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Abstract   46 

 47 

Breast cancer continues to affect millions of women worldwide, and the number of new cases 48 

dramatically increases every year. The physiological causes behind the disease are still not fully 49 

understood. One in every 100 cases can occur in men, and although the frequency is lower than 50 

among women, men tend to have a worse prognosis of the disease. Various therapeutic 51 

alternatives to combat the disease are available. These depend on the type and progress of the 52 

disease, and include chemotherapy, radiotherapy, surgery, and cancer immunotherapy. However, 53 

there are several well-reported side effects of these treatments that have a significant impact on 54 

life quality, and patients either relapse or are refractory to treatment. This makes it necessary to 55 

develop new therapeutic strategies. One promising initiative are bioactive peptides, which have 56 

emerged in recent years as a family of compounds with an enormous number of clinical 57 

applications due to their broad spectrum of activity. They are widely distributed in several 58 

organisms as part of their immune system. The antitumoral activity of these peptides lies in a 59 

nonspecific mechanism of action associated with their interaction with cancer cell membranes, 60 

inducing, through several routes, bilayer destabilization and cell death. This review provides an 61 

overview of the literature on the evaluation of cationic peptides as potential agents against breast 62 

cancer under different study phases. First, physicochemical characteristics such as the primary 63 

structure and charge are presented. Secondly, information about dosage, the experimental model 64 

used, and the mechanism of action proposed for the peptides are discussed. 65 
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Introduction: the need for new therapeutic options for breast cancer 80 

Cancer is defined as a broad group of diseases characterized by uncontrolled and abnormal cell 81 

growth, which frequently invades adjacent organs or tissues and spreads into the body. The latter 82 

feature is known as metastasis and is a principal cause of death from this malignancy. Cancer is 83 

the first or second leading cause of death before the age of 70 years in 112 of 183 countries [1]. 84 

Breast cancer is the world’s most commonly diagnosed malignancy, according to statistics 85 

released by the International Agency for Research on Cancer (IARC) in December 2020 [2]. It 86 

can occur in women of any age, including cases with no identifiable cancer risk factors. 87 

According to statistics from the World Health Organization (WHO), more than 2.3 million 88 

women were diagnosed with breast cancer in 2020, while there were 685.000 deaths globally [3]. 89 

Male breast cancer is considered a rare disease, accounting for around 1% of all breast cancer 90 

cases, but, like female breast cancer, its incidence has increased over the past 25 years [4]. The 91 

breast comprises glands, including the breast lobes and breast ducts, whose function is to produce 92 

milk during the lactation period. The lobes are connected by the mammary ducts, which carry 93 

milk to the nipple. The glands and ducts of the breast are embedded in adipose tissue and 94 

connective tissue, which, together with lymphatic tissue, form the breast. The pectoral muscle, 95 

located between the ribs and the breast, acts as a retaining wall. Finally, the skin covers and 96 

protects the entire breast structure [5]. 97 

Breast cancer can be classified as carcinoma or sarcoma, depending on which cells become 98 

cancerous. Carcinomas are a type of breast cancer that involves the glandular epithelium, and 99 

sarcomas arise from the stromal components of the breast, including myofibroblasts and blood 100 

vessel cells, in addition, these cancers are rare and uncommon (<1% of the cases). However, in 101 

some cases, a breast tumor can be a combination of different cell types [6]. Carcinomas are the 102 

most common types of breast cancer that can be identified according to their invasiveness relative 103 

to the site of the primary tumor. The two most common types are infiltrating ductal carcinoma, 104 

where cancer cells multiply outside the ducts and invade other parts of the breast tissue, and 105 

infiltrating lobular carcinoma, in which cancer cells spread from the lobules to nearby tissues [7]. 106 

Ductal carcinoma is the most frequent breast cancer (50%-75% of patients), followed by invasive 107 

lobular carcinoma (5%-15% of patients) [8, 9]. At the early stage of the pathology, the malignant 108 

cells are confined to the duct, do not cause symptoms, and have minimal metastasis potential. 109 

The physiological causes behind breast cancer are complex and not entirely understood. Breast 110 

cancer is a heterogeneous disease comprising multiple entities associated with distinctive 111 

histological and biological features [10], including hormone receptor status and expression [11], 112 

clinical presentations and behaviors, and responses to therapy [12-14]. However, certain factors 113 
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increase the risk of the disease, including family and reproductive history, prolonged 114 

consumption of oral contraceptives, harmful use of alcohol and tobacco, increasing age, obesity, 115 

radiation exposure, and postmenopausal hormone therapy. Meanwhile, physical activity is 116 

considered protective [15-17]. The most frequent symptoms of breast cancer are a breast lump, 117 

change in nipple appearance; alteration in size, shape, or appearance of a breast; and redness or 118 

other alterations in the skin surrounding the nipple (areola).  119 

The WHO Global Breast Cancer Initiative (GBCI) prevention and detection programs have 120 

succeeded in reducing breast cancer mortality; achieving an annual breast cancer mortality 121 

reduction of 2-4% per year, representing thousands of lives saved [18]. Unfortunately, 122 

epidemiological data project that the number of new cases will persistently increase over the next 123 

two decades. According to the IARC, between 2020 and 2040, 3.2 million women will be 124 

diagnosed with breast cancer, and almost 1 million will die [19]. The probable outcomes of 125 

patients depend on the country and the strength of the health system, third-world countries having 126 

poorer outcomes in respect of early detection, treatment quality, and survivorship care [20-24]. 127 

Considering this, health programs aimed at improving the detection of signs and symptoms of 128 

early breast cancer, so that patients are referred to diagnostic services in the first stages of the 129 

disease, are essential in order to reduce the number of cases [25]. Breast cancer treatments can be 130 

highly effective when the disease is identified early. However, as the disease progresses, 131 

malignant cells invade the surrounding tissues, lymph nodes, and multiple organs in the body, 132 

including the lungs, liver, brain, and bones. Once metastasis has occurred, the possibility of 133 

patient survival is reduced [26-28]. Therefore, early detection of breast cancer is vital for the 134 

management and prediction of breast cancer evolution.  135 

Breast cancer treatments can be local or systemic, treatment selection depends on several factors. 136 

