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Lysine methyltransferase 2D (KMT2D), as one of the key histone methyltransferases re-
sponsible for histone 3 lysine 4 methylation (H3K4me), has been proved to be the main
pathogenic gene of Kabuki syndrome disease. Kabuki patients with KMT2D mutation fre-
quently present various dental abnormalities, including abnormal tooth number and crown
morphology. However, the exact function of KMT2D in tooth development remains unclear.
In this report, we systematically elucidate the expression pattern of KMT2D in early tooth
development and outline the molecular mechanism of KMT2D in dental epithelial cell line.
KMT2D and H3K4me mainly expressed in enamel organ and Kmt2d knockdown led to
the reduction in cell proliferation activity and cell cycling activity in dental epithelial cell
line (LS8). RNA-sequencing (RNA-seq) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analysis screened out several important pathways affected by Kmt2d
knockdown including Wnt signaling. Consistently, Top/Fop assay confirmed the reduction
in Wnt signaling activity in Kmt2d knockdown cells. Nuclear translocation of β-catenin was
significantly reduced by Kmt2d knockdown, while lithium chloride (LiCl) partially reversed
this phenomenon. Moreover, LiCl partially reversed the decrease in cell proliferation ac-
tivity and G1 arrest, and the down-regulation of Wnt-related genes in Kmt2d knockdown
cells. In summary, the present study uncovered a pivotal role of histone methyltransferase
KMT2D in dental epithelium proliferation and cell cycle homeostasis partially through reg-
ulating Wnt/β-catenin signaling. The findings are important for understanding the role of
KMT2D and histone methylation in tooth development.

Introduction
Tooth development starts from the formation of dental lamina, after which dental epithelial cells prolifer-
ate downward to form a tooth bud and then the enamel organ [1]. The stable control of dental epithelium
proliferation is also essential for the formation of the enamel knot, which determines the morphology of
the enamel organ and tooth crown. Studies on the mechanisms underlying dental epithelial cell prolifer-
ation are crucial for understanding tooth development, which would help to lay a foundation for tooth
regeneration. Classical signaling pathways have been widely found to take part in dental epithelium pro-
liferation and tooth development [2–4]. For example, Wnt/β-catenin signaling is considered to play cru-
cial roles at different stages of tooth formation [5,6]. Studies have shown that the formation and early
morphogenesis of mouse teeth were arrested when canonical Wnt signaling was inhibited by DKK1 or
loss-of-function of β-catenin or Lef1 [5,7,8]. Recently, the importance of epigenetic regulation has been
gradually emphasized in embryonic development, since that the possible reversible ability of epigenetic
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messages such as histone modification showed great therapeutic potential [9–11]. Whereas, the key epigenetic factors
and underlying mechanisms in tooth development remain to be determined, especially in dental epithelial tissues
[12–14].

The lysine methyltransferase 2D (KMT2D) protein is an important histone methyltransferase, whose encoding
gene has been identified as the main causative factor of Kabuki syndrome (OMIM #147920) [15,16]. Patients with
Kabuki syndrome are characterized by a peculiar face, postnatal growth retardation and dental anomalies. Den-
tal anomalies in Kabuki syndrome include congenital absence of teeth, short crowns, spiral or conical incisors
and abnormal cusp morphology of molars [17–19]. The anomalies of tooth number and crown morphology in
Kabuki syndrome suggest that KMT2D might function in the formation and morphogenesis of dental enamel organ.
Morpholino-mediated kmt2d knockdown zebrafish exhibited significant craniofacial defects, including complete loss
of three to seven pharyngeal arches [16]. Porntaveetus et al. reported specific mRNA expression of KMT2D in hu-
man dental epithelium during the bud and cap stages by in-situ hybridization [19]. These findings suggested that
KMT2D might act as an important epigenetic factor in craniofacial and dental epithelial tissues. A further study of
KMT2D function would be beneficial for understanding the epigenetic regulation during tooth development and
regeneration.

Functionally, KMT2D is mainly responsible for histone 3 lysine 4 monomethylation (H3K4me1) or trimethylation
(H3K4me3), which modifies enhancers or promoters for transcription factor binding and gene activation [20,21].
KMT2D plays important roles in the regulation of different classical signaling pathways in embryogenesis and tissue
development. In human epidermal keratinocytes, knockdown of KMT2D resulted in inhibition of cell proliferation
by altering the H3K4me1 modification on the enhancer of p63 [22]. During tooth development, several histone mod-
ifying enzymes such as KDM2A and EZH2, were reported to play essential roles in dental mesenchyme proliferation
and differentiation [23–25]. However, in dental epithelial tissue, the functions and mechanisms of histone modifica-
tion enzymes including KMT2D were unclear. In the present study, we systematically studied the expression pattern
of KMT2D during early tooth development, and further investigated the specific role and mechanism of KMT2D in
dental epithelial cell line (LS8).

Materials and methods
Tissue specimens and immunofluorescence assay
The present study was carrie d out in strict accordance with the National Institutes of Health Guide for the Care and
Use of Laboratory Animals (National Resource Council). All protocols were approved by the Animal Care and Use
Committee of Peking University (permit number: LA2017136). Pregnant ICR mice (Charles River, China) were killed
by cervical dislocation after anesthesia with 5 mg/100 g body weight of sodium pentobarbital in the postprandial state.
All the animal work took place in School and Hospital of Stomatology, Peking University.

