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2 

 

Integrative analysis of metabolism subtypes and identification of 26 

prognostic metabolism-related genes for glioblastoma  27 

Abstract 28 

Increasing evidence has demonstrated that cancer cell metabolism is a critical factor in 29 

tumor development and progression; however, its role in glioblastoma (GBM) remains 30 

limited. In this study, we classified GBM into three metabolism subtypes (MC1, MC2, and 31 

MC3) through cluster analysis of 153 GBM samples from the RNA-sequencing data of The 32 

Cancer Genome Atlas (TCGA) based on 2752 metabolism-related genes (MRGs). We 33 

further explored the prognostic value, metabolic signatures, immune infiltration, and 34 

immunotherapy sensitivity of the three metabolism subtypes. Moreover, the metabolism 35 

scoring model was established to quantify the different metabolic characteristics of the 36 

patients. Results showed that MC3, which is associated with a favorable survival outcome, 37 

had higher proportions of isocitrate dehydrogenase (IDH) mutations and lower tumor purity 38 

and proliferation. The MC1 subtype, which is associated with the worst prognosis, shows a 39 

higher number of segments and homologous recombination defects and significantly lower 40 

mRNA expression-based stemness index (mRNAsi) and epigenetic-regulation-based 41 

mRNAsi. The MC2 subtype has the highest T-cell exclusion score, indicating a high 42 

likelihood of immune escape. The results were validated using an independent dataset. Five 43 

MRGs (ACSL1, NDUFA2, CYP1B1, SLC11A1, and COX6B1) correlated with survival 44 

outcomes were identified based on metabolism-related co-expression module analysis. 45 

Laboratory-based validation tests further showed the expression of these MRGs in GBM 46 

tissues and how their expression influences cell function. The results provide a reference for 47 

developing clinical management approaches and treatments for GBM.  48 

 49 

 50 
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Background 51 

 Glioblastoma (GBM) is the most prevalent primary malignant brain tumor type [1]. 52 

The prognosis of GBM is poor, with a median overall survival of only 15 months and a 5-53 

year survival rate of less than 5 % [2, 3]. Conventional methods, including surgical 54 

resection, chemotherapy, and radiotherapy, are often used for GBM treatment. However, 55 

these methods have led to only limited improvements in survival time. Moreover, a few 56 

patients with GBM still experience tumor recurrence after treatment [4]. Therefore, novel 57 

drugs, immunotherapy strategies, and other GBM treatment strategies are needed [5, 6]. 58 

 A hallmark of cancer cells is metabolic reprogramming, manifested primarily by 59 

increased glycolytic function [7]. Dysregulation of cell metabolism plays a significant role 60 

in the development and progression of cancer through modulation of the tumor immune 61 

microenvironment [8-10]. Metabolic heterogeneity exists between tumors and within 62 

tumors [11, 12] and is particularly relevant to typing, prognosis, and treatment of cancer. A 63 

comprehensive understanding of metabolic heterogeneity in cancer cells may assist in 64 

prognosis prediction and the development of novel therapeutic strategies. In recent years, 65 

advances in omics technologies have improved the prognosis and treatment of tumors. For 66 

instance, Follia et al. [13] identified four metabolic pancreatic ductal adenocarcinoma 67 

subtypes with different prognostic outcomes by analyzing transcriptomic and genomic data 68 

on the expression of glycolytic genes. Bidkhori et al. [14] conducted a metabolic network-69 

based analysis using multiomics data and classified hepatocellular carcinoma into three 70 

subtypes to develop novel treatment strategies. However, the role of metabolic 71 

heterogeneity and relationships between changes in gene expression and dysregulation of 72 

metabolic pathways, molecular subtypes, and prognosis in GBM remain insufficiently 73 

understood.  74 

 Here, we identified three metabolism subtypes (MC1, MC2, and MC3) of GBM based 75 

on the expression of 2752 metabolism-related genes (MRGs) via clustering analysis of data 76 

obtained from The Cancer Genome Atlas (TCGA). Furthermore, we analyzed the clinical, 77 
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metabolic, and immune characteristics of these metabolism subtypes and identified 78 

significant differences in clinical outcomes, genomic changes, immune infiltration, and 79 

immunotherapy response. These results may assist in improving the prediction of prognosis 80 

and developing future therapeutic strategies for GBM. 81 

Material and methods 82 

Data sources and sample collection 83 

 The RNA-sequencing data (raw counts) of GBM samples were downloaded from the 84 

TCGA database (https://www.cancer.gov/tcga). The dataset consisted of 153 primary GBM 85 

samples with clinical data. Gene expressions with >50 % missing data in the samples were 86 

removed from further analysis. Two datasets of glioma samples (mRNAseq_693 and 87 

mRNAseq_325) were downloaded from the Chinese Glioma Genome Atlas (CGGA) 88 

database (http://www.cgga.org.cn/). Batch effects were removed using the combat function 89 

of the sva package [15]. A total of 218 primary GBM samples with clinical data were 90 

eligible for analysis. A total of 2752 MRGs were collected, reportedly encoding all known 91 

human metabolic enzymes and transporters [16].  92 

 GBM tissues and matched adjacent tissues were collected during surgery. The 93 

specimens were frozen in liquid nitrogen and stored at −80 °C until immunohistochemical 94 

staining and protein extraction. Informed consent was obtained from each patient. The study 95 

was approved by the Ethics Committee of the First Affiliated Hospital of Nanjing Medical 96 

University.  97 

Identification of metabolism subtypes 98 

 A total of 293 out of 2752 MRGs were excluded, as these genes were not present in the 99 

TCGA-GBM dataset. The remaining 2459 genes were included for further analysis. 100 

Univariate Cox regression identified 269 survival-related genes (Cox p <0.05). A consensus 101 

matrix was constructed using ConsensusClusterPlus [17] based on the expression of these 102 
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genes to reveal metabolism subtypes. Moreover, the Partitioning Around Medoids (PAM) 103 

algorithm and canberra as the measurement distance were used, and 1000 bootstraps were 104 

performed. Each bootstrap process included 80 % of the available data in the training set. 105 

The number of clusters was set to 2–6. The optimal number of clusters was determined by 106 

constructing the consistency matrix and calculating the consistency cumulative distribution 107 

function (CDF) [17, 18]. 108 

Immune cell infiltration  109 

 The CIBERSORT algorithm (https://cibersort.stanford.edu/) was used to quantify the 110 

relative abundance of 22 immune cells in GBM. Moreover, the EPIC [19], Estimate [20, 111 

21], Xcell [22], and MCPcounter [23] algorithms were used to calculate the proportion of 112 

immune cells. 113 

Gene set variation analysis (GSVA) and functional annotation  114 

 GSVA was performed using the GSVA R package to investigate metabolic pathways of 115 

metabolism subtypes and associated biological processes. The gene set used for GSVA 116 

analysis contained 113 metabolic pathways downloaded from a previous study [24]. The 117 

clusterProfiler package was used for functional annotation [25]. 118 

Determination of mutation profiles of metabolism subtypes 119 

 The differences in genomic variations between the three metabolism subtypes were 120 

further investigated in the TCGA cohort. Mutation data were obtained using the 121 

TCGAmutation package. Aneuploidy score, fraction altered, number of segments, tumor 122 

mutation burden, and homologous and recombination defects were analyzed in each 123 

metabolism subtype. Similarly, somatic mutations and copy number variants were analyzed 124 

and visualized using the maftools package. 125 
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Tumor heterogeneity analysis of metabolism subtypes 126 