During the diagnostic process, it is essential to determine the characteristics of the tumor and the 137 

number of affected nodes to avoid recurrence of the disease [29]. In the past, radical mastectomy 138 

was traditionally the treatment for early-detected cases of of invasive breast cancer. This allowed 139 

local control of the disease, since the goal of this treatment was to remove the affected area, 140 

avoiding metastasis. However, breast-conserving surgery (also called a lumpectomy, 141 

quadrantectomy, or partial mastectomy) is considered a less aggressive option, prioritizing the 142 

preservation of healthy breast tissue that is not affected by the disease [30]. Although axillary 143 

lymph nodes are usually compromised in breast cancer, their evaluation provides valuable 144 

information about the stage and prognosis of the disease. In the sentinel node biopsy (SNB), a 145 

dye or a radioactive tracer is used to detect the lymph nodes under the arm involved in the spread 146 

of cancer from the breast. This procedure involves the removal of one or several lymph nodes, 147 
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lowering the risk from the surgery, lymphedema and side effects like pain, numbness, swelling, 148 

and decreased mobility of the affected arm [31].  149 

Radiation therapy is based on the use of high-energy ionizing radiation to destroy cancer cells 150 

and reduce the tumor size. There are two primary forms of radiotherapy: external beam radiation, 151 

which is directed at the outside of the body, and internal radiation, also referred to as 152 

brachytherapy, in which the radioactive source is delivered inside the body for a short period [32, 153 

33]. Radiotherapy plays a significant role in treating breast cancer. It can be used as a sole 154 

treatment in order to permanently eradicate the primary tumor and regional node metastasis, or in 155 

combination with surgery, in both cases preoperatively. It can also be used to inactivate a large 156 

proportion of clonogenic tumor cells and shrink inoperable or borderline operable tumors. 157 

Finally, it can be used postoperatively, to eliminate residual subclinical cancer deposits on the 158 

tumor bed or positive margins remaining in the tissues surrounding the resected area. However, 159 

radiation therapy in metastatic disease is almost entirely reserved for the palliation of symptoms 160 

[34]. 161 

Modern approaches have incorporated new techniques based on improved understanding of 162 

breast cancer, in order to optimize and individualize breast cancer treatment. Gene expression 163 

techniques have made it possible to differentiate types of intrinsic breast cancer genes, which has 164 

changed approaches to the disease from being based on tumor burden to a focus on specific 165 

biological characteristics [6, 35]. The main differences that breast cancer cells express and define 166 

in the treatment are the human epidermal growth factor receptor 2 (HER2-positive), hormone 167 

receptor-positive breast cancer, BRCA gene mutations, and triple-negative breast cancer [36].  168 

Trastuzumab, pertuzumab, and margetuximab are monoclonal antibodies that bind to the HER2 169 

protein on cancer cells, preventing the cells from growing. Therapy with HER2-targeted 170 

treatments combined with chemotherapy, has led to an improvement in the clinical outcomes of 171 

patients [37]. Targeted therapy for hormone receptor-positive breast cancer includes palbociclib, 172 

ribociclib, and abemaciclib, which block CDK4 and CDK6. In hormone receptor-positive breast 173 

cancer cells, blocking these proteins helps stop proliferation of the cells; which can delay the 174 

progression of cancer [38]. Although different types of medication are available, they have a 175 

different mechanism of action to chemotherapy drugs and frequently have side effects. Common 176 

targets in breast cancer include olaparib, talazoparib and PARP inhibitors, which have been 177 

studied in women with breast or ovarian cancers associated with deleterious germline mutations 178 

in BRCA1 and BRCA2. In terms of median progression-free survival, they have proven efficacy  179 

[39]. The cancer cells in triple-negative breast cancer (TNBC) lack estrogen and progesterone 180 

receptors and overproduce the HER2 protein. Some drugs, such as pembrolizumab and iniparib, 181 
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are currently in clinical trials with promising effects in TNBC, but serious adverse events have 182 

been reported [40].  Although therapies directed at these receptors are administered to decrease 183 

their activity, there are limitations related to adverse effects.For example, in the case of endocrine 184 

therapy, significant side effects are menopause and arthropathy; while less common but 185 

potentially fatal side effects are are pulmonary embolism, endometrial cancer, and osteoporotic 186 

fracture [41]. The main limitations of monoclonal antibodies are their size and high molecular 187 

weight, which are related to their tissue penetration properties. This hinders their internalization 188 

into solid tumors [34]. Furthermore, nonspecific uptake of these molecules has been reported in 189 

parts of the endothelial reticulum system such as the liver, spleen, and bone marrow [42, 43]. 190 

The complexity of cancer and the burden it represents for the health system necessitates the 191 

intervention of multiple areas of science focused on the search for new breast cancer treatment 192 

strategies. Current therapeutic options involve long treatments with numerous side effects that 193 

affect the quality of life of patients. Therefore, the search for new antiproliferative agents 194 

continues to be a priority. These compounds must be capable of eliminating cancer cells and be 195 

selective enough not to cause damage to the healthy cells of the tissue surrounding the lesions. 196 

Therefore, it is necessary to develop new therapeutic strategies based on systems that increase 197 

selectivity for use individually or synergistically with conventional breast cancer procedures. 198 

These can offer patients more selective and less cytotoxic alternatives, thus improving their 199 

quality of life.  200 

 201 

Cationic peptides as agents against breast cancer 202 

Several studies have shown that cancer cells develop multidrug resistance to chemotherapeutics 203 

[44-47]. Changes are induced at the cellular level that include overexpression of enzymes and 204 

drug transporters capable of reducing the concentration of chemotherapeutics in the cytoplasm, 205 

allowing the cancer cells to repair damage caused by chemotherapy [48]. To solve this problem, 206 

it is necessary to explore and evaluate new molecules that are capable of eliminating cancer cells 207 

while having low levels of cytotoxicity against the cells of the healthy tissue surrounding the 208 

lesions. A promising possibility in this respect are bioactive cationic peptides (BCPs), which have 209 

emerged indirectly as an alternative for cancer treatment. BCPs are widely distributed in nature 210 

and are produced by almost all organisms as part of the nonspecific immune system [49-54]. 211 

These molecules were initially studied as potential substitutes for antibiotics. However, they have 212 

been shown to have a broad spectrum of target organisms ranging from viruses to parasites [55-213 

58], and have the potential to treat polymicrobial biofilms [59, 60]. BCPs are small molecules 214 

composed of up to 50 amino acids, making chemical synthesis and modification relatively easy. 215 
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Moreover, although they vary significantly in structure and sequence, they share some general 216 

characteristics, being amphipathic and containing a high proportion of cationic and hydrophobic 217 

residues [56, 61, 62]. BCPs have been classified by their sequence and structure as either anionic 218 

or cationic, and rich in cysteine forming disulfide bonds, alpha-helices, β-sheets, cyclic, and 219 

linear (Figure 1) [63]. There is a wide diversity of BCPs, since their primary structures are very 220 

heterogeneous, leading to varied secondary structures. The vast majority of reported biologically 221 

active peptides are amphipathic and cationic at physiological pH, with charges from +3 +9 [64, 222 