Embryo heads were dissected and prepared as frozen specimens. Specimens were fixed in 4% paraformalde-
hyde at 4◦C and then dehydrated with a gradient sucrose solution. The frozen specimens were cryosliced into
5-μm-frozen sections (CM1900, Leica, Germany). The sections were perforated with Triton X-100, blocked with goat
serum, and then incubated with anti-KMT2D (C-Term, a smaller C-terminus fragment which separates at ∼75 kDa,
ABE206, Sigma–Aldrich, U.S.A.), anti-H3K4me1 (GTX54100, GeneTex, U.S.A.), anti-H3K4me3 (GTX128954, Gene-
Tex), anti-Ki67 (ab16667, Abcam, U.S.A.) and anti-phospho-Rb (S780) (YP0240, Immunoway, U.S.A.) separately at
4◦C overnight. Then, the sections were incubated with fluorescein-conjugated rabbit anti-goat IgG (H+L) (ZF-0314,
ZSGB-BIO, China) and anti-fluorescence quenching sealing tablets with DAPI (ZLI-9557, ZSGB-BIO, China). Fluo-
rescence images were acquired by confocal laser microscopy (LMS710, Zeiss, Germany).

Construction of LV-KMT2D-shRNA vector system and lentivirus
transfection
The shRNA was purchased from GenePharma (Shanghai, China). The shRNAs were ligated into the
pGLV3/GFP-puro vector with a constitutive CMV promoter to produce pGLV3-Kmt2d-shRNA. The lentivirus
vector encodes green fluorescent protein (GFP), allowing rapid visual assessment of the viral infection
efficiency. The recombinant pGLV3-GFP-Kmt2d-shRNA vector was termed shKmt2d. A negative con-
trol vector (pGLV3-GFP-NC-shRNA, termed ‘scramble’) with a scramble shRNA insert was used to con-
trol any effects caused by non-RNAi mechanisms. The shRNA sequences are as follows: Kmt2d-shRNA
(5′-GGGAGTATCCACGGATGTTAG-3′); Scramble shRNA (5′-TTCTCCGAACGTGTCACGT-3′).

The LS8 mouse ameloblast cell line was kindly provided by Dr. Malcolm L. Snead (University of Southern Califor-
nia). For lentivirus transfection, cells at 60% confluence were transfected with lentivirus (MOI = 40) in Opti-MEM
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(Gibco, U.S.A.) containing 5 μg/ml polybrene for 24 h. Cells were selected on 2% puromycin after infection to obtain
complete puromycin-resistant cell populations. GFP expression in cells was observed under a fluorescence micro-
scope (IX53; Olympus, Japan) to determine the transfection efficiency. RNA was harvested at 48 h to detect knock-
down efficiency.

Quantitative reverse transcription polymerase chain reaction
Total RNA was isolated using TRIzol reagent (Invitrogen, U.S.A.) according to the manufacturer’s instructions. cDNA
was synthetized in a 20-μl reaction mixture containing 1 μg total RNA, 4 μl of 5× Master Mix (Takara Bio Inc, Japan)
that includes all reagents required for cDNA synthesis (PrimeScript RTase, RNase inhibitor, random 6-mers, oligo dT
primer, dNTPs and reaction buffer) and RNA-free water. PCR was running in an ABI Q3 Real-Time PCR System
(ABI, Singapore) with SYBR Green Master Mix (Roche, Switzerland) and the appropriate primers (Table 1). The
annealing temperature was 61◦C. Target transcript levels were normalized to that of Gapdh, and each value was the
average of three independent experiments.

Western blotting
Total protein was extracted with RIPA lysis buffer. Nuclear protein was extracted using the Nuclear-Cytosol Extrac-
tion kit (Applygen Technologies, Beijing, China). Equal amount of denatured proteins (30 μg) were separated by
12% sodium dodecyl sulfonate/polyacrylamide gel electrophoresis and transferred on to a polyvinylidene difluoride
membrane. The membrane was incubated in 5% dry skim milk at room temperature (RT) for 1 h, and subsequently
with anti-KMT2D (C-Term, a smaller C-terminus fragment which separates at ∼75 kDa, 1:1000, ABE206; Millipore,
U.S.A.), anti-β-catenin (1:1000, 8480S; CST, U.S.A.), anti-H3K4me1 (1:1000, GTX54199; GeneTex), anti-H3K4me3
(dilution 1:1000, GTX128954; GeneTex), anti-Lef1 (dilution 1:1000, 2230S; Cell Signaling Technology), anti-Lgr4
(1:1000, sc-390630; Santa Cruz, U.S.A. ), GAPDH (1:10000, 10494-1-AP; Proteintech, China) and anti-LaminB1
(1:5000, 66095-1-Ig; Proteintech) separately at 4◦C overnight. Antibody recognition was detected with horseradish
peroxidase-coupled goat anti-rabbit IgG (1:5000, ZB-5301; ZSGB-BIO, China) or goat anti-mouse IgG (1:5000,
ZB-5305; ZSGB-BIO, China) for 1 h at RT. GAPDH was used as an internal control for total protein detection, and
LaminB1 for nuclear protein. The presentative images of three independent experiments were presented.

