 33.00±0.2940f 34.52±0.7337d 
L. punctata+S. polyrhiza 0.12±0.0165a 0.17±0.0032a 0.18±0.0129a 7.19±0.3022bc 13.73±0.3338cd 15.85±0.3816de 16.16±0.1506ab 31.88±0.1286d 36.97±0.5011e 
L. aequinoctialis+L. punctata+S. polyrhiza 0.11±0.0151a 0.17±0.0154a 0.18±0.0155a 7.71±0.3816c 13.07±0.4028bc 14.65±0.4061b 17.60±0.3799d 31.40±0.1343c 33.82±0.3626c 
Relative growth rate (day−1)Starch content (% DW)Crude protein content (% DW)
307510530751053075105
Cultureμmol·m−2·s−1μmol·m−2·s−1μmol·m−2·s−1μmol·m−2·s−1μmol·m−2·s−1μmol·m−2·s−1μmol·m−2·s−1μmol·m−2·s−1μmol·m−2·s−1
L. aequinoctialis 0.11±0.0320a 0.18±0.0192a 0.19±0.0137a 6.50±0.2533a 11.60±0.2156a 13.15±0.1872a 16.17±0.1414ab 29.53±0.2635a 33.73±0.3812c 
L. punctata 0.11±0.0073a 0.17±0.0172a 0.18±0.0092a 7.04±0.3780ab 12.94±0.2100b 15.48±0.2219cd 15.76±0.1220a 30.14±0.2158b 32.27±0.2988a 
S. polyrhiza 0.10±0.0337a 0.16±0.0185a 0.15±0.0101a 7.35±0.2509bc 13.84±0.2397d 16.28±0.3378e 17.21±0.0691cd 32.60±0.1946e 36.82±0.6453e 
L. aequinoctialis+L. punctata 0.12±0.0013a 0.18±0.0059a 0.18±0.0121a 6.78±0.2835ab 13.06±0.2218bc 15.69±0.5655de 16.09±0.0825ab 30.09±0.1523b 32.89±0.4836b 
L. aequinoctialis+S. polyrhiza 0.11±0.0311a 0.18±0.0192a 0.19±0.0093a 6.84±0.3421ab 11.81±0.3364a 14.81±0.5229bc 16.55±0.3152bc 33.00±0.2940f 34.52±0.7337d 
L. punctata+S. polyrhiza 0.12±0.0165a 0.17±0.0032a 0.18±0.0129a 7.19±0.3022bc 13.73±0.3338cd 15.85±0.3816de 16.16±0.1506ab 31.88±0.1286d 36.97±0.5011e 
L. aequinoctialis+L. punctata+S. polyrhiza 0.11±0.0151a 0.17±0.0154a 0.18±0.0155a 7.71±0.3816c 13.07±0.4028bc 14.65±0.4061b 17.60±0.3799d 31.40±0.1343c 33.82±0.3626c 

Similar to the relative growth rates, the highest protein content of L. aequinoctialis, L. punctata and S. polyrhiza was achieved at 25°C, yielding a protein content of 32.63%, 31.91% and 36.20% respectively (Table 2). Interestingly, two polycultures at low temperature had a significant effect on protein accumulation, as compared with their monocultures. The protein content of the polyculture of L. aequinoctialis and S. polyrhiza at 20°C was 31.29%, significantly higher than those of monoculture (27.97%, 29.61%) (P<0.05). Similarly, the protein content of the polyculture of L. aequinoctialis+L. punctata+S. polyrhiza at 20°C was 30.12%, significantly higher than those of monoculture (27.97%, 26.99%, 29.61%) (P<0.05). These findings indicated that the polyculture of duckweed species is favourable for protein accumulation at low temperature. Therefore, a mixed culture of duckweed is a feasible approach for protein production in the regions with lower temperature. At higher temperature (25 and 30°C), only the polyculture of L. aequinoctialis and S. polyrhiza at 30°C had a higher protein content than those of their monocultures, while the other polycultures showed median protein contents compared with their monocultures. This suggested that polyculture did not have a significant advantage over the monoculture in terms of protein content at higher temperature.

Effect of light intensity on duckweed growth

Light intensity significantly affected the duckweed growth. In all cases of monoculture or polyculture, the highest relative growth rates and starch/protein content was achieved at the light intensity of 105 μmol·m−2·s−1, except for the relative growth rate of S. polyrhiza (Table 2).