 To evaluate tumor heterogeneity among metabolism subtypes, genomic characteristics, 127 

including tumor purity, genomic ploidy, amplification, and intratumoral heterogeneity, were 128 

obtained from a previous study [26]. The stemness index, including the mRNA expression-129 

based stemness index (mRNAsi) and epigenetic-regulation-based mRNAsi (EREG-130 

mRNAsi) described by Malta et al. [27], was used to investigate molecular heterogeneity 131 

within tumors. A higher stemness index is associated with active biological processes in 132 

cancer stem cells and greater tumor dedifferentiation [27]. 133 

Difference in immune infiltration and immunotherapy responses between metabolism 134 

subtypes  135 

 We used five algorithms, including EPIC, MCPcounter, ESTIMATE, CIBERSORT, and 136 

xCell, to evaluate immune cell infiltration in the TCGA dataset. TIDE 137 

(http://tide.dfci.harvard.edu/) was used to estimate the efficacy of immunotherapy in the three 138 

metabolism subtypes. Higher TIDE prediction scores indicate a higher possibility of immune 139 

escape and a lower efficacy of immunotherapy. The T-cell dysfunction score, T-cell exclusion 140 

score, and predicted immunotherapy response status of the metabolism subtypes were 141 

determined using the TCGA and CGGA datasets. 142 

Development of the MRG score for GBM samples 143 

 We used principal component analysis (PCA) to quantify the metabolism-related 144 

characteristics of the patients in different cohorts and develop an MRG score. MRGs with 145 

significant prognostic values were analyzed using PCA in the TCGA, and the first two 146 

components were used to calculate the metabolism index of each sample. The formula used 147 

for calculating the MRG score was as follows:  148 

MRG score = Σ(PC1i + PC2i), 149 

 150 
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 where i represents the prognostic MRG. 151 

Correlation of the MRG score with immune infiltration and metabolism pathways 152 

 We used the single-sample gene set enrichment analysis method to evaluate the 153 

abundance of each immune cell and investigate the correlation between the MRG score and 154 

immune cell features [28]. The abundance of 28 immune cells in the metabolic subtypes of 155 

the cohort was analyzed. The correlation between the MRG score and subtype-specific 156 

metabolic pathways was investigated.  157 

Identification of metabolism-related co-expression modules 158 

 Weighted gene correlation network analysis (WGCNA) was performed to identify 159 

metabolism-related co-expression modules using the WGCNA package [29]. Samples were 160 

filtered through good sample tests, and hierarchical clustering was applied to detect outliers 161 

further. An expression matrix was constructed by calculating the connection strength 162 

between filtered MRGs. A suitable soft-threshold power (β) was selected to ensure the 163 

constructed co-expression network conformed to the scale-free network. Next, the 164 

expression matrix was converted to an adjacency matrix, and the topological overlap matrix 165 

(TOM) was created. Based on TOM, we used the average-linkage hierarchical clustering 166 

method to cluster genes according to the mixed dynamic shear tree standards, and the 167 

number of genes in each module was at least 30. After determining the gene module by the 168 

dynamic shearing method, we calculated the eigengene value of each module, then clustered 169 

the modules. Identification of co-expression modules was performed using the following 170 

parameters: height = 0.25, deepSplit = 2, minModuleSize = 30 [30]. The distribution of the 171 

identified modules among different metabolism subtypes was calculated, and the 172 

correlations between each module and clinical traits were assessed using the gene 173 

significance (GS) and module membership (MM) analyses. Functional enrichment of these 174 

identified modules was conducted using the clusterprofiler R package (corrected p <0.05), 175 

and the top 10 biological processes in Gene Ontology were visualized.  176 
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 Correlation coefficients between the modules and MRGs were calculated for the 177 

identified modules. MRGs with correlation coefficients >0.75 were selected. To identify hub 178 

MRGs, a protein-protein interaction (PPI) network was constructed using the STRING 179 

database (http://string-db.org/) [29]. Topological properties, including degree, closeness, 180 

betweenness, and eigenvector, were further analyzed, and genes with high topological 181 

properties (top 50 %) were used to create a Venn diagram as these are more likely to be 182 

crucial in the network [31]. The Kaplan–Meier method was applied to select hub MRGs 183 

correlated with survival outcomes.  184 

Cell culture 185 

 Validation tests were performed to evaluate further hub MRGs that correlated with 186 

survival outcomes. GBM cells, including NHA, U87 (HTB-14), LN229 (CRL-2611), and 187 

T98G (CRL-1690), were purchased from the ATCC (American Type Culture Collection) 188 

and U251 (TCH-C366) was purchased from Cas9X. Dulbecco's modified Eagle’s medium 189 

(DMEM, Gibco) with 10 % fetal bovine serum (Gibco) and streptomycin/penicillin (1 %, 190 

Gibco) was used to culture cells incubated with 5 % CO2 at 37 °C until 80–85 % 191 

confluence.  192 

RT-qPCR 193 

 Following the manufacturer’s instructions, the RNA of NHA, U87, LN229, T98G, and 194 

U251 cells was extracted with the TRIzol Kit (Invitrogen), and cDNA was obtained using 195 

the HiScript III RT SuperMix for qPCR (Vazyme). Real-time PCR was performed using 196 

AceQ qPCR SYBR Green Master Mix (Vazyme), and primers were obtained from 197 

GenScript (Nanjing, China). The RT-qPCR-related primers used are listed in Table S1. 198 

Plasmid and siRNA transfection and lentiviral transduction 199 

 The plasmid was designed and synthesized using Genechem software. To ensure the 200 

efficiency of inhibition of gene expression by siRNA, three different target sequences of 201 
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small interfering RNAs for each gene were designed (Table S2). As specified in the 202 

manufacturer’s protocol, the plasmid was transfected into cells using Lipofectamine 3000 203 

(Invitrogen), and siRNAs were transfected into the cells using DharmaFECT4 204 

(Dharmacon).  205 

Western blotting 206 

 The protein expression levels were determined using western blotting. Total protein 207 

was extracted from cells and GBM tissues and matched adjacent tissues using RIPA Lysis 208 

Buffer (Beyotime), and the protein concentration was determined using the BCA assay kit 209 

(Thermo Fisher Scientific). Using sodium dodecyl sulfate-polyacrylamide gel 210 

electrophoresis, equal amounts of proteins (20μg) per sample were separated and transferred 211 

onto polyvinylidene fluoride membranes (Millipore). The blots were then incubated with 212 

primary antibodies against COX6B1 (1:1000, ab131277, Abcam), SLC11A1 (1:1000, 213 

ab211448, Abcam), ACSL1 (1:1000, ab177958, Abcam), NDUFA2 (1:500, GTX32741, 214 

GeneTex), CYP1B1 (1:500, AF301782, AiFang), E-cadherin (1:10000, ab40772, Abcam), 215 

N-cadherin (1:2000, 66219-1-Ig, Proteintech), vimentin (1:20000, 60330-1-Ig, Proteintech), 216 

Cdk4 (1:5000, ab108357, Abcam), Cdk6 (1:50000, ab124821, Abcam), Cyclin D1 217 

(1:10000, ab134175, Abcam), and GAPDH (1:10000, 60004-1-Ig, Proteintech).  218 

Colony formation and CCK-8 assays 219 

 U251 or U87 cells were seeded into six-well plates (500 cells per well) and cultured in 220 