65]. 223 

 224 

 225 

Figure 1. Structural diagram of representative BCPs generated using PyMOL. Indolicidin (Protein 226 
Data Bank ID: IG89), Human Cathelicidin LL-37 (Protein Data Bank ID: 2K6O), Human β-Defensin-6 227 
(Protein Data Bank ID:1ZMQ), and Insect Defensin A (Protein Data Bank ID: 1ICA). The colors 228 
represent the secondary structures. 229 
 230 

 231 

Different mechanisms of action have been proposed to explain how bioactive peptides exert their 232 

activity, all based on complex molecular interactions. However, the biological action of all of 233 

these mechanisms primarily involves altering the membrane of the target cells [66]. Therefore, 234 

peptides have become a promising potential agent in breast cancer treatment, since they reduce 235 

the generation of resistance mechanisms by cancer cells. Chemotherapeutics must enter cancer 236 

cells to exert their action, allowing the cells to develop resistance mechanisms to combat their 237 

effect. In contrast, one of the advantages of BCPs is that they act from outside the membrane, a 238 
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mechanism that cannot be compensated for by tumor cells [67, 68]. The mechanism of action of 239 

BCPs is composed of several stages, the first of which is mediated by electrostatic interactions 240 

between the positively charged residues of the peptide and the negatively charged groups of the 241 

tumor membrane [69]. After that, the hydrophobic interactions between the acyl chains of lipid 242 

membranes and non-polar residues then allow the incorporation of the peptide into the bilayer 243 

through various modes including the barrel-stave, carpet detergent, and toroidal pore modes [63, 244 

70] (Figure 2). Although the later stages are based on the peptide's ability to induce changes in 245 

the membrane, altering its structural properties and compromising its integrity, the first stage is 246 

considered fundamental in explaining the biological activity of the peptides and their potential 247 

selectivity [71]. Therefore, peptides induce instability and structural and physicochemical 248 

changes in the lipid bilayer, leading to cell death [72-74].  249 

 250 

 251 

252 
Figure 2. Schematic representation of the principal mechanism of action of BPCs. Most peptides do 253 
not have a specific secondary structure in solution. Instead, the interaction with the membrane induces a 254 
conformational change in the peptide (A). After this electrostatic interaction, peptides disrupt the cell 255 
membrane through different modes of action. The most recognized modes are B) carpet detergent-like 256 
model, B) barrel stave and D) toroidal pore. 257 
 258 
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 259 

Furthermore, the higher phosphatidylserine (PS) concentration of cancer cell membranes favors 260 

electrostatic interaction between them and the peptides, unlike the membranes of normal cells 261 

that are considered neutral because they are mainly made up of zwitterionic lipids (Figure 3) [75, 262 

76]. Additionally, malignant cells are more fluid, and have lower cholesterol content than normal 263 

cells. Their lower cholesterol content makes malignant cells more susceptible to cell lysis by 264 

facilitating the destabilization of the membrane [69]. Leuschner et al. (2004) studied how the 265 

cholesterol content of eukaryotic cells acts as a protective factor against the cytolytic effect of 266 

BCPs [77, 78]. Finally, several authors have reported that cancer cells present microvilli or cell 267 

membrane projections [79-81]. This would probably increase the surface area of cancer cells 268 

compared to normal cell membranes, which could in turn lead to increased interaction with BCPs 269 

[82]. However, this theory is still not proven. All these characteristics play a fundamental role in 270 

the selectivity of BCPs for malignant cells.  271 

 272 

 273 

Figure 3. Schematic representation of non-tumoral and tumoral cell membranes. The representation 274 
is based on the main differences in the outer membranes, including fluidity, cholesterol content, and lipid 275 
composition. Regarding the lipid composition, the non-tumoral membrane (left) is mainly composed of 276 
neutral lipids that do not interact with the BCPs. In contrast, the tumoral membranes (right) contain 277 
negatively charged lipids that interact with the positive residues of the BCPs, facilitating the recognition 278 
of cancer cells. 279 
 280 

Anticancer activities of Bioactive Cationic Peptides 281 

BCPs exhibit a wide range of anticancer activities. The main effects observed in various studies 282 

of the in vitro and in vivo models of breast cancer are cytotoxicity, antiproliferative activity, 283 
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induction of cell death by necrosis or apoptosis, and inhibition of cell migration (Figure 4). The 284 

results of extensive research on the activity of cationic peptides against breast cancer are 285 

summarized in Table 1. An initial experimental approach model to evaluate the biological effects 286 

of BCPs against breast cancer includes in vitro cell-based analyses. Studies using cell line 287 

cultures have advantages, including easy maintenance, reproducibility of toxicity responses, and 288 

vast commercial availability of different cell types that allow the comparison of results between 289 

different treatment groups. Consequently, several breast cancer cell lines have been widely used 290 

for breast cancer modeling. Nevertheless, as shown in Table 1, MCF-7 and MDA-MB-231 cell 291 

lines are the most frequently-employed in the associated studies [83].  292 

Cytotoxic effect on MCF-7 or MDA-MB-231 cancer cell lines has been reported for the cationic 293 

peptides Bovine lactoferricin [84], its Bovine variant lactoferricin 6 [85], pBmje [86], Magainin 294 

II [87], the Lysine-substituted VmCT1 analogs [88], IW13 [89], Peptoide 1 [90], 295 

Pseudhymenochirin-1Pa and Pseudhymenochirin-2Pa [91]. Moreover, cell proliferation assays 296 

revealed that Kale antifungal peptide impaired the proliferation of MCF-7 cells. In addition, 297 

ERα17p peptide decreased the number of colonies formed by different cancer cells, indicative of 298 

an antiproliferative effect [92]. However, the authors of these studies concluded that the peptides 299 

had a dose-dependent cytotoxic or antiproliferative activity without thoroughly investigating the 300 

mechanism of death induction. 301 

 302 

 303 
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Figure 4. Schematic representation of BCP mechanism of action against breast cancer cells. A) 304 
Membrane disruption, B) necrosis, C) apoptosis, D) cell cycle arrest,  E) mitochondria depolarization, F) 305 
DNA fragmentation, G) tumor growth reduction, and H) inhibition of cell migration. 306 
 307 