The relative growth rate of S. polyrhiza increased as the light intensity increased from 30 to 75 μmol·m−2·s−1, but decreased at 105 μmol·m−2·s−1, suggesting that a lower irradiance is preferable for biomass accumulation of this duckweed isolate. As the light intensity increased from 30 to 105 μmol·m−2·s−1, the relative growth rate of L. aequinoctialis and L. punctata increased by almost 1.7-fold, from 0.11 to 0.19 day−1, and from 0.11 to 0.18 day−1, respectively. However, no significant increment was observed between the polycultures and their monocultures.

The duckweed accumulated more starch content as the light intensity increased (Table 2). Most of the polycultures showed median starch contents compared with their monocultures. But, under low light intensity (30 μmol·m−2·s−1), the polyculture of L. aequinoctialis, L. punctata and S. polyrhiza reached the highest starch content (7.71%), compared with those of monocultures (6.50%, 7.04%, 7.35%). In particular, the starch content of the polyculture of L. aequinoctialis and L. punctata was significantly higher than those of their monocultures under the light intensity of 105 μmol·m−2·s−1 (P<0.05). These results are in sharp contrast with the previous finding as described by Zhao et al. [18], where the polyculture (L. minor OT and L. punctata OT) tends to accumulate more starch at low irradiance. The isolates derived from their study were recovered from areas often covered by cloudy and rainy weather, whereas the isolates in the present study were obtained from areas with higher irradiance. Thus, the different performance of geographical isolates to irradiance might result from adaptation of duckweeds to local environment. In addition, these results indicated that polyculture of duckweed is a preferable method for starch production in areas with high irradiance.

The light intensity had an evident impact on protein content. The protein contents of duckweed in polycultures or monocultures were almost doubled as the light intensity increased from 30 to 105 μmol·m−2·s−1 (Table 2). Most of the protein content of the polycultures showed median protein contents compared with their monocultures. However, higher protein contents in polyculture than in monocultures were achieved by L. aequinoctialis+L. punctata+S. polyrhiza at 30 μmol·m−2·s−1 and by L. punctata+S. polyrhiza at 105 μmol·m−2·s−1. Particularly, a significant increase in protein content was observed between L. aequinoctialis+S. polyrhiza (33.00%) and their monocultures (29.53%, 32.60%) at 75 μmol·m−2·s−1 (P<0.05), suggesting that polyculture have a significant advantage over the monoculture in terms of protein content.

Effect of N and P contents on duckweed growth

Nitrogen and phosphorus have been proved to be important factors for duckweed growth [2628]. Nutrient conditions were separately tested on the isolates either in polyculture or in monocultures at different levels as described in the ‘Materials and methods’. In all cases of monoculture or polyculture, the relative growth rates and protein contents decreased as the concentrations of N and P deceased, while starch contents increased as the decrease in nutrients.

As shown in Table 3, the highest relative growth rates were achieved at the highest concentrations of N and P (35 mg·N·l−1 and 15 mg·P·l−1), suggesting that higher N and P concentrations were favourable for duckweed growth. However, at all nutrient concentrations, the polyculture did not show a significant advantage over monocultures in terms of relative growth rate.

Table 3
Relative growth rate, starch content and crude protein content of the duckweed in the mixture and monoculture in media with different concentration of N and P

A=35 mg·N·l−1, 15 mg·P·l−1; B=3.5 mg·N·l−1, 1.5 mg·P·l−1; C=0 mg·N·l−1, 0 mg·P·l−1. The relative growth rate and starch/protein content were measured at 12 days after inoculation. Different lower-case letters in the same column denote significant differences according to Duncan test (P<0.05).