DMEM containing 10 % FBS for two weeks. The colonies were fixed with 4 % 221 

paraformaldehyde and stained with 0.1 % crystal violet when visible to the naked eye. 222 

Colonies were photographed using a scanner (Microtek, China) and counted manually in a 223 

blind fashion. Cell proliferation was determined on transfected cells cultured in 96-well 224 

plates for 1, 2, 3, or 4 d using a CCK-8 kit (Dojindo, Japan) following the manufacturer’s 225 

instructions. 226 
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5-Ethynyl-2-deoxyuridine (EdU) incorporation assays 227 

 EdU incorporation assays were performed according to the manufacturer's instructions 228 

using a KFluor 488 Click-iT EdU Imaging Kit (KeyGEN). A minimum of 50 cells were 229 

randomly selected from each field. Fluorescence intensities were calculated from five fields, 230 

and images were captured using a fluorescence microscope (Carl Zeiss, Germany). 231 

Immunohistochemistry 232 

 A total of 10 GBM tissues and matched adjacent tissues were used for 233 

immunohistochemical staining. Briefly, tissues were fixed in 4 % paraformaldehyde 234 

(Servicebio, Wuhan, China) for 24 h before routine decalcification and dehydration through 235 

an ethanol gradient. The tissues were cut into 4 µm sections using a rotary microtome. After 236 

deparaffinization and rehydration, sections were immersed in boiling citrate buffer for 30 237 

min. After blocking with BSA for 1 h, the sections were incubated with the appropriate 238 

primary antibodies overnight at 4 °C. The primary antibodies used were COX6B1 (1:80, 239 

ab131277; Abcam), SLC11A1 (1:50, ab211448; Abcam), ACSL1 (1:100, ab177958; 240 

Abcam), NDUFA2 (1:50, GTX32741; GeneTex), and CYP1B1 (1:50, AF301782, AiFang). 241 

The sections were washed and incubated with a secondary antibody (100 μL, AFIHC001, 242 

AiFang). Finally, the sections were stained with 3,3’-diaminobenzidine and counterstained 243 

with hematoxylin before observation under a microscope.  244 

Statistical analysis 245 

 Statistical analyses were performed using R software (version 4.1.2) and GraphPad 246 

Prism (version 8.3.0). One-way analysis of variance (ANOVA) and Kruskal–Wallis tests 247 

were used to compare the three groups. Fisher’s test analyzed the relationship between gene 248 

mutations and metabolism subtypes. Correlation analyses were performed using Spearman’s 249 

correlation test. The Kaplan–Meier method was used for survival analysis, and the log-rank 250 

test was used for comparison. A p <0.05 was considered to indicate a statistically significant 251 
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difference. 252 

Results 253 

Identification of metabolism subtypes 254 

 GBM expression profiles were extracted from the RNA-sequencing data from the 255 

TCGA, and 269 metabolic genes with significant prognostic values were obtained for 256 

subsequent analysis. The three clusters demonstrated relatively stable clustering results 257 

(Figs. 1A–B). Therefore, we chose the number of clusters (k) as three to obtain three 258 

metabolism-related clusters (MC) (Fig. 1C), indicating that GBM samples can be 259 

categorized into three distinct metabolism subtypes. These three metabolism subtypes 260 

demonstrated significant prognostic differences (Figs. 1D–E). The MC3 and MC1 subtypes 261 

showed favorable and poor prognoses, respectively. In addition, 269 MRGs were used to 262 

validate the metabolism subtypes in the CGGA dataset. Similarly, the prognoses of these 263 

three metabolism subtypes were significantly different in the CGGA (Fig. S1). The MC1 264 

subtype had the worst prognosis. In contrast, a favorable prognosis was associated with 265 

MC3 compared to the other subtypes. Overall, these results suggest that the identified 266 

metabolism subtypes based on the expression profiles of 269 MRGs could potentially serve 267 

as valuable prognostic indicators for GBM patients. In order to better elucidate the 268 

significance of these three metabolism subtypes and their relevance to clinical strategies or 269 

treatments for GBM patients, the study conducted a comprehensive exploration of these 270 

three metabolism subtypes from multiple perspectives. 271 

 [Fig. 1] 272 

Clinical characteristics of metabolism subtypes 273 

 We performed a comparative evaluation of clinical characteristics of metabolism 274 

subtypes as observed in the TCGA-GBM dataset, and no significant differences between 275 

metabolism subtypes in terms of age, sex, 1p/19q codeletion, or O-6-methylguanine-276 
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DNA methyltransferase (MGMT) promoter methylation were observed (Figs. 1F-G and I-277 

J). The proportion of isocitrate dehydrogenase (IDH) mutants was higher in MC3 than in 278 

the other subtypes, which may explain the favorable survival outcome with this subtype 279 

(Fig. 1H). The correlation between metabolism subtypes and clinical characteristics in the 280 

CGGA is shown in Fig. S1. 281 

 282 

Correlation of metabolism subtypes with metabolic processes 283 

 Since metabolism subtypes of GBM were identified based on the results of a consistent 284 

clustering analysis, we further analyzed metabolic processes in these subtypes. The GSVA 285 

package was used to quantify 113 metabolic processes, and differential analysis was 286 

performed to identify subtype-specific metabolic characteristics, defined as characteristics 287 

with high GSVA scores in the corresponding subtypes. The results revealed 37, 17, and 6 288 

specific metabolic characteristics in the MC1, MC2, and MC3 subtypes, respectively (Fig. 289 

2). The MC1 subtype exhibits the most specific metabolic characteristics in comparison to 290 

the other two subtypes, suggesting its classification as a metabolically active subtype, 291 

potentially contributing to a poorer prognosis[32]. This analysis of subtype-specific 292 

metabolic characteristics sheds light on the heterogeneity of GBM metabolism and has 293 

important implications for the development of targeted therapies and personalized treatment 294 

strategies. The distinct metabolic profiles observed in each subtype could potentially serve 295 

as biomarkers for patient stratification and may guide the selection of suitable therapeutic 296 

interventions. 297 

[Fig. 2] 298 

Mutation profiles and heterogeneity analysis  299 

The differences in genomic variations between the identified metabolism subtypes in 300 

the TCGA cohort were analyzed (Figs. 3A–E). The MC1 subtype exhibited a high number 301 

of segments and homologous recombination defects. This observation suggests that the 302 
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MC1 subtype may harbor unique genomic alterations that potentially contribute to its 303 

distinct metabolic characteristics and functional implications. The correlation between gene 304 

mutations and metabolism subtypes was analyzed (Fig. 3F). Specifically, the MC3 subtype 305 

exhibited a notable frequency of IDH mutations, whereas no IDH mutations were observed 306 

in the MC1 or MC2 subtypes, aligning with the superior prognosis associated with the MC3 307 

subtype. 308 

[Fig. 3] 309 

Tumor purity in the MC1 subtype was significantly lower than those in the MC2 or 310 

MC3 subtypes (Figs. 4A), indicating a more complex tumor microenvironment of MC1. 311 