Other researchers evaluated the differential response to BCPs in MCF-7 and MDA-MB-231 cell 308 

lines due to their important phenotypic variations. MCF-7 is ER + (estrogen receptor-positive) 309 

and PR+ (progesterone receptor-positive). On the other hand, MDA-MB-231 is ER− (negative 310 

estrogen-receptor) and PR− (negative progesterone-receptor). In general, treatments with BCPs 311 

significantly decreased the viability of both types of cells in a dose-dependent manner, and, as is 312 

evident in IC50 values, receptor-positive MCF-7 cells were more sensitives to peptide treatments 313 

than receptor-negative cells (MDA-MB-231) [92-96].  Additional evidence reported by Duffy et 314 

al. showed that melittin was significantly more potent against HER2-enriched breast cancer cells. 315 

Cytotoxic effect was related to the suppression of activation of EGFR and HER2 by interfering 316 

with the phosphorylation of these receptors in the plasma membrane of breast carcinoma cells 317 

[97]. 318 

As described previously in this review, the mechanism of action of BCPs in targeting cell 319 

membranes is based on electrostatic interactions between the cationic residues on the peptide and 320 

anionic lipids on cancer cell membranes. In this respect, several authors have suggested that the 321 

mode of action is probably dependent on membrane disruption and subsequent induction of 322 

necrosis, as was reported for breast cancer cells treated with Temporina-1CEa [95], pHLIP-323 

(KLAKLAK)2 construct [98], Maculatin 1.1 [99], NC peptide [100], EVP50 [101], and NRC-03 324 

NRC-07 peptides [102].  325 

 326 

Table 1. Experimental and epidemiological evidence of anticancer activities of BCPs against 327 

breast cancer.328 
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Peptide Sequence Charge Dose  Experimental model Main result Reference 

Bovine 

lactoferricin  

FKCRRWQWRMKKLGAPSITC

VRRAF 

+8 0 -100 μg/ml for 24h MDA-MB-231 cell 

line 

Dose-dependent induction of DNA fragmentation indicative of 

apoptosis cell death. 

[84] 

 

Bovine 

lactoferricin 6 

(LfcinB6) 

 

RRWQWR 

+3 31 uM for 18h MDA-MB-231 cell 

line 

Induction of cell death in 45% of population.  

[85] 

pBmje YNKKYRYHLKSCKKADK-NH2 +7 0 to 250 μM for 48h MCF-7 cell line Dose-dependent cytotoxic activity with IC50 of 250 μM. [86] 

Magainin II 
GIGKFLHSAKKFFGKAFVGEIM

NS 

+3 0 to 120 μM for 72h MDA-MB-231 cell 

line 

Dose-dependent cytotoxic activity with significant effect to 120 

μM. 

[87] 

Lysine-

substituted 

VmCT1 analogs 

FLGALWNVAKSVF-NH2 

substitutions at positions 3, 7, and 

11 in the hydrophilic face of 

VmCT1 amphipathic structure 

From +2 

(VmCT1) to 

+5 

0.8 to 100 µM for 4 

and 24h 

MCF-7 human breast 

cancer cells 

Dose-dependent cytotoxic activity [88] 

IW13 

 

IKHFKKQRRLIPW 

+5 1, 3, 10, 30, 100 μM 

for 48h 

MCF-7 cell line Cytotoxic assay showed EC50 values of 92 μM for MCF-7.  

 

The cationic antimicrobial peptide IW13 showed a high degree 

of selectivity comparedto non-tumoral cells. 

[89] 

 

Peptoide 1 

 

H-(NLys-Nspe-Nspe)4-NH2 

+ 4 0-50 μM for different 

time periods 

MCF-7 cell line Peptoid 1 exerted fast killing, the majority of cell death 

occurred within 4 h of treatment, and increased cytotoxicity 

was observed with longer treatments.   

IC50 for 72h is 5 μM. 

[90] 

Pseudhymenochir

in-1Pa (Ps-1Pb) 

 

Pseudhymenochir

in-2Pa (Ps-2Pa) 

 

 

IKIPSFFRNILKKVGKEAVSLIA

GALKQS 

 

GIFPIFAKLLGKVIKVASSLISK

GRTE 

+5 

 

+4 

1 to 100 µM for 24h MDA-MB-231 cell 

line 

Ps-1Pb showed no selectivity for tumor cells, as the IC50 

against non-neoplastic HUVEC cells (IC50 5.6 µM) is in the 

same range as the values against MDA-MB-231 cells (IC50 6.6 

µM). In addition, the peptide is less cytotoxic to human 

erythrocytes than to the tumor cells.  

 

IPs-2Pa is strongly hemolytic against erythrocytes (IC50 6 µM) 

but is appreciably less cytotoxic against HUVEC cells (IC50 

68µM). It showed the same cytotoxic activity against MDA-

MB-232 cells (IC50 6.2 µM). 

[91] 

Amphipathic α-

helical peptide 

 

(KLAKLAK)2 

+6 0-320 μM for 24h MCF-7, MDA-

MB435S, MDA-

MB453 cell lines 

Dose−response cytotoxic effect for all tested cells. IC50 values 

were 88.1 μM for MCF7, 140 μM for MDA-MB435S, and 191 

μM for MDA-MB453. Concerning PBL, non-tumoral cells, a 

selective effect was observed (IC50 >320 μM). 

 

[93] 

Analogs of 

temporin-1CEa: 

LK1 

LK2(5) 

LK2(6) 

LK3 

LK2(6)A(L) 

LK2(6)AN(2L) 

 

 

FVDLKKIANINSIKK-NH2 

FKDLKKIANINSIKK-NH2 

FVKLKKIANINSIKK-NH2 

FKKLKKIANINSIKK-NH2 

FVKLKKILNINSIKK-NH2 

FVKLKKILNILSIKK-NH2 

 

 

+4 

+5 

+6 

+7 

+6 

+6 

0 to 100 µM for 24h. MCF-7, MDA-MB-

231 and Bcap-37 

LK2(6)A(L) and LK2(6)AN(2L) exhibited relatively stronger 

anticancer activities than temporin-1CEa and the other analogs. 

This may be due to their higher levels of both cationicity (+6) 

and hydrophobicity.  

These peptides reached the lowest IC50 for the three cell lines. 

The values were between 9 and 11 µM for MCF-7 and Bcap-37 

and between 34 and 42 µM for MDA-MB-231. 