Relative growth rate (day−1)Starch content (% DW)Crude protein content (% DW)
CultureABCABCABC
L. aequinoctialis 0.19±0.0071a 0.10±0.0105a 0.08±0.0016a 12.49±0.2771a 21.70±0.1624a 28.83±0.1693a 25.82±0.2244a 15.98±0.0553a 11.99±0.0960a 
L. punctata 0.19±0.0036a 0.09±0.0014a 0.07±0.0022a 13.40±0.2435b 22.63±0.0538c 32.82±0.0767d 31.91±0.3357d 18.93±0.0994c 14.43±0.1654d 
S. polyrhiza 0.18±0.0109a 0.09±0.0064a 0.06±0.0028a 13.97±0.1347d 23.23±0.0854d 34.24±0.0521f 30.61±0.3159c 21.70±0.0904d 15.62±0.1050e 
L. aequinoctialis+L. punctata 0.19±0.0069a 0.10±0.0046a 0.08±0.0029a 13.05±0.1311b 21.94±0.1834b 30.22±0.0306b 27.24±0.6978b 16.59±0.0968b 13.00±0.2010b 
L. aequinoctialis+S. polyrhiza 0.19±0.0110a 0.09±0.0116a 0.08±0.0015a 13.65±0.1215cd 23.78±0.1950e 31.93±0.0846c 31.02±0.4856b 21.57±0.0384d 13.51±0.2233c 
L. punctata+S. polyrhiza 0.18±0.0092a 0.09±0.0025a 0.06±0.0018a 13.58±0.0488d 22.81±0.0455c 33.72±0.0593e 32.41±0.1532d 21.66±0.0688d 15.82±0.1652e 
L. aequinoctialis+L. punctata+S. polyrhiza 0.19±0.0142a 0.10±0.0018a 0.07±0.0021a 13.21±0.1876bc 23.15±0.0897d 34.14±0.1550f 31.12±0.2671c 19.16±0.1971c 14.75±0.0482d 
Relative growth rate (day−1)Starch content (% DW)Crude protein content (% DW)
CultureABCABCABC
L. aequinoctialis 0.19±0.0071a 0.10±0.0105a 0.08±0.0016a 12.49±0.2771a 21.70±0.1624a 28.83±0.1693a 25.82±0.2244a 15.98±0.0553a 11.99±0.0960a 
L. punctata 0.19±0.0036a 0.09±0.0014a 0.07±0.0022a 13.40±0.2435b 22.63±0.0538c 32.82±0.0767d 31.91±0.3357d 18.93±0.0994c 14.43±0.1654d 
S. polyrhiza 0.18±0.0109a 0.09±0.0064a 0.06±0.0028a 13.97±0.1347d 23.23±0.0854d 34.24±0.0521f 30.61±0.3159c 21.70±0.0904d 15.62±0.1050e 
L. aequinoctialis+L. punctata 0.19±0.0069a 0.10±0.0046a 0.08±0.0029a 13.05±0.1311b 21.94±0.1834b 30.22±0.0306b 27.24±0.6978b 16.59±0.0968b 13.00±0.2010b 
L. aequinoctialis+S. polyrhiza 0.19±0.0110a 0.09±0.0116a 0.08±0.0015a 13.65±0.1215cd 23.78±0.1950e 31.93±0.0846c 31.02±0.4856b 21.57±0.0384d 13.51±0.2233c 
L. punctata+S. polyrhiza 0.18±0.0092a 0.09±0.0025a 0.06±0.0018a 13.58±0.0488d 22.81±0.0455c 33.72±0.0593e 32.41±0.1532d 21.66±0.0688d 15.82±0.1652e 
L. aequinoctialis+L. punctata+S. polyrhiza 0.19±0.0142a 0.10±0.0018a 0.07±0.0021a 13.21±0.1876bc 23.15±0.0897d 34.14±0.1550f 31.12±0.2671c 19.16±0.1971c 14.75±0.0482d 

It is well-known that nutrient starvation can induce starch accumulation in duckweed [29,30]. Our results are consistent with this finding. The starch contents of every combination were doubled by more than 2-folds as the N and P concentrations decreased from 35 mg·N·l−1 and 15 mg·P·l−1 to 0 mg·N·l−1 and 0 mg·P·l−1 (Table 3). The majority of the starch contents of the polycultures showed median starch contents compared with their monocultures. But a significant increase in starch content was observed between L. aequinoctialis+S. polyrhiza (23.78%) and their monocultures (21.70%, 23.23%) at a concentration of 3.5 mg·N·l−1 and 1.5 mg·P·l−1 (P<0.05). Furthermore, the starch content of the polyculture of three species in B (low nutrient concentration) or C medium (nutrient starved) were almost equal to the highest one of monocultures (Table 3). All these results suggested that polyculture could promote the population to accumulate starch.

Unlike the starch content, the protein content decreased as N and P concentrations decreased (Table 3). S. polyrhiza showed the highest protein content among the three species. Although the majority of the protein content of the polycultures showed median protein contents compared with their monocultures, a significant increase in protein content was observed between L. aequinoctialis+S. polyrhiza (32.68%) and their monocultures (26.60%, 31.29%) at high concentration of N and P (P<0.05). Interestingly, the protein content of the polyculture of L. punctata and S. polyrhiza (21.66%) at low nutrient concentration (B medium) were almost equal to the highest one of monocultures (S. polyrhiza, 21.70%), but the polyculture at a lower concentration (C medium) achieved the highest protein content (15.82%), as compared with monocultures (14.43%, 15.62%). These findings indicated that the polyculture can promote population to accumulate protein at low nutrient concentration and proper combination of duckweed species can achieve more protein at high nutrient concentration.