Cell proliferation assay (CCK8) and colony formation assay
For the CCK8 cell proliferation assay, cells were seeded in 96-well plates at 2 × 103 cells per well and starved for 12 h.
Then, cells were incubated in 100-μl DMEM containing 10 μl of CCK8 solution (Dojindo, Japan) per well for 3 h on
days 1, 2, 3, 4, 5 and 6. The optical density at 450 nm in each well was measured using a microplate reader (BIO-TEK,
U.S.A.). For cell colony formation assay, cells were seeded in six-well plates at 1 × 103 cells per well and starved for
12 h, then cultured for 7 days. After fixing with 4% paraformaldehyde for 20 min, the cells were washed twice and
incubated at RT for 10–15 min in Giemsa solution (Solarbio, Beijing, China). The Giemsa solution was discarded,
followed by washing in PBS. The results of colony staining were recorded by an experimental scanner (G4050, HP,
U.S.A.). The presentative images of three independent experiments were presented.

EdU incorporation assay
For EdU incorporation assays, LS8 cells were uniformly seeded in 96-well plates at a density at 3 × 103 cells per
well and cultured in complete medium overnight. Then, the medium was replaced with DMEM containing 50 μM
EdU (C10310-1, EdU Apollo 567 In Vitro Imaging Kit; Ribobio, China), and the cells were cultured for another 2 h.
The cells were fixed in 3.7% formaldehyde in PBS at RT for 15 min, incubated in 2 mg/ml glycine and treated with
0.5% Triton in PBS twice for 10 min, and then incubated with 1× Apollo® staining liquid in the dark at RT for 30
min. Coupling of EdU to the Apollo staining liquid substrate was observed under a fluorescence microscope (IX53;
Olympus, Japan). The presentative images of three independent experiments were presented.

Cell cycle analysis
LS8 cells were digested with 0.25% trypsin-EDTA, washed twice with cold PBS and fixed with 70% ethanol at 4◦C
overnight. The cells were washed twice with ice-cold PBS and then incubated in 0.5 ml of PI/RNase Staining Buffer
(BD Pharmingen, U.S.A.) for 15 min in the dark. DNA content was measured using a flow cytometer (Epics XL;
Beckman Coulter, U.S.A.) within 60 min. The experiment was performed at least three times.
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Table 1 A detailed list of primer sequences, species, GeneBank numbers and PCR product lengths used in real-time
RT-PCR

Gene Primer sequence GeneBank accession number PCR product size (bp)