The proliferation of tumors in the MC1 subtype was significantly lower compared to the 312 

other two subtypes (Figs. 4D). This observation implies that the MC1 subtype may possess 313 

distinct biological characteristic. The mRNAsi and EREG-mRNAsi of the MC1 subtype 314 

were significantly lower than those of the MC2 or MC3 subtypes (Figs. 4E-F). The gradual 315 

loss of cell differentiation and acquisition of stem cell-like characteristics are the main 316 

factors driving tumor progression [33] and, thus, worse survival outcomes in the MC1 317 

subtype. A high mRNAsi in GBM indicates a favorable survival outcome [34]. 318 

[Fig. 4] 319 

Immune infiltration and immunotherapy responses in metabolism subtypes 320 

The results of immune cell infiltration are shown in Fig. S2. The EPIC method 321 

evaluated the proportions of eight types of immune cells and the proportion of CD4
+
 T cells 322 

in the MC3 subtype was significantly higher than in the other subtypes. Among the 10 323 

immune cell types evaluated by the MCPcounter software, the proportions of all the 324 

immune cell types except for CD8
+
 T cells and endothelial cells were significant among 325 

metabolism subtypes. The results obtained using CIBERSORT revealed no significant 326 

differences in most immune cells between the metabolism subtypes. Of the 64 immune cells 327 

evaluated by xCell, a few were significantly different between the subtypes. The evaluation 328 

results of ESTIMATE showed that the MC1 subtype had the highest immune, stromal, and 329 
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ESTIMATE scores. The heatmap showing the evaluation conducted by the five immune 330 

infiltration algorithms in the TCGA-GBM cohort is provided in Fig. S3. 331 

We analyzed the differences in immune therapy among different metabolic molecular 332 

subtypes. The results showed that MC2 had the highest TIDE score in the TCGA cohort, 333 

followed by MC3 and MC1 (Fig. 4G). This suggests that patients with the MC2 subtype are 334 

less likely to benefit from immunotherapy. Moreover, we compared the predicted T cell 335 

dysfunction scores and T cell rejection scores between the metabolism subtypes in the 336 

TCGA cohort. The T-cell dysfunction score was higher for MC1 than that of the other 337 

subtypes (Fig. 4H). This may explain the poor prognosis of the MC1 subtype, despite 338 

having the highest immune infiltration. The MC2 subtype showed the highest T-cell 339 

exclusion score in the TCGA cohort (Fig. 4I). Similar scores across subtypes were observed 340 

in the CGGA cohort (Fig. S4). We analyzed the predicted immunotherapy response status of 341 

the metabolism subtypes in the TCGA cohort. The response to immunotherapy was slightly 342 

higher in patients with MC1 compared to MC2 and MC3, yet no significant difference was 343 

observed (Fig. 4J). 344 

Construction of the MRG score 345 

Samples of different subtypes could be clearly distinguished according to the first two 346 

features of the metabolism-scoring model (Fig. 5A). We calculated the MRG score for each 347 

patient in the TCGA dataset based on the metabolism-scoring model. The MRG scores of 348 

metabolism subtypes were significantly different from each other (Fig. 5B). The classification 349 

performance of the MRG score for the subtypes based on the ROC curve is shown in Fig. 5D. 350 

Accordingly, the multiclass AUC was 0.87. We obtained results similar to those obtained from 351 

the TCGA dataset by using the same equation for the CGGA dataset. The MRG scores of 352 

different subtypes were distinct from each other (Fig. 5C). The ROC curve indicated an AUC 353 

of 0.8 (Fig. 5E). These results indicate that the MRG score can be used to measure the 354 

patients' metabolic characteristics.  355 

[Fig. 5] 356 
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Correlation of the MRG score with immune infiltration and metabolic processes  357 

The enrichment scores of most immune cells in MC1 were higher than those in the other 358 

metabolism subtypes (Fig. 6A). Thus, we analyzed the relationship between the metabolic 359 

subtype feature scores in the TCGA cohort and the 28 immune cell scores and calculated the 360 

correlation between the MRG score and immune cells using Pearson correlation analysis. The 361 

subtype feature score was significantly correlated with most immune cell types (Fig. 6B). For 362 

example, the metabolism subtype feature score showed a significantly positive correlation 363 

with immature dendritic cells, NK T cells, central memory CD4
+
 T cells, central memory 364 

CD8
+
 T cells, and plasmacytoid dendritic cells. Negative correlations were observed for 365 

CD56dim NK cells, monocytes, and type 17 T-helper cells. We found that MRG scores and 366 

subtype-specific metabolic pathways were closely correlated (Fig. 6C). The MRG score was 367 

positively correlated with metabolic pathways, such as those of galactose metabolism, retinoic 368 

acid metabolism, and retinol metabolism, and negatively correlated with pathways of 369 

pyrimidine biosynthesis, glyoxylate, and dicarboxylate metabolism. These findings reveal the 370 

complex interaction between metabolic and immune signatures in distinct subtypes, which 371 

could yield valuable information about the underlying mechanisms influencing the tumor 372 

microenvironment. 373 

[Fig. 6] 374 

Identification of metabolism-related co-expression modules 375 

The result of hierarchical clustering is shown in Fig. 7A. The soft-threshold power (β) 376 

was set at 5 to ensure the constructed co-expression network conformed to the scale-free 377 

network (Figs. 7B–C). The cluster dendrogram highlighted a total of nine modules. The gray 378 

module contained genes that could not be classified into any other module (Fig. 7D). 379 

Subsequently, the eigengenes were compared across the metabolism subtypes (Fig. 7E). 380 

Significant differences between the subtypes in eight modules (except for the gray module) 381 

were observed. In the yellow and black modules, the MC1 subtype showed higher eigengenes 382 
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than the other subtypes. In contrast, the MC3 subtype exhibited the highest eigengene 383 

expression in the blue and red modules. Module–trait relationships were explored using 384 

correlation analysis. Accordingly, the MC1 subtype was positively and negatively correlated 385 

with the yellow and black modules and the blue module, respectively. The MC3 subtype was 386 

positively correlated with the red module (Fig. 7F). The correlations between MM and GS for 387 

the above modules are shown in Figs. 7G–J. This comprehensive analysis offers valuable 388 

insights into the intricate interactions between metabolism subtypes and associated gene 389 

modules, laying the groundwork for potential predictive biomarkers. 390 

[Fig. 7] 391 

Functional enrichment for the MRG co-expression module 392 

After excluding the gray module, we next analyzed the correlation between the MRG 393 

score and module eigengenes (Fig. 8A). The eigengenes in the blue and red modules were 394 

negatively correlated with the MRG score (Figs. 8B–C), whereas the eigengenes in the yellow 395 

and black modules were positively correlated (Figs. 8D–E). The aforementioned four modules 396 

were selected for enrichment analysis. The results indicated that the MRGs in the blue module 397 

were enriched in genes associated with ATP synthesis-coupled electron transport, 398 

mitochondrial ATP synthesis-coupled electron transport, the respiratory electron transport 399 

chain, and oxidative phosphorylation (Fig. 8F). MRGs in the red module were enriched in 400 

genes associated with glutamate receptor signaling, glycerophospholipid biosynthetic, and 401 

glycerolipid metabolic processes (Fig. 8G). The enrichment results for the yellow and black 402 

modules are shown in Figs. 8H and 8I, respectively. 403 

[Fig. 8] 404 

We selected 71 MRGs with a correlation coefficient above 0.75 in the four modules. A 405 

PPI was observed in 70 of them based on data obtained from the STRING database (Fig. 9A). 406 