Starch/protein production

The most important applications of duckweed biomass are the high starch yield as feedstock for biofuels and the high protein yield for animal feed. The starch/protein productivity of duckweed depends on its content and biomass production. In the present study, the starch/protein productivity was calculated by its content and biomass production. The results showed that the highest starch productivity under different culture conditions was all achieved by polyculture (Table 4), namely L. punctata+S. polyrhiza (16.66 g·m−2, 25°C), L. aequinoctialis+L. punctata (19.01 g·m−2, 105 μmol·m−2·s−1) and L. aequinoctialis+L. punctata+S. polyrhiza (28.78 g·m−2, medium C). And the starch productivity of these polycultures was significantly higher than those of their monocultures, suggesting that proper polyculture of duckweed species could enhance starch production. The polyculture of L. punctata and S. polyrhiza achieved the highest protein productivity at 25°C (37.55 g·m−2) and at light intensity of 105 μmol·m−2 s−1 (49.86 g·m−2), respectively (Table 5). Under different concentration of N and P, the monoculture of L. punctata showed the highest protein productivity (36.14 g·m−2) in medium A, indicating that polyculture did not show advantage over monoculture in terms of protein production at high concentration of N and P.

Table 4
Starch production (g·m−2) of the duckweed in the mixture and monoculture under different culture conditions

A=35 mg·N·l−1, 15 mg·P·l−1; B=3.5 mg·N·l−1, 1.5 mg·P·l−1; C=0 mg·N·l−1, 0 mg·P·l−1. Different lower-case letters in the same column denote significant differences according to Duncan test (P<0.05).

Temperature (°C)Light intensity (μmol·m−2·s−1)Concentration of N and P
Culture2025303075105ABC
L. aequinoctialis 14.22±0.2976ab 15.11±0.1840a 11.09±0.1154bc 3.02±0.1298b 13.09±0.4811abc 16.27±0.3514b 15.02±0.2801b 23.41±0.3187d 25.66±0.2622c 
L. punctata 12.16±0.3860a 15.03±0.4631a 10.17±0.4210ab 3.00±0.0963b 13.68±0.5538bc 17.78±0.1976cd 14.87±0.3730b 21.87±0.2739c 26.00±0.5951c 
S. polyrhiza 13.18±0.1735a 14.76±0.2781a 9.67±0.3330a 2.62±0.1466a 12.60±0.2779a 11.92±0.2898a 13.99±0.1534a 20.37±0.1779a 20.85±0.4570a 
L. aequinoctialis+L. punctata 15.46±0.3861c 14.81±0.3949a 10.67±0.1382abc 3.08±0.1114b 14.70±0.1764d 19.01±0.4131e 14.98±0.2236b 22.80±0.3434d 28.58±0.7542d 
L. aequinoctialis+S. polyrhiza 14.73±0.5791bc 14.97±0.1393a 12.80±0.4170d 3.03±0.2436b 12.92±0.7243ab 18.32±0.1435de 15.07±0.1005b 22.37±0.2396d 28.33±0.8915d 
L. punctata+S. polyrhiza 13.80±0.3876ab 16.66±0.2589b 10.66±0.5342abc 3.29±0.2511b 13.73±0.3557bc 17.09±0.2057bc 15.26±0.2714b 21.27±0.1986b 22.35±0.6746b 
L. aequinoctialis+L. punctata+S. polyrhiza 13.96±0.2604ab 15.57±0.4432a 11.97±0.3210cd 3.32±0.1202b 13.85±0.4386c 16.67±0.5601bc 15.13±0.3193b 25.50±0.6365e 28.78±0.1241d 
Temperature (°C)Light intensity (μmol·m−2·s−1)Concentration of N and P
Culture2025303075105ABC
L. aequinoctialis 14.22±0.2976ab 15.11±0.1840a 11.09±0.1154bc 3.02±0.1298b 13.09±0.4811abc 16.27±0.3514b 15.02±0.2801b 23.41±0.3187d 25.66±0.2622c 
L. punctata 12.16±0.3860a 15.03±0.4631a 10.17±0.4210ab 3.00±0.0963b 13.68±0.5538bc 17.78±0.1976cd 14.87±0.3730b 21.87±0.2739c 26.00±0.5951c 
S. polyrhiza 13.18±0.1735a 14.76±0.2781a 9.67±0.3330a 2.62±0.1466a 12.60±0.2779a 11.92±0.2898a 13.99±0.1534a 20.37±0.1779a 20.85±0.4570a 
L. aequinoctialis+L. punctata 15.46±0.3861c 14.81±0.3949a 10.67±0.1382abc 3.08±0.1114b 14.70±0.1764d 19.01±0.4131e 14.98±0.2236b 22.80±0.3434d 28.58±0.7542d 
L. aequinoctialis+S. polyrhiza 14.73±0.5791bc 14.97±0.1393a 12.80±0.4170d 3.03±0.2436b 12.92±0.7243ab 18.32±0.1435de 15.07±0.1005b 22.37±0.2396d 28.33±0.8915d 
L. punctata+S. polyrhiza 13.80±0.3876ab 16.66±0.2589b 10.66±0.5342abc 3.29±0.2511b 13.73±0.3557bc 17.09±0.2057bc 15.26±0.2714b 21.27±0.1986b 22.35±0.6746b 
L. aequinoctialis+L. punctata+S. polyrhiza 13.96±0.2604ab 15.57±0.4432a 11.97±0.3210cd 3.32±0.1202b 13.85±0.4386c 16.67±0.5601bc 15.13±0.3193b 25.50±0.6365e 28.78±0.1241d 
Table 5
Crude protein production (g·m−2) of the duckweed in the mixture and monoculture under different culture conditions