 

[94] 
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Kale (Brassica 

alboglabra) 

antifungal 

peptide  

PEGPFQGPKATKPGDLAXQTW

GGWXGQTPKY 

+1 0 to 1.5 log 

concentrations for 72h 

MCF-7 cell line Peptide inhibited the proliferation of MCF-7 cells with an IC50 

of 3.4 µM.  

[103] 

ERα17p 

 

 

LMIKRSKKNSLALSL 

+4 10 μM for 24h T47D, MDA-MB-

231, MCF-7, and SK-

BR-3 breast cancer 

cell lines 

Proapoptotic effect. ERα-positive cells (MCF-7, T47D) were 

more sensitives to treatment than ER-negative cells (MDA-

MB-231, SK-BR-3). 

The peptide decreased the number of colonies formed by 

cancer cells, indicative of an antiproliferative effect.  

[92] 

Temporina-1CEa 

 

 

 

 

FVDLKKIANIINSIF-NH2 

+2 10 to 100 µM for 1, 6, 

24 and 48h. 

MCF-7 and MDB-

MA-231 cell lines 

Temporin-1CEa inhibited the proliferation of cancer cell lines 

in a dose-dependent manner. The IC50 values were 31.91 µM 

and 57.94 µM at 24h for MCF-7 and MDA-MB-231 cells, 

respectively. 

Peptide caused a concentration-dependent increase in the 

release of LDH in MCF-7 cells. 

TEM studies showed disrupted membrane, and condensed and 

hollow nuclei, which caused leakage of the intracellular 

contents. 

[95] 

CDAK 

 

 

 

DGRCLLIIKLAKLAKKLAKLA

K 

+6 10 µg/ml to 200 

µg/mL for 24, 48 and 

72h. 

MCF-7 and MDB-

MA-231 cell lines. 

Dose–dependent cytotoxicity effect in MCF-7 (190 µg/ml and 

MDA-MB-231(212 µg/mL) cells.  

Peptide treatment increased the percentage of apoptotic cells in 

both cell lines and the formation of DNA nucleosome ladders 

in both cell lines was detected. 

Caspase-3 was 8.5 and 2.8 higher, and Bcl-2 96% and 92% 

lower, respectively, in MCF-7 and MDA-MB-231 cells treated 

with CDAK, compared with control. 

[96] 

pHLIP-

(KLAKLAK)2 

construct 

 

 

KLAKLAKKLAKLAK 

+6 From 10 µM down to 

2.5 nM at either 

pH7.4 or 5.0 for 2h.  

MDB-MA-231 pHLIP-(KLAKLAK)2 was cytotoxic against MDB-MA-231 

cell with an IC50 value of 1 µM. This peptide does not cause 

cell death through dramatic disruption of the plasma 

membrane, but a lower pH disrupts the plasma membrane and 

disrupts the mitochondrial membrane. 

[98] 

Maculatin 1.1 

(Mac1) 

GLFGVLAKVAAHVVPAIAEHF-

NH2 

+1 0.35 to 40 µM for 2h MCF-7 cell line An IC50 value of 23 µM.  

Membrane disruption is the probable mode of action. 

[99] 

NS 

 

PKKKRKVWKLLQQFFGLM-

NH2 

+7 0 to 20 µM for 24h MDA-MB-231 cell 

line 

NS could kill tumoral cells in a dose-dependent manner (IC50 

10 µM) and exhibited a cytotoxic effect via membrane 

disruption. 

[100] 

EVP50 

 

RhoB—KRFKKFFKK 

+6 0 to 40 μM for 1h MCF-7 and MDA-

MB-431 cell lines 

Treatment significantly decreased the viability and increased 

the cytotoxicity of cells in a dose-dependent manner. 

Treatment of MCF-7 cells for 5 min compromised the cell 

membrane and caused cytosolic calcium to increase. 

[101] 

NRC-03 

 

NRC-07 

 

GRRKRKWLRRIGKGVKIIGGA

ALDHL-NH2 

+9 

 

+7 

5 to 50 µM for 24h MDA-MB-231, 

MDA-MB-468, T47-

D, SKBR3, MCF-7 

SKBR3, MDA-MB-468, and 4T1 cells were more susceptible 

to NCR-03 and NCR-07 than T47-D, MDA-MB-231, and 

MCF-7 cells, which required 2.5 to 10 times more NCR-03 and 

[102] 
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RWGKWFKKATHVGKHVGKA

ALTAYL-NH2 

and paclitaxel-

resistant MCF-7 

(MCF-7-TX400) 

breast cancer cells  

NRC-07 to cause significant cytotoxicity. 

NRC-03 or NRC-07 killed primary cultures of human dermal 

fibroblasts or HUVECs, and did not exhibit hemolytic activity. 

Peptides induced cell death by a membranolytic mechanism 

and pore formation in mitochondria. 

TP4 

 

H-

FIHHIIGGLFSAGKAIHRLIRRR

RR-OH 

+7 2.5 to 20 µg/ml at 

different time points, 

3, 6, 12 and 24h 

MDB-MA-231, 

MDB.MA-453 and 

MCF-7 cell line 

Treatments with 15 µg/mL (5.03 µM) of TP4 are sufficient to 

kill over 50% of breast cancer cells at 6h. 

Lactate dehydrogenase (LDH) increased at 3h post-TP4 

treatment in TNBC cells, indicating that peptide induces 

necrotic death in TNBC cells. 

TP4 binds to the mitochondria, disrupts Ca2+ homeostasis, and 

ultimately induces FOSB protein. 

[104] 

Vitamin E 

succinate 

modified 

octaarginine-

octahistidine 

(VES-H8R8) 

 

VES-HHHHHHHHRRRRRRRR 

+8 5, 10, and 20 μM for 

different time 

EMT6/P and 

EMT6/AR-1 

(doxorubicin-

resistant) breast 

cancer cells 

Selective activity with IC50 on EMT6/P of 4.4 μM, and IC50 

on EMT6/AR-1 of 7.3 μM, compared to NIH/3T3 non-tumoral 

cells, with IC50 close to 40 μM. 

Cytotoxic to cancer cells by mitochondria depolarization, 

increased ROS production, reduced cell bioenergetics, 

triggering apoptosis, and G1 cell cycle arrest.  

[105] 

Temporin-1CEa 

 

FVDLKKIANIINSIFGK 

+3 20 to 40 µM for 1h Bcap-37 human breast 

cancer cell line  

Rapid cell death in a concentration-dependent manner.  