The interaction confidence score of the PPI network is shown in Table S3. Topological 407 

properties were further analyzed, including degree, closeness, betweenness, and eigenvector 408 

(Figs. 9B–E). As a result, thirteen MRGs were identified as hubs using the intersection of the 409 
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top half of the genes with high topological properties (Fig. 9F). The expression of five of 410 

these genes (Fig. S5), ACSL1, NDUFA2, CYP1B1, SLC11A1, and COX6B1, correlated with 411 

survival outcomes (Figs. 9G–K). Ultimately, our study identified a total of five genes as 412 

potential biomarkers associated with MRG score, revealing their potential significance in 413 

clinical applications. 414 

[Fig. 9] 415 

Expression of ACSL1, NDUFA2, CYP1B1, SLC11A1, and COX6B1 in GBM tissues  416 

To confirm the roles of ACSL1, NDUFA2, CYP1B1, SLC11A1, and COX6B1, GBM 417 

tissues and corresponding adjacent tissue samples from ten patients were used for testing. The 418 

expression levels of ACSL1, NDUFA2, CYP1B1, and SLC11A1 were significantly higher in 419 

GBM tissues compared to those in matched adjacent tissues (Figs. 10A–B). Conversely, the 420 

expression of COX6B1 was higher in the matched adjacent tissues. We performed 421 

immunohistochemical staining for these five genes to further validate these findings. The 422 

staining patterns of the tumor tissues and matched adjacent tissues are shown in Fig. 10C. 423 

Furthermore, the corresponding protein expression levels of these genes were consistent with 424 

this bioinformatic data, further confirming the role of these genes in tumor development. 425 

[Fig. 10] 426 

The influences of changes in ACSL1, NDUFA2, CYP1B1, SLC11A1, and COX6B1 427 

expression on GBM cell lines function 428 

  ACSL1, NDUFA2, CYP1B1, SLC11A1, and COX6B1 were expressed in GBM cells. 429 

U251 and U87 cell lines were chosen for functional verification experiments (Fig. S6). 430 

First, three types of siRNAs were designed to knock down the expression of ACSL1, 431 

NDUFA2, CYP1B1, and SLC11A1, and the plasmid was used to overexpress COX6B1. RT-432 

qPCR was used to determine the transfection efficiency and western blot was used to detect 433 

protein level of ACSL1, NDUFA2, CYP1B1, SLC11A1 and COX6B1 (Fig. S7). Second, the 434 

effects of the five genes on cell proliferation were investigated using CCK-8 and EDU 435 
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assays and colony formation experiments. As shown in Fig. 11 and Figs. S8–S11, 436 

downregulation of ACSL1, NDUFA2, CYP1B1, and SLC11A1 and upregulation of COX6B1 437 

markedly promoted the proliferation of GBM cells. Third, western blotting experiments 438 

demonstrated that interventions in gene expression decreased the level of E-cadherin and 439 

increased that of N-cadherin and vimentin in the GBM cell lines (Fig. 12). Moreover, the 440 

expression levels of cyclin D1, CDK4, and CDK6 were downregulated. These results 441 

indicate that ACSL1, NDUFA2, CYP1B1, SLC11A1, and COX6B1 are potentially related to 442 

endothelial-mesenchymal transition and cell cycle pathways in GBM cells. 443 

[Fig. 11] 444 

[Fig. 12] 445 

Discussion 446 

The metabolism of cancer cells is a potent factor in the tumor immune 447 

microenvironment, and the alteration of the metabolism is considered to be involved in 448 

cancer cells’ somatic evolution, metastasis, therapeutic response, and others [9, 10]. The 449 

metabolism within tumors is heterogeneous [35]. This heterogeneity has important 450 

associations with prognosis, tumor staging, and immunotherapy of patients with cancer. The 451 

heterogeneity in metabolic pathways and the relationship between the pathways and 452 

molecular subtypes as well as prognosis have been reported in various tumors [24, 36, 37], 453 

but have not been reported in detail in GBM. To identify the GBM subtypes associated with 454 

metabolic processes, GBM classification was established in this study based on 2752 MRGs 455 

screened from previous publications [16]. Through a cluster analysis of 153 GBM samples 456 

from the RNA-sequencing data of TCGA-GBM, three metabolism subtypes of GBM, 457 

including MC1, MC2, and MC3, were identified. In further analysis, we explored the 458 

prognosis value, metabolic signatures, immune infiltration, and immunotherapy sensitivity 459 

of the metabolism subtypes. Besides, the metabolism scoring model was established to 460 

measure the different metabolic characteristics of the patients, and five potential MRGs 461 

were identified based on metabolism-related co-expression module analysis. Laboratory-462 
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based validation tests further showed the expression of these MRGs in GBM tissues and 463 

how their expression influences cell function. 464 

We identified three metabolism GBM subtypes, named MC1, MC2, and MC3. These 465 

subtypes categorize GBM patients into groups with varying metabolic characteristics. The 466 

identified metabolism subtypes could potentially serve as valuable prognostic indicators for 467 

GBM patients, and may have implications for the development of targeted therapies tailored 468 

to specific metabolic subtypes. Notably, the MC1 subtype has 37 specific metabolic 469 

characteristics, the most compared to the other two subtypes. Additionally, it can thus be 470 

considered a metabolically active subtype. The hypermetabolic activity of MC1 cells can 471 

induce changes in the tumor microenvironment and result in hypoxia, nutrient depletion, 472 

acidity, and the generation of metabolites that can be toxic at increased concentrations [32]. 473 

These changes may, in turn, suppress the anti-tumor immune response and worsen the 474 

prognosis. For example, glycolysis, a specific metabolic characteristic of MC1, promotes 475 

GBM cell proliferation and tumorigenesis [38], and this is of great importance for the 476 

treatment strategies of patients with the MC1 subtype. Increased glycolysis is a critical 477 

hallmark of cancer, and it can promote cancer cell proliferation, aggressiveness, and drug 478 

resistance [7], and this might be the reason why MC1 has the worst prognosis. In addition, 479 

MC1 showed the lowest TIDE score, suggesting that patients with the MC1 subtype may 480 

benefit the most from immunotherapy. Therefore, the hypermetabolic activity of the MC1 481 

subtype could provide the basis for developing new therapeutic strategies based on the 482 

modulation of metabolism, and this would be very significant. Most metabolic 483 

characteristics of the MC2 subtype were associated with lipid, amino acid, and nucleotide 484 

metabolism. The results showed an obvious survival advantage for patients with the least-485 

specific metabolic characteristics of the MC3 subtype. One of these, oxidative 486 

phosphorylation, was previously implied to play a significant role in the survival of patients 487 

with GBM [39]. These findings contribute to a comprehensive understanding of the 488 

distinctive metabolic profiles within GBM subtypes and their implications for patient 489 

prognosis and therapeutic interventions. 490 

D
ow

nloaded from
 http://port.silverchair.com

/bioscirep/article-pdf/doi/10.1042/BSR
20231400/954789/bsr-2023-1400.pdf by guest on 20 M

arch 2024

Bioscience R
eports. This is an Accepted M

anuscript. You are encouraged to use the Version of R
ecord that, w

hen published, w
ill replace this version. The m

ost up-to-date-version is available at https://doi.org/10.1042/BSR
20231400



20 

 