KMT2D S 5′-CCTGAGGAACCAAGCCAGAG-3′ NM 001033276.3 237

AS 5′-TGCAGCTGGGATAATGGGTG-3′

CyclinD1 S 5′-GCGTACCCTGACACCAATCTC-3′ NM 007631 183

AS 5′-CTCCTCTTCGCACTTCTGCTC-3′

CDK4 S 5′-ATGGCTGCCACTCGATATGAA-3′ NM 009870 129

AS 5′-TCCTCCATTAGGAACTCTCACAC-3′

CyclinB1 S 5′-AAGGTGCCTGTGTGTGAACC-3′ NM 172301 228

AS 5′-GTCAGCCCCATCATCTGCG-3′

CyclinB2 S 5′-GCCAAGAGCCATGTGACTATC-3′ NM 007630 114

AS 5′-CAGAGCTGGTACTTTGGTGTTC-3′

CDK1 S 5′-AGAAGGTACTTACGGTGTGGT-3′ NM 007659 128

AS 5′-GAGAGATTTCCCGAATTGCAGT-3′

Lgr4 S 5′-CCCGACTTCGCATTCACCAA-3′ NM 172671 152

AS 5′-GCCTGAGGAAATTCATCCAAGTT-3′

Wnt9a S 5′-GGCCCAAGCACACTACAAG-3′ NM 139298 238

AS 5′-AGAAGAGATGGCGTAGAGGAAA-3′

Wnt10b S 5′-GAAGGGTAGTGGTGAGCAAGA-3′ NM 011718 158

AS 5′-GGTTACAGCCACCCCATTCC-3′

Tle2 S 5′-TGGCTGCCGTAAAGGAAGAC-3′ NM 001251401 191

AS 5′-CTCACTGTCATAAGGCCCTGA-3′

Tle6 S 5′-ATCCAGTCGGTATTTGTCCATCG-3′ NM 053254 147

AS 5′-AGGTCTGGGGTTCTACTGAAG-3′

TCF4 S 5′-CGAAAAGTTCCTCCGGGTTTG-3′ NM 013685 196

AS 5′-CGTAGCCGGGCTGATTCAT-3′

Axcin2 S 5′-TGACTCTCCTTCCAGATCCCA-3′ NM 015732 105

AS 5′-TGCCCACACTAGGCTGACA-3′

β-catenin S 5′-ATGGAGCCGGACAGAAAAGC-3′ NM 007614.3 108

AS 5′-CTTGCCACTCAGGGAAGGA-3′

Lef1 S 5′-TGTTTATCCCATCACGGGTGG-3′ NM 010703 67

AS 5′-CATGGAAGTGTCGCCTGACAG-3′

p21 S 5′-CCTGGTGATGTCCGACCTG-3′ NM 001111099 103

AS 5′-CCATGAGCGCATCGCAATC-3′

Bmi1 S 5′-ATCCCCACTTAATGTGTGTCCT-3′ NM 007552 116

AS 5′-CTTGCTGGTCTCCAAGTAACG-3′

Gli1 S 5′-CCAAGCCAACTTTATGTCAGGG-3′ NM 010296 130

AS 5′-AGCCCGCTTCTTTGTTAATTTGA-3′

Ptch1 S 5′-AAAGAACTGCGGCAAGTTTTTG-3′ NM 008957 164

AS 5′-CTTCTCCTATCTTCTGACGGGT-3′

Lfng S 5′-CGAGGTGCATAGCCTCTCC-3′ NM 008494 133

AS 5′-GCGAGGGGACAGAACTTCG-3′

GAPDH S 5′-CCAGCCTCGTCCCGTAGACA-3′ NM 008084 189

AS 5′-CCGTTGAATTTGCCGTGAGT-3′

RNA-sequencing
RNA was extracted from LS8 cells stably transfected with Kmt2d shRNA and scramble shRNA (three biological
replicates each) and was sent out for RNA library construction and sequencing at the Beijing Genomics Institu-
tion (Shenzhen, China). Total RNA quality and cDNA library quality were tested on an Agilent Bioanalyzer 2100.
RNA-sequencing (RNA-seq) was conducted on the BGISEQ-500 sequencing platform. The raw sequencing reads
were filtered to obtain clean data without reads with adaptors and low-quality reads. The clean reads were mapped to
reference genes using Bowtie2-mm10 and to a reference genome using HISAT-mm10. RSEM was used to calculate
transcript expression levels. Subsequently, the DEGseq algorithm was used for differential gene detection. Finally,
differential expression genes (DEGs) were screened and annotation analysis of Gene Ontology (GO) was performed.
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses based DEGs database through
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statistical tests to identify the differential gene involved in the cell proliferation pathway and tooth development path-
ways.

Cell immunofluorescence assay
LS8 cells were uniformly seeded on slides at 1 × 105 cells per well, cultured in high-glucose DMEM (Gibco, U.S.A.)
overnight, and then cultured in serum-free DMEM for 12 h. The starved cells were treated with lithium chloride
(LiCl; 5 mM) for 24 h. The cells were fixed with 4% paraformaldehyde for 15 min and then treated with 0.1% Triton
X-100 for 30 min and immersed in blocking agent at RT for 1 h. The cells were incubated with anti-β-catenin antibody
(1/300 dilution, 8480S; Cell Signaling Technology, U.S.A.) at 4◦C overnight, and then with fluorescein-conjugated rab-
bit anti-goat IgG (H+L) (1/200; ZSGB-BIO). Nuclei were counterstained using anti-fluorescence quenching sealing
tablets with DAPI (1/200; ZSGB-BIO). Fluorescence images were acquired by confocal laser microscopy (LMS710).
All slides were processed at the same time to ensure homogeneity of the staining procedures.

Wnt/β-catenin signal reporter assay
Stably transfected LS8 cells were plated at a concentration of 5 × 105 cells per well in 12-well plates. Cells were trans-
fected with 0.5 μg TOP-flash or FOP-flash expression plasmids and 0.05 μg pRL-TK (Upstate Technology, U.S.A.) as
control using Lipofectamine® 2000 (Invitrogen, U.S.A.). Luciferase activity was measured using a Dual-Luciferase®

Reporter Assay System (Beyotime, China) and Microporous plate luminometer (LB-960; Berthold, U.S.A.) in accor-
dance with the manufacturers’ instructions. The TOP/FOP ratio was used as a measure of TCF/LEF transcriptional
activity. The experiment was performed three times.

Statistical analysis
All data were presented as the mean +− SD. Means were compared using Student’s t test between two groups. A nor-
mality test was run before one-way ANOVA when comparing three groups or more. Prism 8.0.2 statistical software
(GraphPad, U.S.A.) was used for statistical analysis. P<0.05 was considered significant.

Results
Spatiotemporal pattern of KMT2D and H3K4me1/3 expression during
mouse molar development
The expression pattern of KMT2D protein during mouse molar development was detected using immunofluores-
cence staining. The results showed that during the bud stage (Embryonic Day 12.5, E12.5, Figure 1A1) and cap stage
(Embryonic Day 14.5, E14.5, Figure 1A2) of mouse tooth germs, KMT2D was expressed mainly in dental epithe-
lium, whereas few signals were observed in the mesenchyme. At the early bell stage (Embryonic Day 16.5, E16.5,
Figure 1A3), KMT2D was specifically distributed in the inner enamel epithelium, with no signal observed in the
dental papilla. At the late bell stage (Embryonic Day 18.5, E18.5, Figure 1A4), KMT2D signals were observed in both
pre-ameloblasts and pre-odontoblasts.

Consistent with KMT2D, H3K4me1 signals were observed in dental epithelium from bud to early bell stages (E12.5,
E14.5, E16.5), and H3K4me1 signals were much stronger than that of KMT2D in the dental mesenchyme (Figure
1B1–B3). At the late bell stage (E18.5), H3K4me1 was dispersed in pre-ameloblasts, pre-odontoblasts and stellate
reticulum cells (Figure 1B4). H3K4me3 signals were mainly distributed in the dental epithelial cells at all stages, with
few signals observed in dental mesenchymal cells at the cap and early bell stages (Figure 1C1–C4).