Cell death mechanisms were associated with rapid intracellular 

Ca2+ leakage, the collapse of mitochondrial membrane 

potential, and over-generation of ROS. 

[106] 

Aurein 1.2 

 

 

GLFDIIKKIAESF-NH2 

+1 0-32 μM for 12 or 24 

h 

MCF-7 cells and MX-

1 cell lines 

The IC50 value was less than 8 μM in MCF-7 cells and less 

than 20 μM in MX-1 cells. 

Peptide exhibited relatively higher cytotoxicity against breast 

cancer cells than against normal cells (IC50 > 60 μM). 

Significant apoptotic activity was detected by annexin V-

FITC/PI staining.  

[107] 

Buforin IIb 

 

RAGLQFPVGRLLRRLLRRLLR 

+7 0-32 μM for 12 or 24 

h 

MCF-7 cells and MX-

1 cell lines 

The IC50 value was less than 8 μM in MCF-7 cells and less 

than 20 μM in MX-1 cells. 

Peptide exhibited relatively higher cytotoxicity against breast 

cancer cells than against normal cells (IC50 > 60 μM). 

In MCF-7 cells, significant apoptotic activity was detected by 

annexin V translocation, DAPI staining, and the activation of 

caspase-9 and cleavage of PARP. 

BMAP-28m 

 

GGLRSLGRKILRAWKKYGIPIV

PIIRI-NH2 

 

+7 

4 to 60 µM for 24h. MCF-7 and MX-1 cell 

lines 

Dose-dependent cytotoxicity IC50 less than 8 µM in MCF-7 

cells and less than 20 µM in MX-1 cells. 

Treatments induce phosphatidylserine exposure, which was 

related to the apoptotic activity. 

Chimeric protein 

p28-NRC 

LSTAADMQGVVTDGMASSGL

DKDYLKPDDPAPAPAAPAPAP

LHDLAAGGIIKVGKGIRRLWK

RKRRG 

+4 0.5 to 8 µM for 48h MCF-7 and MDA-

MB-231 cell lines 

p28-NRC killed MCF-7 and MDA-MB-231 in a dose-

dependent manner, with IC50 values of 1.88 and 1.89 µM, 

respectively. 

Increased expression levels of proapoptotic genes AIF, BAX, 

and Caspase-3, and decreased anti-apoptotic gene Bcl-2. 

[108] 
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[G10a]SHa-

BCTP conjugate 

 

 

FLSGIVGML-D-Ala-KLF-NH2-

WLEAAYQKFL 

+1 25, 50 and 100 µM 

for 48h 

MCF-7 human breast 

cell line 

[G10a] SHa-BCTP conjugate was active against the MCF-7 

cell line (IC50 26.85 µM) without cytotoxicity against non-

cancerous cells (IC50 > 100 µM). 

Treatments induced high fragmentation of DNA and triggered 

apoptotic cell death in a dose-dependent manner. 

Downregulating expression of Bcl-2 and upregulating BAX 

and caspase-3 were observed. 

[109] 

Melittin 

 

 

 

 

 

 

GIGAVLKVLTTGLPALISWIKR

KRQQ 

+5 0-10 μM for 24h Panel of human and 

murine breast cancer 

cell lines 

Melittin was significantly more potent against HER2-enriched 

breast cancer and TNBC compared to normal cells.   

Cytotoxic effect was related to the suppression of activation of 

EGFR and HER2 by interfering with the phosphorylation of 

these receptors in the plasma membrane of breast carcinoma 

cells. 

[97] 

0 to 20 μg/ml for 24 

and 48h 

MDA-MB-231 cell 

line 

Dose-dependent cytotoxic activity with IC50 of 15 μg/ml.  

Reduced DNA synthesis at S phase and increased G1/S 

transition, with related low expression of mRNA and protein 

level of Cyclin D1. 

Time-dependent alterations in the chromatin morphology of the 

treated cells, which are related to apoptosis. 

Co-delivery of melittin with miR-34a increased cell death 

induction. 

[110] 

 

 

LTX-315 

 

 

KKWWKKWDipK-NH2 

+6 0 to 20 μg/ml for 24 

and 48h 

MDA-MB-231 cell 

line 

Dose-dependent cytotoxic activity with IC50 of 150 μg/ml. 

Reduced DNA synthesis at the S phase and increased G1/S 

transition. 

Time-dependent alterations in the chromatin morphology of the 

treated cells, which are related to apoptosis. 

FR8P 

 

FR11P 

 

 

FRRFFKWPRRFFKFF-NH2 

 

FRRFFKWFRRPFKFF-NH2 

+6 

 

+6 

0 to 70 µM for 24 h MDA-MB-231 cell 

line 

Depolarized the mitochondrial transmembrane potential in a 

dose-dependent manner, indicative of induction of intrinsic 

pathway of apoptosis. 

Both peptides induced G2/M phase cell arrest in a 

concentration-dependent manner. 

Down-regulation of P44/42 protein MAP kinase proteins 

responsible for the migration of breast cancer cells. 

[111] 

PR39 

RRRPR 

PPYLPRPRPPPFFPPRLPPRIPPG

FPPRFPPRFP-NH2 

+11 9 and 18 μM for 48h 4T1 cells (Stat3 

knockdown) 

Treatment significantly inhibited 4T1 cell invasion and 

migration, and it was estimated that PR39 and Stat3 siRNA 

could have a synergistic effect on the invasion and migration of 

4T1 cells. 

[112] 

MAP-04-03 

 

 

KWLRRVWRWWR-NH2 

+6 25, 50, 75 and 100 

µM for 24 and 48h 

MCF-7 cell line The IC50 value was 61.5 µM in the cell viability assay. 

Effectively inhibited cell migration at 5 µM, which indicates 

potency ten times that of IC50. 

[113] 

In
 

v
i

v
o
 

Peptoide 1 
 

 

+4 1 mg/kg three times 

per week 

NSG mice with an 

orthotopic injection of 

Peptoid 1 significantly inhibited tumor growth. Furthermore, 

the applied dosages of peptoids did not cause any noticeable 

[90] 
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H-(NLys-Nspe-Nspe)4-NH2 cells from a 

dissociated second-

generation metastatic 

breast cancer tumor 

acute toxicity in mice. 
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Melittin 

 

GIGAVLKVLTTGLPALISWIKR

KRQQ 

+5 5 mg/kg, treatment 

every 2 days from day 

3, with 7 treatments in 

total 

BALB/c mice with an 

injection of murine 

p53− TNBC cell line 

T11 

Melittin reduces tumor volume. In combination with docetaxel 

treatment, tumor control was enhanced. 