To comprehensively understand the distinct metabolic subtypes of GBM, we 491 

investigated multiple aspects in addition to metabolic characteristics. In terms of clinical 492 

characteristics, the MC1 subtype had a higher proportion of patients younger than 60 than 493 

the MC2 subtype. This finding aligns with the conclusions obtained in a previous study, in 494 

which the 10-year survival rate was inversely related to age at diagnosis [40]. IDH 495 

mutations are considered the main determinants of the genomic landscape and, thus, 496 

biomarkers for subtype classification in diffuse gliomas [41]. A previous study [42] showed 497 

that IDH mutations predicted favorable disease outcomes with prolonged median survival in 498 

GBM. Similarly, we showed that the MC3 subtype contained the highest proportion of 499 

patients with IDH mutations and identified an association between MC3 and favorable 500 

survival outcomes.  501 

Analyzing mutation profiles and heterogeneity of tumors can help identify therapeutic 502 

targets and predict drug sensitivity, offering support for precision medicine practices [43, 503 

44]. Among these mutational profiles, Homologous recombination is a crucial DNA lesion 504 

repair mechanism [45]. Our results showed that homologous recombination defects were 505 

higher in the MC1 subtype than in the other MC2 subtypes. A previous study [46] 506 

highlighted the contribution of homologous recombination defects to radioresistance in 507 

glioma stem cells, which may play a role in GBM recurrence. Tumor purity and 508 

proliferation in the MC3 subtype were significantly lower than in the MC1 or MC2 509 

subtypes. Low tumor purity and related cellular heterogeneity are associated with an 510 

aggressive phenotype and poor prognosis in gliomas [47], and this is not in line with our 511 

findings, which may be due to discrepancies in the surgical sampling of the tissues [48]. As 512 

previously mentioned, the stemness index, which includes mRNAsi and EREG-mRNAsi, 513 

was used to investigate molecular heterogeneity within tumors [27]. mRNAsi, reflecting 514 

gene expression, was significantly associated with tumor histologic grade and overall 515 

survival in patients with glioma [49]. Survival duration is longer in patients with lower-516 

grade gliomas and low mRNAsi. This conclusion is consistent with our findings, which 517 

showed that the mRNAsi of the MC1 subtype was significantly lower than that of other 518 
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subtypes. EREG-mRNAsi is a stemness index generated using a set of stemness-related 519 

epigenetically regulated genes. In the previous study, the higher EREG-mRNAsi group had 520 

a higher mortality rate than the lower group [50]. However, our findings were in the 521 

opposite direction. The MC1 subtype, which had a smaller EREG-mRNAsi, showed a 522 

worse prognosis. These results presented the complex interplay of metabolism subtypes, 523 

both with mutation profiles and heterogeneity, in influencing patient outcomes, warranting 524 

further investigation into the underlying mechanisms. 525 

The tumor microenvironment, consisting of tumor cells and adjacent non-tumor cells 526 

[54], plays a crucial role in tumor biology. Scores of immune and stromal cells, the major 527 

components of the tumor microenvironment [55], were previously shown to be associated 528 

with GBM subtypes. Hence, we evaluated immune cell infiltration using five different 529 

algorithms between different metabolism subtypes of GBM in this study. The EPIC method 530 

showed a significantly higher proportion of CD4
+
 T cells in the MC3 subset than in other 531 

subtypes. CD4
+
 T cells were previously demonstrated to promote anti-tumor immunity and 532 

enhance immunotherapy through multiple pathways [51-53]. These results suggest that 533 

CD4
+
 T cells are associated with an improved prognosis, which aligns with our findings. 534 

The ESTIMATE evaluation showed that the MC1 subtype had the highest ImmuneScore, 535 

StromalScore, and ESTIMATEScore. The median survival of the low-score group was 536 

reported to be longer than that of the high-score group [56, 57]. Here, the MC1 subtype 537 

yielded the highest score and was associated with poor survival. In contrast, the MC2 538 

subtype yielded the highest TIDE score, suggesting that patients with this subtype are less 539 

likely to benefit from immunotherapy. These results indicate a higher-than-expected 540 

complexity of the anti-tumor function of immune cell variation in diffuse gliomas. This 541 

comprehensive analysis of GBM metabolism subtypes reveals the complexity of GBM 542 

metabolism and is of significant importance for the development of targeted treatments and 543 

personalized therapeutic strategies. The distinct metabolic profiles, genetic traits, and 544 

immune characteristics discerned within each subtype hold potential as biomarkers for 545 

patient stratification, guiding the choice of suitable therapeutic interventions. Furthermore, a 546 
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deeper understanding of the characteristics of these different metabolism subtypes identified 547 

in this study could provide valuable insights into the potential molecular mechanisms 548 

driving GBM progression, and potentially inform the development of new treatment 549 

methods aimed at each subtype. Further research is required to validate the functional 550 

relevance of these identified distinct features and their potential contribution to the 551 

pathogenesis of GBM. The ultimate goal is to translate these findings into clinical 552 

applications that improve patient prognosis. 553 

In order to better quantify the metabolism-related characteristics, we developed an 554 

MRG score. The development of MRG score can offer precise data guidance for clinical 555 

decision-making, thereby translating research findings into clinically meaningful guidance. 556 

Furthermore, we analyzed the correlation between the MRG score and immune infiltration 557 

and metabolic processes. Accordingly, the enrichment scores of most immune cells and the 558 

MRG score of the MC1 subtype were higher than those of other subtypes. Further analysis 559 

revealed that the MRG score was significantly and positively correlated with immature 560 

dendritic cells, NK T cells, central memory CD4 T cells, central memory CD8 T cells, and 561 

plasmacytoid dendritic cells and negatively correlated with CD56dim NK cells, monocytes, 562 

and type 17 T-helper cells. We identified a positive correlation between the MRG score and 563 

metabolic pathways involved in galactose, retinoic acid, and retinol metabolism. In contrast, 564 

a negative correlation was identified between the MRG score and the metabolic pathways of 565 

pyrimidine biosynthesis, glyoxylate, and dicarboxylate metabolism. The driving factors 566 

behind these correlations are currently unclear and require further research into their 567 

underlying mechanisms.  568 

Based on co-expression network analysis, we identified five MRGs (COX6B1, ACSL1, 569 

NDUFA2, CYP1B1, and SLC11A1) whose expression correlated with survival outcomes. 570 

These five genes are potential biomarkers associated with the MRG score. Laboratory tests 571 

were performed to validate this correlation. The results revealed the significant roles of 572 

COX6B1, ACSL1, NDUFA2, CYP1B1, and SLC11A1 in GBM, with the protein expression 573 

levels consistent with bioinformatic data and alterations resulting in changes in cell 574 
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proliferation. The identified genes could potentially be linked to the endothelial-575 

mesenchymal transition pathway and the cell cycle in GBM cells, implying that 576 

manipulation of these genes could lead to innovative therapeutic strategies. Our findings 577 

suggest a new avenue for disrupting tumor progression and highlight the scope for targeted 578 

gene therapy in GBM management. Most of the previous studies on these genes were not 579 

focused on GBM. COX6B1, a mitochondrial gene, was previously reported to be associated 580 

with encephalomyopathy, hydrocephalus, and cardiomyopathy [58, 59]. However, COX6B1 581 

has rarely been highlighted in tumors. Since COX6B1 is the only protective gene 582 

investigated here, further research into the associations of this gene with GBM may be 583 

highly beneficial. ACSL1, associated with lipid metabolism [60], is an oncogene whose 584 

significance in many cancers is well established [61]. NDUFA2 is a mitochondrial gene 585 