A=35 mg·N·l−1, 15 mg·P·l−1; B=3.5 mg·N·l−1, 1.5 mg·P·l−1; C=0 mg·N·l−1, 0 mg·P·l−1. Different lower-case letters in the same column denote significant differences according to Duncan test (P<0.05).

Temperature (°C)Light intensity (μmol·m−2·s−1)Concentration of N and P
Culture2025303075105ABC
L. aequinoctialis 28.91±0.5437d 39.49±0.6432c 25.69±0.7280b 7.50±0.0672c 33.34±0.4140c 41.74±0.1344d 32.31±0.1951ab 17.23±0.1018a 10.67±0.0866b 
L. punctata 23.16±0.6364ab 35.75±0.9701a 24.14±0.7709ab 6.72±0.0946b 12.94±0.1251b 37.06±0.1418b 35.84±0.1582c 18.30±0.0297b 11.44±0.0346c 
S. polyrhiza 22.73±0.5918a 38.26±0.8031bc 23.08±0.5067a 6.12±0.0501a 29.67±0.1248a 26.96±0.1389a 31.60±0.0787a 19.03±0.0426c 9.51±0.0179a 
L. aequinoctialis+L. punctata 28.20±0.5395cd 36.38±0.2534a 24.73±0.7218b 7.32±0.0744c 33.86±0.14671c 39.86±0.3874c 32.91±0.0856b 17.24±0.1097a 12.29±0.0168d 
L. aequinoctialis+S. polyrhiza 29.15±0.6453d 37.82±0.5435b 30.45±0.4748d 7.33±0.0897c 36.10±0.2171d 42.69±0.3594d 35.88±0.0766c 21.20±0.1112e 11.98±0.0419cd 
L. punctata+S. polyrhiza 24.34±0.7955b 38.71±0.0438bc 24.96±0.1343b 7.40±0.0767c 31.89±0.1959b 49.86±0.2406e 36.76±0.0304c 20.19±0.0246d 10.49±0.0232b 
L. aequinoctialis+L. punctata+S. polyrhiza 27.26±0.5594c 37.76±0.5171b 28.78±0.6347c 7.59±0.0963c 33.26±0.2506c 38.47±0.2687bc 36.01±0.1208c 21.10±0.0575e 12.44±0.0462d 
Temperature (°C)Light intensity (μmol·m−2·s−1)Concentration of N and P
Culture2025303075105ABC
L. aequinoctialis 28.91±0.5437d 39.49±0.6432c 25.69±0.7280b 7.50±0.0672c 33.34±0.4140c 41.74±0.1344d 32.31±0.1951ab 17.23±0.1018a 10.67±0.0866b 
L. punctata 23.16±0.6364ab 35.75±0.9701a 24.14±0.7709ab 6.72±0.0946b 12.94±0.1251b 37.06±0.1418b 35.84±0.1582c 18.30±0.0297b 11.44±0.0346c 
S. polyrhiza 22.73±0.5918a 38.26±0.8031bc 23.08±0.5067a 6.12±0.0501a 29.67±0.1248a 26.96±0.1389a 31.60±0.0787a 19.03±0.0426c 9.51±0.0179a 
L. aequinoctialis+L. punctata 28.20±0.5395cd 36.38±0.2534a 24.73±0.7218b 7.32±0.0744c 33.86±0.14671c 39.86±0.3874c 32.91±0.0856b 17.24±0.1097a 12.29±0.0168d 
L. aequinoctialis+S. polyrhiza 29.15±0.6453d 37.82±0.5435b 30.45±0.4748d 7.33±0.0897c 36.10±0.2171d 42.69±0.3594d 35.88±0.0766c 21.20±0.1112e 11.98±0.0419cd 
L. punctata+S. polyrhiza 24.34±0.7955b 38.71±0.0438bc 24.96±0.1343b 7.40±0.0767c 31.89±0.1959b 49.86±0.2406e 36.76±0.0304c 20.19±0.0246d 10.49±0.0232b 
L. aequinoctialis+L. punctata+S. polyrhiza 27.26±0.5594c 37.76±0.5171b 28.78±0.6347c 7.59±0.0963c 33.26±0.2506c 38.47±0.2687bc 36.01±0.1208c 21.10±0.0575e 12.44±0.0462d 