Additionally, we detected Ki67 and pRb (phosphorylation retinoblastoma protein, Ser780) in different stages of
mouse molar development. Ki67, a cell proliferation marker, was marked by green fluorescence (Figure 1D1–D4)
in dental epithelium and mesenchyme. pRb (Ser780), a crucial mediator in mediating cell cycle G1/S transition, was
detected during the tooth germ development (Figure 1E1–E4). The expression patterns of KMT2D, Ki67 and pRb
(Ser780) revealed similarity from the bud to early bell stages, especially in the dental epithelial region. At the late bell
stage (E18.5), pRb expression regions were still similar with KMT2D and H3K4me1/3, while Ki67 was expressed only
in regions near the cervical loop.

KMT2D knockdown resulted in reduction in proliferation activity and
H3K4me1/3 expression
To investigate the effect of KMT2D on dental epithelial cells, we established a stable KMT2D knockdown cell model
using lentivirus transduction. Transfection efficiency of shKMT2D was detected at both mRNA and protein levels
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Figure 1. Spatiotemporal pattern of KMT2D, H3K4me1/3, Ki67 and pRb during early tooth germ development

(A1–A4) showed the expression of KMT2D in tooth germ at E12.5 (bud stage), E14.5 (cap stage), E16.5 (early bell stage), E18.5 (late

bell stage), respectively. (B1–B4) showed the expression of H3K4me1 in tooth germ at E12.5, E14.5, E16.5, E18.5. (C1–C4) showed

the expression of H3K4me3 in tooth germ at E12.5, E14.5, E16.5, E18.5. (D1–D4) showed the expression of Ki67 in tooth germ at

E12.5, E14.5, E16.5, E18.5. (E1–E4) showed the expression of pRb in tooth germ at E12.5, E14.5, E16.5, E18.5. The enamel organ

was labeled by red-dotted line. The data represent three independent experiments, each in triplicate. Scale bar: 100 μm (E12.5,

E14.5, E16.5); 200 μm (E18.5). Abbreviation: pRb, phosphorylation retinoblastoma protein, Ser780.
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Figure 2. Knockdown of KMT2D resulted in the attenuation of proliferation ability and decreased H3K4me1/3 level of LS8

cells

The knockdown efficiency of KMT2D was confirmed by real-time RT-PCR (A) and Western blot (B). The protein levels of nuclear

H3K4me1 and H3K4me3 were decreased in shKMT2D group (C). Quantitative data of nuclear H3K4me1 and H3K4me3 protein by

Western blot (D). Proliferation of LS8 cell lines was measured by CCK8 assay (E). OD values at 450 nm spectrum of three indepen-

dent experiments were presented. (F) Result of EdU incorporation assays showed active DNA replication during cell proliferation

(red dots). Representative results (from triplicate wells) of three experiments was shown. (G) Cell propagation was measured by

the colony formation assay. Representative result (from triplicate wells) of three experiments was shown. (H) Quantitative data of

the colony formation assay of three independent experiments were presented. The data represent three independent experiments,

each in triplicate. Each bar represents mean +− SD from three samples (*P<0.05). Scramble: LS8 cells transfected with Scramble

shRNA. shKMT2D: LS8 cells transfected with KMT2D shRNA. Means were compared using Student’s t test.

(Figure 2A,B). Meanwhile, KMT2D knockdown caused significant decreases in global H3K4me1 and H3K4me3 levels
(Figure 2C,D).

Cell proliferation activity was significantly decreased in KMT2D knockdown cells, as indicated by CCK8 as-
say (Figure 2E). EdU incorporation assay showed that substantially less EdU-positive cells were observed in the
shKMT2D group than in the scramble group (Figure 2F), which was consistent with the CCK8 result. Colony for-
mation assays revealed that the colony formation ability of shKMT2D cells was compromised, as evidenced by fewer
colonies over the course of 10 days than that observed in scramble group (Figure 2G,H).

KMT2D deficiency induced G1 phase arrest and down-regulation of
cyclinD1 and cyclin-dependent kinase 1
The effects of KMT2D deficiency on cell cycle distribution were analyzed by flow cytometry. Compared with the
scramble group, cells in the S and G2/M phases were significantly decreased in the shKMT2D group, suggesting
that the cell cycle was blocked at the G1 checkpoint upon KMT2D knockdown (Figure 3A,B). The expressions of
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Figure 3. KMT2D deficiency induced reduction in cell cycling activity and a down-regulation of CyclinD1 and Cdk1 in LS8

cells

(A) Representative cell cycle images measured using FCM. G1, S and G2/M phase were marked respectively in the images. (B)

Quantitative data of cell cycle distribution showed G1 phase arrested. (C) The mRNA expression of cell cycle related genes (Cy-

clinD1, Cdk4, CyclinB1, CyclinB2 and Cdk1) were measured by real-time RT-PCR. (D) The protein level of nuclear KMT2D and

CyclinD1 were detected by Western blot. (E) Quantitative data of nuclear CyclinD1 of three independent experiments were pre-

sented. The data represent three independent experiments, each in triplicate. Each bar represents mean +− SD from three samples

(*P<0.05). Means were compared using Student’s t test.

several key cell cycle regulatory proteins were then detected by quantitative reverse transcription polymerase chain
reaction (RT-qPCR) and Western blotting. KMT2D deficiency led to a decrease in mRNA expression of CyclinD1 and
cyclin-dependent kinase (Cdk) 1 (Cdk1), which function in G1/S cell cycle transition. The mRNA expression of p21,
a Cdk inhibitor, was obviously up-regulated, whereas other cell cycle-related factors, including CyclinB1, CyclinB2
and Cdk4 were not observably affected (Figure 3C). The expression of nuclear CyclinD1 protein was significantly
down-regulated (Figure 3D,E).