[62]. Wang et al. [62] reported an increased expression of NDUFA2 in the cytoplasm of 586 

paraganglioma cells. CYP1B1 is involved in the metabolism of xenobiotics and endogenous 587 

substances and exhibits higher expression in tumor cells than in the surrounding normal 588 

tissues [63]. A previous study indicated that SLC11A1 can modulate macrophage activation 589 

[64]. The results advanced our understanding of the molecular mechanisms governing GBM 590 

proliferation and development. These genes may be used as biomarkers to predict treatment 591 

outcomes and patient prognosis [65], and the functional role of these genes deserves further 592 

investigation. 593 

The lack of clinical data and supporting experimental evidence were major limitations 594 

of this study. Although we validated the GBM metabolism subtype classification in 595 

independent cohorts, additional clinical data may still be required to establish a more 596 

reliable classification procedure. Moreover, the biological functions of the five MRGs need 597 

to be explored in future experimental studies. 598 

Conclusions 599 

In conclusion, we classified patients with GBM into three metabolism subtypes: MC1, 600 

MC2, and MC3. The MC1 subtype has the worst prognosis and the most metabolic 601 
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characteristics among them. More studies regarding therapeutic strategies targeting cancer 602 

metabolism, especially for patients of the MC1 subtype, are warranted. These findings have 603 

implications for future research and treatment, particularly for the five MRGs and their role 604 

in survival outcomes. Understanding the metabolic and immunological characteristics of the 605 

GBM subtypes identified here will facilitate the development of new clinical management 606 

and treatment strategies.  607 
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Figure legends 832 

Figure 1. Metabolism subtypes of GBM. (A) CDF curve based on the TCGA-GBM cohort 833 

data. (B) CDF delta area curve based on the TCGA-GBM cohort data. The delta area curve 834 

of consensus clustering indicated the relative change in the area under the CDF curve for 835 

each category number k compared with k-1. The horizontal axis represents the category 836 

number k, and the vertical axis represents the relative change in the area under the CDF 837 

curve. (C) Clustering heatmap based on the TCGA-GBM sample data with consensus k = 3. 838 

(D) Kaplan–Meier curve for overall survival among subtypes in the TCGA cohort. (E) 839 

Kaplan–Meier curve for progression-free survival among subtypes in the TCGA cohort. (F) 840 

Age distribution of metabolism subtypes in the TCGA cohort. (G) Sex distribution of 841 

metabolism subtypes in the TCGA cohort. (H) IDH mutation status distribution of 842 
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metabolism subtypes in the TCGA cohort. (I) 1p/19q codeletion status distribution of 843 

metabolism subtypes in the TCGA cohort. (J) MGMT promoter methylation status 844 

distribution of metabolism subtypes in the TCGA cohort. *p <0.05. CDF, cumulative 845 

distribution function; GBM, glioblastoma; TCGA, The Cancer Genome Atlas; IDH, 846 

isocitrate dehydrogenase; MGMT, O6-methylguanine-DNA methyltransferase 847 

  848 

Figure 2. Metabolism signatures corresponding to subtypes 849 

 850 

Figure 3. Genomic changes of metabolism subtypes in the TCGA-GBM cohort. Aneuploidy 851 

score (A), fraction altered (B), number of segments (C), tumor mutation burden (D), and 852 

homologous recombination defects (E) were analyzed. (F) Analysis of somatic mutations 853 

and copy number variants in metabolism subtypes using Fisher’s test. *p <0.05; **p <0.01; 854 

***p <0.001; ****p <0.0001. TCGA-GBM, The Cancer Genome Atlas-Glioblastoma 855 

 856 

Figure 4. Heterogeneity and immunotherapy response across metabolism subtypes. (A) 857 

Analysis of purity in metabolism subtypes. (B) Analysis of ploidy in metabolism subtypes. 858 

(C) Analysis of intratumor heterogeneity in metabolism subtypes. (D) Analysis of 859 

proliferation in metabolism subtypes. (E) Analysis of mRNAsi in metabolism subtypes. (F) 860 

Analysis of EREG-mRNAsi in metabolism subtypes. (G) TIDE scores of metabolism 861 

subtypes in the TCGA cohort. (H) T-cell dysfunction scores of metabolism subtypes in the 862 

TCGA cohort. (I) T-cell exclusion scores of metabolism subtypes in the TCGA cohort. (J) 863 

Predicted immunotherapy response status of metabolism subtypes in the TCGA cohort. 864 

EREG-mRNAsi, epigenetic-regulation-based mRNA expression-based stemness index; 865 

TCGA, The Cancer Genome Atlas 866 

 867 

Figure 5. Construction of the MRG score. (A) PCA clustering of the TCGA samples with 868 

different metabolism subtypes. (B) The difference in the MRG score between subtypes in the 869 

TCGA dataset. (C) The difference in the metabolism subtype feature scores between subtypes 870 
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in the CGGA dataset. (D) ROC curve for the MRG score in the TCGA dataset. (E) ROC curve 871 

for the MRG score in the CGGA dataset. PCA, principal component analysis; ROC, receiver 872 

operating characteristics; CGGA, Chinese Glioma Genome Atlas; TCGA, The Cancer 873 

Genome Atlas; MRG, metabolism-related gene 874 

 875 

Figure 6. Correlation of the MRG score with immune infiltration and metabolic processes. 876 

(A) The abundance of 28 immune cells in metabolism subtypes in the TCGA cohort. (B) 877 

Correlation of MRG score and abundance of 28 immune cells in the TCGA cohort. (C) 878 

Correlation of MRG score and multiple metabolic pathways. CGGA, Chinese Glioma 879 

Genome Atlas; TCGA, The Cancer Genome Atlas; MRG, metabolism-related gene 880 

 881 

Figure 7. Identification of the metabolism-related co-expression module. (A) The sample 882 

clustering tree detected no apparent outliers. (B) Analysis of the scale-free fit index for 883 

various soft-thresholding powers (β). (C) Analysis of the mean connectivity for various soft-884 

thresholding powers. (D) Dendrogram of all MRGs clustered based on a dissimilarity measure 885 

(1-TOM). (E) Profile of module eigengenes in metabolism subtypes. (F) Correlations of 886 

modules and clinical traits. (G) Scatter diagram of module membership vs. gene significance 887 

for MC1 in the blue module. (H) Scatter diagram for module membership vs. gene 888 

significance for MC3 in the red module. (I) Scatter diagram for module membership vs. gene 889 

significance for MC1 in the yellow module. (J) Scatter diagram for module membership vs. 890 

gene significance for MC1 in the black module 891 

 892 

Figure 8. Correlation analysis of module eigengenes and enrichment analysis of modules. (A) 893 

The overall correlation between the MRG score and module eigengenes. (B) Correlation 894 

between the MRG score and blue module eigengenes. (C) Correlation between the MRG 895 

score and red module eigengenes. (D) Correlation between the MRG score and yellow 896 

module eigengenes. (E) Correlation between the MRG score and black module eigengenes. 897 

(F) Enrichment analysis of the MRGs in the blue module. (G) Enrichment analysis of the 898 