Overall, to mix duckweed species in culture is a useful approach to increase the production of starch and crude protein. The enhanced biomass productivity in polyculture could be shaped by several possible processes. First, polycultures may promote tolerance to or resilience from environmental disturbance and enhance resistance to disease and pest damage [31]. Second, improved plant performance by genetic diversity may occur via selection effects, whereby diverse populations have a higher probability of containing high performance genotype, or complementarity effect, whereby niche differentiation, facilitation or counteraction among genotypes results in increased polyculture performance [32]. Third, different genotypes may differ in their resource use (e.g. uptake of N and P) or facilitate each other and thus the better performance in patches with high genotypic diversity can be due to higher resource uptake or facilitation [33]. However, the exact nature of the positive relationship in polyculture is still unclear. Such information is important and can provide useful insights into conservation and restoration strategies of duckweed at the population level. This mechanism will need to be investigated carefully in future work.

Temperature, light intensity and concentration of N and P significantly affect duckweed biomass accumulation. Different polycultures varied in biomass production. As compared with monoculture, all the polycultures showed a median relative growth rate, while the majority of the polycultures showed a median starch content or protein content. But, proper polyculture of duckweed species can significantly enhance the starch/protein content, and finally generate higher starch or protein production. The present study provides useful references for future large-scale duckweed cultivation.

Yang Li and Jie Tang conceived and designed the research; Yang Li performed experiments; Yang Li and Fantao Zhang analysed data; Fantao Zhang interpreted results of experiments; Jie Tang drafted the manuscript; Maurycy Daroch edited and revised the manuscript. All authors read and approved the final manuscript.

This work was funded by the State Ocean Administration Grant [grant number 201305022]; the Shenzhen Municipal Government for Special Innovation Fund for Shenzhen Overseas High-level Personnel [grant number KQCX201405211502553]; the National Natural Science Foundation of China [grant number 81130070]; and Start-up fund to Jie Tang from Chengdu University.

DW

dry weight

1
Cheng
 
J.J.
Stomp
 
A.M.
 
Growing duckweed to recover nutrients from wastewaters and for production of fuel ethanol and animal feed
Clean-Soil Air Water
2009
, vol. 
37
 (pg. 
17
-
26
)
2
Xu
 
J.
Zhao
 
H.
Stomp
 
A.M.
Cheng
 
J.J.
 
The production of duckweed as a source of biofuels
Biofuels
2012
, vol. 
3
 (pg. 
589
-
601
)
3
Xu
 
J.
Shen
 
G.
 
Growing duckweed in swine wastewater for nutrient recovery and biomass production
Bioresource Technol.
2011
, vol. 
102
 (pg. 
848
-
853
)
4
Cui
 
W.
Cheng
 
J.J.
 
Growing duckweed for biofuel production: a review
Plant Biol.
2015
, vol. 
17
 (pg. 
16
-
23
)
5
Ziegler
 
P.
Adelmann
 
K.
Zimmer
 
S.
Appenroth
 
K.-J.
 