RNA-seq results revealed the effects of KMT2D deficiency on genes
expression and key signaling pathways
The shKMT2D and scramble shRNA-transfected LS8 cells were subjected to RNA-seq. In general, DEGs were ob-
tained, followed by the analysis of gene functions and signaling pathway. GO analysis of the filtered data revealed that
genes related to numerous cell behavioral processes, including cell proliferation, reproduction and adhesion, were
reduced after KMT2D knockdown (Figure 4A). KEGG pathway analysis revealed 307 signal pathways that were in-
volved in the biological effects induced by KMT2D knockdown. There were 225 down-regulated genes (fold change
(FC) ≤ −2, Q value ≤ 0.05) and 99 up-regulated genes (FC ≥ 2, Q-value ≤ 0.05). Based on the regulation of KMT2D
on the proliferation of dental epithelial cell line, KEGG analysis results showed the signaling pathways that regu-
lated cell proliferation and/or tooth development were represented in Figure 4B with a bubble diagram. The size
and chroma of bubbles showed the genes number and the Rich Ratio, respectively. Among these signaling pathways,
Wnt, Notch1 and Hedgehog pathways are extremely important pathways during tooth development, while PI3K and
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Figure 4. Bioinformatics analysis of GO term and KEGG pathway revealed the effects of KMT2D deficiency on cell function

and signaling pathways

There were 225 down-regulated genes (FC ≤ −2, Q value ≤ 0.05) and 99 up-regulated genes (FC ≥ 2, Q value ≤ 0.05). (A) GO

analysis result displayed functional clustering of DEGs. The red arrows marked the functions such as cell proliferation, reproduction

and growth. (B) Interested KEGG pathway results were presented by bubble diagram. (C) Genes related to Wnt (blue column), Notch

(green column) and Hedgehog (purple column) signal pathway in the DEGs data were listed as log2 (fold of change). (D) Expression

of above filtered genes were confirmed by real-time RT-PCR. Each bar represents mean +− SD from three samples (*P<0.05). Means

were compared using Student’s t test.

MAPK signaling pathways rarely plays a key role in tooth development, although a relatively large number of down-
stream genes in the PI3K and MAPK signaling pathway were affected by KMT2D knockdown. Given the important
roles of the Wnt, Notch1 and Hedgehog pathways (highlighted in red font in Figure 4C) in early tooth development,
all affected genes in these pathways were verified by RT-qPCR. Consistent with the RNA-seq data, the mRNA levels of
Lgr4, Wnt9a, Wnt10b, Tle2, Tle6, Axin2, Lef1 and β-catenin that involved in Wnt signaling were significantly de-
creased (Figure 4D). Notch pathway factor Lfng and Hedgehog pathway factor Gli1 and Ptch1 were also significantly
decreased. The mRNA expression of Bmi1, a member of the polycomb protein family that acts as a Wnt signaling
pathway activator, was also down-regulated by KMT2D knockdown.

Activation of Wnt signaling by LiCl partially reversed the effects of
KMT2D deficiency on cell proliferation and cell cycle
TOP/FOP assay result showed that Wnt/β-catenin activity decreased after KMT2D knockdown (Figure 5A). Then
KMT2D knockdown cells were stimulated with the Wnt signaling agonist LiCl (5 mM in PBS) to further explore the
role of the Wnt signaling pathway in the regulation of KMT2D. Cell immunofluorescence assays showed that KMT2D
knockdown decreased nuclear β-catenin, and LiCl stimulation partially reversed the reduction in nuclear β-catenin
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Figure 5. LiCl partially reversed the effects of KMT2D deficiency in the homeostasis of cell proliferation and cell cycle

(A) Luciferase assay was performed to evaluate the reduction in Wnt/β-catenin signaling activity (TOP/FOP) induced by KMT2D

knockdown. (B) KMT2D knockdown resulted in the decrease in nuclear β-catenin (yellow arrows). LiCl stimulation partially reversed

the decrease in nuclear β-catenin induced by KMT2D knockdown (blue arrows). (C) Result of CCK8 assay showed that the cell

proliferation reduction in shKMT2D group was reversed by LiCl stimulation. OD values at 450 nm spectrum of three independent

experiments were presented. (D) LiCl (5 mM) alleviated the G1 phase arrest after KMT2D knocking down. (E) Quantitative data of

cell cycle distribution showed G1 phase arrest released by LiCl. (F) CyclinD1 and Cdk1 were up-regulated by LiCl, and p21 was

down-regulated by LiCl. The data represent three independent experiments, each in triplicate. Each bar represents mean +− SD

from three samples (*P<0.05). Means were compared using Student’s t test between two groups (A,E,F). A normality test was run

before one-way ANOVA (C).

(Figure 5B). CCK8 assays revealed that LiCl partially reversed the reduction in the cell proliferation activity caused by
KMT2D knockdown (Figure 5C). Furthermore, flow cytometry results indicated that LiCl, to some extent, alleviated
the G1 phase arrest induced by KMT2D knockdown (Figure 5D,E). With LiCl stimulation for 24 h, the expression of
cyclinD1 and Cdk1 was up-regulated, whereas that of p21 was slightly down-regulated, which might be responsible
for the G1 phase release (Figure 5F).