D
ow

nloaded from
 http://port.silverchair.com

/bioscirep/article-pdf/doi/10.1042/BSR
20231400/954789/bsr-2023-1400.pdf by guest on 20 M

arch 2024

Bioscience R
eports. This is an Accepted M

anuscript. You are encouraged to use the Version of R
ecord that, w

hen published, w
ill replace this version. The m

ost up-to-date-version is available at https://doi.org/10.1042/BSR
20231400



37 

 

MRGs in the red module. (H) Enrichment analysis of the MRGs in the yellow module. (I) 899 

Enrichment analysis of the MRGs in the black module. MRG, metabolism-related gene 900 

 901 

Figure 9. Identification of MRGs. (A) PPI network of the key genes in the modules. The color 902 

of the nodes represents different modules. (B) Degree of the network. (C) Closeness of the 903 

network. (D) Betweenness of the network. (E) Eigenvector of the network. (F) Venn diagram 904 

of the top-half gene intersection. Kaplan–Meier survival curves of (G) COX6B1, (H) ACSL1, 905 

(I) NDUFA2, (J) CYP1B1, and (K) SLC11A1. MRG, metabolism-related gene; PPI, protein-906 

protein interaction 907 

 908 

Figure 10. Expression of related genes in GBM tissues. (A) The protein expression of 909 

COX6B1, ACSL1, CYP1B1, NDUFA2, and SLC11A1 in GBM tissues. (B) Quantification of 910 

protein expression. (C) Immunohistochemistry of the expression of the five genes in GBM 911 

cases. Representative images of IHC staining show the expression of COX6B1, ACSL1, 912 

CYP1B1, NDUFA2, and SLC11A1 in tumor tissues (right panel) and the matched adjacent 913 

tissues (left panel). ***p <0.001; ****p <0.0001. GBM, glioblastoma 914 

 915 

Figure 11. Downregulation of ACSL1 suppresses proliferation in vitro. (A) Silencing 916 

efficiency of ACSL1 in U251. (B) Cell viability assay of U251. (C) Colony formation of 917 

U251. (D) EdU assay of U251. **p <0.01; ***p <0.001; ****p <0.0001 918 

 919 

Figure 12. Effects on the endothelial-mesenchymal transition and cell cycle of GBM cells 920 

after regulating the expression of five genes. (A) The protein expression of E-cadherin, N-921 

cadherin, vimentin, cyclinD1, CDK4, and CDK6. (B) Quantification of (A). *p <0.05; **p 922 

<0.01; ***p <0.001; ****p <0.0001. GBM, glioblastoma 923 

 924 
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Supplementary legends 925 

Figure S1. Metabolism subtypes of GBM. (A) CDF curve based on CGGA-GBM cohort 926 

data. (B) CDF delta area curve based on the CGGA-GBM cohort data. (C) Clustering 927 

heatmap based on data from the CGGA-GBM samples with consensus k = 3. (D) Kaplan–928 

Meier curve for overall survival among subtypes in the CGGA cohort. (E) Age distribution 929 

of metabolism subtypes in the CGGA cohort. (F) Gender distribution of metabolism 930 

subtypes in the CGGA cohort. (G) IDH mutation status distribution of metabolism subtypes 931 

in the CGGA cohort. (H) 1p/19q codeletion status distribution of metabolism subtypes in 932 

the CGGA cohort. (I) MGMT promoter methylation of metabolism subtypes in the CGGA 933 

cohort. *p <0.05. CDF, cumulative distribution function; GBM, glioblastoma; CGGA, 934 

Chinese Glioma Genome Atla; IDH, isocitrate dehydrogenase; MGMT, O6-methylguanine-935 

DNA methyltransferase 936 

 937 

Figure S2. Immune cell proportions across metabolism subtypes. (A) Immune cell proportions 938 

calculated using EPIC method. (B) Immune cell proportions calculated using MCPcounter. 939 

(C) Immune cell proportions calculated using ESTIMATE. (D) Immune cell proportions 940 

calculated using CIBERSORT. (E) Immune cell proportions calculated using xCell method. 941 

 942 

Figure S3. Heatmap of immune-associated genes constructed using immune infiltration 943 

software (EPIC, MCPcounter, ESTIMATE, CIBERSORT, xCell) in the TCGA-GBM cohort 944 

 945 

Figure S4. Immunotherapy response across metabolism subtypes. (A) TIDE scores of 946 

metabolism subtypes in the CGGA cohort. (B) T-cell dysfunction scores of metabolism 947 

subtypes in the CGGA cohort. (C) T-cell exclusion scores of metabolism subtypes in the 948 

CGGA cohort. (D) Predicted immunotherapy response status of metabolism subtypes in the 949 

CGGA cohort. CGGA, Chinese Glioma Genome Atlas 950 

 951 

Figure S5. The Kaplan–Meier survival curves of 13 hub MRGs 952 
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 953 

Figure S6. RT-qPCR was used to detect the expression of the 5 MRGs in GBM cell lines. (A) 954 

the expression of COX6B1. (B) the expression of ACSL1. (C) the expression of CYP1B1. (D) 955 

the expression of NDUFA2. (E) the expression of SLC11A1. 956 

 957 

Figure S7. The knockdown and overexpression efficiency of proteins. (A) The knockdown 958 

and overexpression efficiency of each protein in Figure 12. (B) The knockdown efficiency of 959 

ACSL1 in U251. **p <0.01; ***p <0.001; ****p <0.0001. 960 

 961 

Figure S8. Downregulating CYP1B1 suppresses proliferation in vitro. (A) Silencing 962 

efficiency of CYP1B1 in U87. (B) Cell viability assay of U87. (C) Colony formation of U87. 963 

(D) EdU assay of U87. **p <0.01; ***p <0.001; ****p <0.0001. 964 

 965 

Figure S9. Downregulating NDUFA2 suppresses proliferation in vitro. (A) Silencing 966 

efficiency of NDUFA2 in U87. (B) Cell viability assay of U87. (C) Colony formation of U87. 967 

(D) EdU assay of U87. *p <0.05; **p <0.01; ***p <0.001; ****p <0.0001. 968 

 969 

Figure S10. Downregulating SLC11A1 suppresses proliferation in vitro. (A) Silencing 970 

efficiency of SLC11A1 in U251. (B) Cell viability assay of U251. (C) Colony formation of 971 

U251. (D) EdU assay of U251. **p <0.01; ***p <0.001; ****p <0.0001. 972 

 973 

Figure S11. Upregulating COX6B1 suppresses proliferation in vitro. (A) Silencing efficiency 974 

of COX6B1 in U87. (B) Cell viability assay of U87. (C) Colony formation of U87. (D) EdU 975 

assay of U87. *p <0.05; **p <0.01; ***p <0.001. 976 

 977 

Table S1. The qRCR related primers 978 

 979 

Table S2.  Target sequences of small interfering RNA 980 

D
ow

nloaded from
 http://port.silverchair.com

/bioscirep/article-pdf/doi/10.1042/BSR
20231400/954789/bsr-2023-1400.pdf by guest on 20 M

arch 2024

Bioscience R
eports. This is an Accepted M

anuscript. You are encouraged to use the Version of R
ecord that, w

hen published, w
ill replace this version. The m

ost up-to-date-version is available at https://doi.org/10.1042/BSR
20231400



40 

 

 981 

Table S3.  The interaction confidence score of the protein–protein interaction network 982 
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