Relative in vitro growth rates of duckweeds (Lemnaceae)–the most rapidly growing higher plants
Plant Biol.
2015
, vol. 
17
 (pg. 
33
-
41
)
6
Ziegler
 
P.
Sree
 
K.S.
Appenroth
 
K.J.
 
Duckweeds for water remediation and toxicity testing
Toxicol. Environ. Chem.
2016
, vol. 
98
 (pg. 
1
-
28
)
7
Appenroth
 
K.J.
Borisjuk
 
N.
Lam
 
E.
 
Telling duckweed apart: genotyping technologies for the Lemnaceae
Chin. J. Appl. Environ. Biol.
2013
, vol. 
19
 (pg. 
1
-
10
)
8
Porath
 
D.
Hepher
 
B.
Koton
 
A.
 
Duckweed as an aquatic crop: evaluation of clones for aquaculture
Aquat. Bot.
1979
, vol. 
7
 (pg. 
273
-
278
)
9
Reid
 
M.S.
Bieleski
 
R.L.
 
Response of Spirodela oligorrhiza to phosphorus deficiency
Plant Physiol.
1970
, vol. 
46
 (pg. 
609
-
613
)
[PubMed]
[PubMed]
[PubMed]
10
Xiao
 
Y.
Fang
 
Y.
Jin
 
Y.
Zhang
 
G.
Zhao
 
H.
 
Culturing duckweed in the field for starch accumulation
Ind. Crops Prod.
2013
, vol. 
48
 (pg. 
183
-
190
)
11
Cheng
 
J.Y.
Bergmann
 
B.A.
Classen
 
J.J.
Stomp
 
A.M.
Howard
 
J.W.
 
Nutrient recovery from swine lagoon water by Spirodela punctata
Bioresource Technol.
2002
, vol. 
81
 (pg. 
81
-
85
)
12
Suppadit
 
T.
 
Nutrient removal of effluent from quail farm through cultivation of Wolffia arrhiza
Bioresource Technol.
2011
, vol. 
102
 (pg. 
7388
-
7392
)
13
Ge
 
X.
Zhang
 
N.
Phillips
 
G.C.
Xu
 
J.
 
Growing Lemna minor in agricultural wastewater and converting the duckweed biomass to ethanol
Bioresource Technol.
2012
, vol. 
124
 (pg. 
485
-
488
)
14
Silvertown
 
J.
 
The evolutionary maintenance of sexual reproduction: evidence from the ecological distribution of asexual reproduction in clonal plants
Int. J. Plant Sci.
2008
, vol. 
169
 (pg. 
157
-
168
)
15
Su
 
Y.
Mennerich
 
A.
Urban
 
B.
 
Coupled nutrient removal and biomass production with mixed algal culture: impact of biotic and abiotic factors
Bioresource Technol.
2012
, vol. 
118
 (pg. 
469
-
476
)
16
Xu
 
Y.
Ma
 
S.
Huang
 
M.
Peng
 
M.
Bog
 
M.
Sree
 
K.S.
Appenroth
 
K.-J.
Zhang
 
J.
 
Species distribution, genetic diversity and barcoding in the duckweed family (Lemnaceae)
Hydrobiologia
2014
, vol. 
743
 (pg. 
75
-
87
)
17
Tang
 
J.
Li
 
Y.
Ma
 
J.
Cheng
 
J.J.
 
Survey of duckweed diversity in Lake Chao and total fatty acid, triacylglycerol, profiles of representative strains
Plant Biol.
2015
, vol. 
17
 (pg. 
1066
-
1072
)
18
Zhao
 
Z.
Shi
 
H.
Liu
 
Y.
Zhao
 
H.
Su
 
H.
Wang
 
M.
Zhao
 
Y.
 
The influence of duckweed species diversity on biomass productivity and nutrient removal efficiency in swine wastewater
Bioresource Technol.
2014
, vol. 
167
 (pg. 
383
-
389
)
19
Yin
 
Y.
Yu
 
C.
Yu
 
L.
Zhao
 
J.
Sun
 
C.
Ma
 
Y.
Zhou
 
G.
 
The influence of light intensity and photoperiod on duckweed biomass and starch accumulation for bioethanol production
Bioresource Technol.
2015
, vol. 
187
 (pg. 
84
-
90
)
20
Reddy
 
K.R.
Debusk
 
T.A.
 
State-of-the-art utilization of aquatic plants in water pollution control
Water Sci. Technol.
1987
, vol. 
19
 (pg. 
61
-
79
)
21
Mandi
 
L.
 