In Kmt2d knockdown cells, the expressions of Kmt2d-target Wnt factors were compared between the
shKMT2D+PBS and shKMT2D+LiCl group, in order to figure out whether or not LiCl stimulation may change the
target gene expressions. As earlier referred in the Figure 4A, the mRNA expression levels of Lgr4, Wnt9a, Wnt10b,
Axin2, Lef1 and β-catenin were decreased in KMT2D knockdown cells. After LiCl stimulation on KMT2D knock-
down cells, the mRNA levels of Lgr4, β-catenin, Lef1 and Bmi1 were partially rescued, whereas Wnt9a and Wnt10b
showed no obvious changes (Figure 6A). Protein expression of LGR4, a Wnt signaling receptor, was up-regulated in
KMT2D knockdown cells after LiCl stimulation. Simultaneously, LiCl stimulation up-regulated the protein level of
BMI1 (Figure 6B,C). The results suggested that Wnt/β-catenin signaling pathway might be involved in the regulation
of KMT2D in dental epithelial cell line proliferation and cell cycle homeostasis.

Discussion
It is important to elucidate the genetic and epigenetic mechanisms underlying dental epithelium proliferation to un-
derstand the process of early tooth development. The H3K4 methyltransferase KMT2D plays a vital role in regulating
the development of multiple organs, including adipogenesis and myogenesis [21], cardiac development [26], B-cell de-
velopment [27,28], epidermal homeostasis [22] and craniofacial development [29]. Recently, Kmt2d mRNA has been
observed in the developing osteoblasts, epithelia and neural tissues [30]. During tooth development, Porntaveetus et
al. detected Kmt2d mRNA in the bud and cap stages of human dental epithelial tissues using in-situ hybridization
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Figure 6. LiCl partially up-regulated the expressions of Kmt2d-target Wnt factors in Kmt2d knockdown cells

(A) The mRNA expression of Lgr4, β-catenin, Lef1 and Bmi1 were significantly increased after the stimulation of LiCl. (B) Lgr4 and

Bmi1 were up-regulated at protein level after the stimulation of LiCl by Western blot, Lef1 and β-catenin showed no change. (C)

Quantitative data of Western blot of (B). The data represent three independent experiments, each in triplicate. Each bar represents

mean +− SD from three samples (*P<0.05). Means were compared using Student’s t test between two groups (C). A normality test

was run before one-way ANOVA (A).

[19]. Nevertheless, a systematic exploration of KMT2D and H3K4me patterns in the process of tooth development is
still needed for understanding the specific gene function. In the present study, we systematically analyzed the expres-
sion pattern of KMT2D in different stages of mouse molar development. The results showed that KMT2D protein was
mainly expressed in the enamel organ from bud stage to early bell stage, and the expression pattern was similar to that
of the cell proliferation marker Ki67 and cell cycle marker pRb. The expression of pRb is closely associated with G1–S
transition, yet the pRb protein has also been reported to function in other fields including tooth differentiation. et al.
have reported that Rb1 mRNA appears upregulate-d in differentiating ameloblasts and odontoblasts, suggesting roles
for Rb1 in tooth differentiation [31]. The specific expression of KMT2D in dental epithelial cells of early tooth germ
suggests that KMT2D might function in the initiation of tooth development and enamel organ formation. Moreover,
we found that KMT2D was expressed in both ameloblast and odontoblast layers at the late bell stage, which suggested
that KMT2D might as well play a role in late stages of tooth development.
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LS8, a cell line derived from mouse enamel organ epithelial, was used for investigate the function and mechanism
of KMT2D in dental epithelial cells [32]. Results showed that KMT2D knockdown significantly reduced the prolif-
eration activity and self-renewal capacity of dental epithelial cell line. Besides, two other shRNAs targeting KMT2D
have been designed and confirmed to influence LS8 cell viability, which suggested that the effect of KMT2D on cell
proliferation was not due to off-target effects (Supplementary Figure S1). We further found that KMT2D knockdown
resulted in reduction in cell cycling activity in dental epithelial cell line, which might be one reason of the cell pro-
liferation reduction. Cyclin D1, as an important cell cycle regulator in the transition from G1 to S phase [33], its
expression was significantly reduced after KMT2D knockdown. Consistent with KMT2D effect in dental epithelial
cell line, several studies have reported the function of KMT2D in cell proliferation and cell cycle. Lin-Shiao et al. had
reported that the function of KMT2D in cell proliferation regulation of normal epidermal cells was consistent with our
result in dental epithelial cell line [22]. During mouse heart development could cause G0/G1/S arrest of myocardial
cells, which explains the phenomenon of myocardial hypoplasia [26]. However, the role of KMT2D in craniofacial
epithelial cell line LS8 proliferation and cell cycle homeostasis is first reported in our study. It needs to be clarified
that the dental epithelial cell line LS8 used in this experiment has been transformed, its biological characteristics are
different from that of primary dental epithelial cells. Although the LS8 cell line is widely used in dental epithelial
research, it cannot represent the performance of developing dental epithelial cells. KMT2D is a major causative gene
of Kabuki syndrome with teeth dysplasia including missing teeth and conical teeth [17,18]. Loss-of-function KMT2D
variants have been reported in Kabuki patients [15,34]. In consideration of our results, the abnormal dental pheno-
type in Kabuki patients might be associated with the disturbance of dental epithelial cell proliferation that caused
by KMT2D deficiency. Recently, Shpargel et al. found that knocking out KMT2D in mouse neural crest would lead
to abnormal craniofacial development, yet no teeth deformities was reported [35]. This phenomenon might be due
to the redundant function with KMT2C homolog or UTX cofactor, as has been observed in other cell types [20,36].
As a major mammalian H3K4 methyltransferase, KMT2D is considered to be essential for enhancer activation by
altering the level of H3K4me [28,37]. In KMT2D knockdown cells, we found significant decreases in total H3K4me1
and H3K4me3 levels in nuclear proteins, corroborating the function of KMT2D in H3K4me regulation.