[97] 

Amphipathic α-

helical peptide 

 

(KLAKLAK)2 

+6 250 μg in 50 μl PBS 

weekly 

MDA-MB435S breast 

cancer-bearing nude 

mice 

Peptide treatment inhibits tumor growth and prolongs overall 

survival. 

[93] 

ERα17p 

 

 

LMIKRSKKNSLALSL 

+4 50 mM or 1.5 mg/Kg 

diluted in PBS, 3 

times per week 

Male BalbC-/- nude 

mice injected with 

MDA-MB-231 cells 

After 4 weeks of treatment, a reduction in tumor size of more 

than 50% was observed after ERα17p treatment when 

compared to untreated tumors. 

The histological analysis of the tumors revealed a massive 

ERa17p-induced central necrosis. 

[92] 

TP4 

 

 

H-

FIHHIIGGLFSAGKAIHRLIRRR

RR-OH 

+7 A group of nude mice 

with xenografts were 

treated with TP4 (500 

µg in 50 µL distilled 

water plus 10 µl KY 

jelly)14 times  every 

two days once the 

tumor reached a 

specific size. 

TNBC cells were 

subcutaneously 

transplanted into nude 

mice (N=5)  and 

assessed tumor 

growth daily for 28 

years. 

Intratumoral injection of TP4 caused extensive necrosis of 

TNBC in xenograft tumors without causing adverse side 

effects.  

FOSB expression was also detected within the tumor. 

[104] 

NRC-03 

 

NRC-07 

 

 

 

GRRKRKWLRRIGKGVKIIGGA

ALDHL-NH2 

 

RWGKWFKKATHVGKHVGKA

ALTAYL-NH2 

+9 

 

+7 

When the tumors 

reached a volume 

greater than 120 mm3, 

mice were 

administered 20 µl of 

the HBSS vehicle or 

0.5 mg NCR-03 or 

NRC-07 in 20 µl of 

HBSS by intratumoral 

injection on days 1, 3, 

and 5. 

NOD SCID mice 

were engrafted with 

MDAMB-231 cells by 

subcutaneous 

injection in one hind 

flank. 

Treated tumors were significantly smaller than control tumors 

at day 12.  

Histologic analysis revealed that the necrotic core of peptide-

treated tumors was more significant than that of control tumors 

Intertumoral delivery of NRC-03 and NRC-07 to mice did not 

have any noticeable adverse side effects. 

[114] 

Buforin IIb 

 

 

 

RAGLQFPVGRLLRRLLRRLLR 

+7 2.5 mg/kg and 5 

mg/kg. Peptide was 

injected through the 

tail vein of mice on 

days 1, 4, 8, and 12. 

BALB/c nude mice 

injected with MX-1 

cells  

 

Treatment significantly suppressed the growth of xenograft 

tumors.  

H&E staining showed nuclear shrinkage in the treatment group. 

In addition, cells from tumors treated stained positive for 

TUNEL. 

Fewer CD31+ cells were detected in tumors treated with 5 

mg/kg buforin IIb, which is associated with inhibition of 

vascularization. 

[107] 

CDAK 

 

 

 

 

 

+6 When the tumor 

reached 60 mm3 in 

size, the mice were 

randomized into three 

groups: (1) CDAK (4 

MDA-MB-231 cells 

were injected 

subcutaneously into 

the right flank of 6- to 

9-week-old female 

The tumors treated with CDAK were significantly smaller than 

the control group.  

CDAK significantly inhibited tumor angiogenesis. 
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DGRCLLIIKLAKLAKKLAKLA

K 

mg/kg); (2) CRLK (4 

mg/kg); and (3) saline 

(control). They were 

then injected 

intravenously (50 

mL/injection) three 

times a week for three 

weeks. 

BALB/cnu-nu 

athymic nude mice. 

 

LTX-315 

 

 

KKWWKKWDipK-NH2 

+6 0.5–1.0 mg peptide/50 

μl saline once a day 

for 2– 3 consecutive 

days 

Balb/C wild-type 

mice with orthotopic 

injection of 4T1 cells 

in mammary fat pad. 

Co-treatment with doxorubicin induced strong local necrosis 

and immune-mediated changes. 

[115] 

E
p

id
em

io
lo

g
ic

a
l 

LTX-315 

 

 

 

 

 

KKWWKKWDipK-NH2 

+6 2 to 7 mg per lesion 

injection. LTX-315 

was administered on 

days 1, 2, and 3 

during the first week 

and subsquently once 

weekly for a total of 6 

weeks. The 

maintenance phase 

included one injection 

per day every 2 weeks 

for 20 weeks 

Phase I trial in 

patients with breast 

cancer (N=8) 

 

Intratumoral injection of LTX-315 was tolerated well. 

However, the dosing regimen of LTX-315 induced necrosis 

and CD8+ T-cell infiltration into the tumor microenvironment. 

 

[116] 
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After the action of BCPs on the cell membrane, the peptides can also infiltrate intracellular spaces. 329 

Hence, the biological effects of BCPs are also associated with the targeting of other cellular 330 

structures, such as mitochondria [117-119], as well as interference with signaling pathways linked to 331 

apoptosis cell death [66] and cell cycle [120, 121]. Many BCPs are reported to induce these cellular 332 

changes. For example, Ting et al. reported that, in MDB-MA-231 cells treated with TP4 peptide, 333 

while the induction of DNA fragmentation or caspase 3 activation after treatment was not evident, 334 

lactate dehydrogenase (LDH) increased at three hours post-TP4 treatment in TNBC cells, indicating 335 

that this peptide induces necrotic death in TNBC cells. Furthermore, the mechanism action of TP4 336 

showed that it binds to the mitochondria, disrupts Ca
2+

 homeostasis, and ultimately induces FOSB 337 

protein to activate TNBC cell death [104]. Another study reported that VES-H8R8 peptide is 338 

cytotoxic to breast cancer cells through mitochondria depolarization, increased reactive oxygen 339 

species (ROS) production, reduced cell bioenergetics, and triggering of apoptosis G1 cell cycle arrest 340 

[105]. Similarly, Wang and collaborators observed that Temporin-1CEa induces cell death, which is 341 

associated with rapid intracellular Ca
2+

 leakage, collapse of mitochondrial membrane potential, and 342 

over-generation of ROS [106]. Figure 4 summarizes all the proposed mechanisms for the BCPs. 343 