Marrakesh wastewater purification experiment using vascular aquatic plants Eichhornia crassipes and Lemna gibba
Water Sci. Technol.
1994
, vol. 
29
 (pg. 
283
-
287
)
22
Zhao
 
Y.
Fang
 
Y.
Jin
 
Y.
Huang
 
J.
Bao
 
S.
Fu
 
T.
He
 
Z.
Wang
 
F.
Wang
 
M.
Zhao
 
H.
 
Pilot-scale comparison of four duckweed strains from different genera for potential application in nutrient recovery from wastewater and valuable biomass production
Plant. Biol.
2015
, vol. 
17
 (pg. 
82
-
90
)
23
Zhang
 
L.
Zhao
 
H.
Gan
 
M.
Jin
 
Y.
Gao
 
X.
Chen
 
Q.
Guan
 
J.
Wang
 
Z.
 
Application of simultaneous saccharification and fermentation (SSF) from viscosity reducing of raw sweet potato for bioethanol production at laboratory, pilot and industrial scales
Bioresource Technol.
2011
, vol. 
102
 (pg. 
4573
-
4579
)
24
Markus
 
D.K.
McKinnon
 
J.P.
Buccafuri
 
A.F.
 
Automated analysis of nitrite, nitrate, and ammonium nitrogen in soils
Soil Sci. Soc. Am. J.
1985
, vol. 
49
 (pg. 
1208
-
1215
)
25
Xiao
 
Y.
Fang
 
Y.
Jin
 
Y.
Zhang
 
G.
Zhao
 
H.
 
Culturing duckweed in the field for starch accumulation
Ind. Crop Prod.
2013
, vol. 
48
 (pg. 
183
-
190
)
26
Iatrou
 
E.I.
Stasinakis
 
A.S.
Aloupi
 
M.
 
Cultivating duckweed Lemna minor in urine and treated domestic wastewater for simultaneous biomass production and removal of nutrients and antimicrobials
Ecol. Eng.
2015
, vol. 
84
 (pg. 
632
-
639
)
27
Kerstens
 
S.M.
Leusbrock
 
I.
Zeeman
 
G.
 
Feasibility analysis of wastewater and solid waste systems for application in Indonesia
Sci. Total Environ.
2015
, vol. 
530–531
 (pg. 
53
-
65
)
28
Soda
 
S.
Ohchi
 
T.
Piradee
 
J.
Takai
 
Y.
Ike
 
M.
 
Duckweed biomass as a renewable biorefinery feedstock: ethanol and succinate production from Wolffia globosa
Biomass Bioenerg.
2015
, vol. 
81
 (pg. 
364
-
368
)
29
Tao
 
X.
Fang
 
Y.
Xiao
 
Y.
Jin
 
Y.L.
Ma
 
X.R.
Zhao
 
Y.
He
 
K.Z.
Zhao
 
H.
Wang
 
H.Y.
 
Comparative transcriptome analysis to investigate the high starch accumulation of duckweed (Landoltia punctata) under nutrient starvation
Biotechnol. Biofuels
2013
, vol. 
6
 pg. 
72
 
[PubMed]
[PubMed]
[PubMed]
30
Huang
 
M.
Fang
 
Y.
Xiao
 
Y.
Sun
 
J.
Jin
 
Y.
Tao
 
X.
Ma
 
X.
He
 
K.
Zhao
 
H.
 
Proteomic analysis to investigate the high starch accumulation of duckweed (Landoltia punctata) under nutrient starvation
Ind. Crop Prod.
2014
, vol. 
59
 (pg. 
299
-
308
)
31
Griffith
 
A.P.
Epplin
 
F.M.
Fuhlendorf
 
S.D.
Gillen
 
R.
 
A comparison of perennial polycultures and monocultures for producing biomass for biorefinery feedstock
Agron. J.
2011
, vol. 
103
 (pg. 
617
-
627
)
32
Chen
 
X.Y.
Wang
 
X.Y.
Jiao
 
J.
Schmid
 
B.
 
Complementarity effects do not necessarily result in significant transgressive over-performance in mixtures
Biol. Invasions
2014
, vol. 
17
 (pg. 
529
-
535
)
33
Crawford
 
K.M.
Whitney
 
K.D.
 
Population genetic diversity influences colonization success
Mol. Ecol.
2010
, vol. 
19
 (pg. 
1253
-
1263
)
[PubMed]
[PubMed]
[PubMed]

Author notes

1

Yang Li and Fantao Zhang contributed equally to this work.

This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution Licence 4.0 (CC BY).