Aurein 1.2, Buforin IIb, and BMAP-28m induce apoptotic cell death, as was evidenced in MCF-7 344 

cells, where peptides provoked phosphatidylserine exposure in treated cells. Additionally, Bufforin 345 

IIb activity was associated with activation of caspase-9 and cleavage of PARP [107]. Soleimani et al. 346 

reported that Chimeric protein p28-NRC induces cell injury in MCF-7 and MDA-MB-231 in a dose-347 

dependent manner, with increased expression levels of the proapoptotic genes AIF, BAX, and 348 

Caspase-3, and decreased expression of the anti-apoptotic gene Bcl-2 [108]. Similar results were 349 

published previously for [G10a]SHa-BCTP conjugate peptide, where treatment induced high DNA 350 

fragmentation, downregulating the expression of Bcl-2, and upregulating BAX and caspase-3 [109].  351 

Many chemotherapeutics affect cancer cells by altering the cell cycle, generally in specific control 352 

points; indeed, some BCPs have been reported to affect the growth and division of breast cancer 353 

cells. For instance, in MDA-MB-231 cells, melitinin reduced DNA synthesis at the S phase and 354 

increased G1/S transition, with related low expression of mRNA and protein level of the regulator 355 

protein Cyclin D1. Similarly, LTX-315 showed increased G1/S transition and time-dependent 356 

alterations in the chromatin morphology of the treated cells, which is related to apoptosis [110]. 357 

FR8P and FR11P peptides induced G2/M phase cell arrest in MDA-MB-231 cells, linked to 358 

depolarization of mitochondrial membrane potential and activation of caspases [111]. 359 
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Since metastasis is responsible for therapeutic failure, molecules that can specifically interfere in the 360 

cell migration process are helpful for cancer treatment. Various BCPs with capacity to inhibit cell 361 

migration in breast cancer cells have been reported. For example, PR39 treatment significantly 362 

inhibited 4T1 cell invasion and migration, and it was suggested that it could have a synergistic effect 363 

with Stat3 siRNA, efficiently inhibiting cellular proliferation and migration [112]. FR8P and FR11P 364 

peptides also induce a down-regulation of the P44/42 MAP kinase protein responsible for the 365 

migration of breast cancer cells [111]. Another study reported an IC50 value of 61.5 µM for MAP-366 

04-03, although the peptide was very effective at inhibiting the cell migration at 5 µM, with 367 

inhabitation of around 40% of cell migration [113]. 368 

The biological effects induced by BCPs also have been evaluated in vivo controlled environments 369 

using animal testing. Rats and mice injected with breast cancer cells are the most common model for 370 

tumors. In vivo models employing BCP treatments significantly inhibited tumor growth, as was 371 

reported for peptoide 1 [90], melittin [97], and amphipathic α-helical peptide [93]. In other reports, 372 

tumor growth reduction was linked to necrosis, for example in ERα17p [92], TP4 [104], and NRC-03 373 

and NRC-07 peptides [102]. Further, vascularization and angiogenesis inhibition in xenograft tumors 374 

were reported after buforin IIb [107] and CDAK [96]. The co-treatment of BCPs with standard 375 

chemotherapeutics also have been evaluated. In breast cancer, LTX-315 in co-treatment with 376 

doxorubicin induced substantial local necrosis and immune-mediated changes in the tumor 377 

microenvironment, followed by complete regression in most animals treated [122]. Encouragingly, 378 

most of the in vivo studies found that BCP treatment did not have any noticeable adverse side-379 

effects. Despite several studies on the discovery or design of anticancer peptides against breast 380 

cancer, only LTX-315 is tested in clinical trials.  Results of Phase I trial in 8 patients with breast 381 

cancer (NCT01986426) show that intratumoral injection of LTX-315 is well tolerated. The dosing 382 

regimen used for  LTX-315 induces necrosis and CD8+ T-cell infiltration into the tumor 383 

microenvironment [116].  384 

 385 

Current status and future directions 386 

Breast cancer continues to be one of the leading causes of women's death worldwide. The search for 387 

new therapies for this disease is a priority, especially in view of the very well-known side effects of 388 

traditional treatments. Although researchers have been studying the potential of BCPs for cancer 389 

treatment, there are still some critical barriers to overcome. Firstly, the selectivity of most BCPs is 390 

not sufficiently differentiated between cancer cells and normal cells, resulting in limited clinical 391 
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applications. Second, the low resistance of BCPs to proteolytic cleavage is one of the aspects of 392 

peptides that has raises the most questions. It explains their short half-life and, therefore, low 393 

bioavailability in vivo [123], a limitation that avoid using peptides as pharmaceutical agents. 394 

However, different pharmaceutical companies have made progress in evaluating and developing 395 

drugs from natural or modified peptides, demonstrating the potential use of these compounds. This 396 

potential is based on the easy modification of the sequence, net charge, hydrophobicity, 397 

amphipathicity, and therefore the peptide's secondary structure. Some of the more unique peptides 398 

have reached phase II and III clinical studies, and are intended for use topically or intravenously to 399 

treat localized and systemic infections [124]. This is the case with the peptide derived from 400 

lactoferrin hLF-1-11 (AM-Pharma), for use in the treatment of transplant-associated infections; the 401 

peptide PAC113, based on histatin 5 (PacGen) from human saliva and used for the treatment of oral 402 

candidiasis; and the peptide Mersacidin (Novacta Biosystems Ltd), derived from bacteriocin and 403 

used for the treatment of infections of Gram-positive bacteria [124]. One of the most promising 404 

peptides developed in recent years is the synthetic peptide LTX-315, a derivative of lactoferricin, 405 

known by its trade name as OncoporeTM, which is active in several cancer cell lines and is in phase 406 

II clinical trials [125]. LTX-315 lyses cancer cells (necrosis) through a membrane destabilizing 407 

mechanism followed by the release of danger-associated molecular patterns (DAMPs), thereby 408 

reprogramming the tumor microenvironment while presenting low cytotoxicity against human 409 

erythrocytes [118, 126]. The results using a fibrosarcoma model have shown that 80% of animals 410 

treated with LTX-315 show regression in the size of the treated tumor [115, 127]. Currently, it is 411 

considered an alternative treatment for different types of cancer, but it is mainly used in melanoma. 412 

The development of this peptide was the basis for the foundation of the company Lytix Biopharma, 413 

whose objective is the pharmacological development of oncolytic peptides [128]. The next 414 

generation of peptides will be based on modifications focused on improving the cancer targeting, 415 

specificity, and efficacy of peptides, reducing their potential side effects.  416 
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