During embryo development and tissue formation, KMT2D is a critical factor during classical signaling path-
ways regulation. In the present study, RNA-seq and bioinformatics analysis was carried out in the KMT2D deficient
dental epithelial cell line, and several important pathways in early tooth development were screened out to be sig-
nificantly affected by KMT2D knockdown, including Wnt, Notch and Hedgehog pathways. Particularly, eight Wnt
signaling pathway factors including Lgr4, Wnt9a, Wnt10b, Tle2, Tle6, Axin2, Lef1 andβ-catenin were confirmed to
be down-regulated after KMT2D knockdown. During odontogenesis, classical Wnt/β-catenin signaling is generally
considered to function in cell proliferation and differentiation [38,39]. Tight regulation of the Wnt/β-catenin path-
way in dental epithelium has been proven to be essential for tooth patterning in early tooth formation. Abnormal
activation of Wnt/β-catenin signaling led to continuous tooth generation in mice [5]. Combined with our results,
it might be conjectured that the abnormal tooth number and morphogenesis observed in Kabuki patients would be
attributed to the effects of KMT2D deficiency on Wnt signaling. Bmi1, as an activator of Wnt signaling [40], has
been shown to regulate self-renewal activity and cell proliferation [41–43]. Our results demonstrated that Bmi1 was
also down-regulated upon KMT2D knockdown, and was partially rescued by the activation of Wnt/β-catenin signal-
ing. These results further indicate that KMT2D might be closely related with Bmi1 regulation and the self-renewal
processes of dental epithelial cell line.

To clarify the relationship of KMT2D and Wnt signaling in dental epithelial cell line behaviors, the rescue exper-
iments were performed using LiCl, a classic Wnt signaling pathway activator. The results showed that LiCl partially
reversed the effects of KMT2D knockdown on the cell proliferation and cell cycle, suggesting that Wnt/β-catenin
signaling is involved in KMT2D regulation of epithelial cell proliferation activity. As one of the important Wnt sig-
naling pathway receptors, Lgr4 (leucine-rich repeat-containing GPCR 4) has been reported to be expressed in cervical
loop epithelium during embryonic tooth morphogenesis [44]. Zhou et al. had demonstrated that Lgr4 knockdown
affected the proliferation of dental papilla stem cells and reduced the amount of β-catenin located in nuclei [45]. In
our study, Lgr4 was down-regulated and the nuclearβ-catenin was decreased in KMT2D knockdown cells, while LiCl
stimulation partially increased the Lgr4 expression and nuclear β-catenin level. From these results, it can be specu-
lated that Lgr4 might be involved in the regulation of dental epithelial cell line proliferation by affecting β-catenin
nuclear translocation. Further research is needed to be carried out to explore the precise mechanism and the key
target factor of Wnt signaling pathway involved in KMT2D regulation of LS8 cell proliferation. Compared with BIO
(6-bromo-indirubin-3′-oxime) and Wnt protein ligands, LiCl is a broad-spectrum agent. Apart from activating the
canonical Wnt signaling pathway activity by inhibiting GSK-3β, LiCl could also activate adenylyl cyclase, IP3, PKC
and arachidonic acid signaling [46]. These non-specific effects of LiCl might be one reason that the rescue levels of
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many Wnt markers seem to be modest in our assays. It is noteworthy that Wnt signaling stimulation could only par-
tially reverse the cell proliferation level, which might be caused by some redundant effect of other possible KMT2D
downstream factors (Shh and Notch), or the low LiCl concentration (5 nM) that we selected according to LS8 cell state.
Nevertheless, our in vitro experiments shed new light on the function of KMT2D and H3K4me in dental epithelial
cell line, and provide basis for further in vivo studies using conditional transgenic mice.

Conclusion
In conclusion, the present study elucidated that KMT2D presents a specific spatiotemporal expression pattern during
tooth germ development, and regulates cell proliferation and the cell cycle of dental epithelial cell line partially via
Wnt/β-catenin signaling. Our study provides new insights into the role of KMT2D and histone methylation in dental
development and furthers our understanding of the molecular pathogenesis of Kabuki syndrome.
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7 van Genderen, C., Okamura, R.M., Fariñas, I., Quo, R.G., Parslow, T.G., Bruhn, L. et al. (1994) Development of several organs that require inductive
epithelial-mesenchymal interactions is impaired in LEF-1-deficient mice. Genes Dev. 8, 2691–2703, https://doi.org/10.1101/gad.8.22.2691

8 Andl, T., Reddy, S.T., Gaddapara, T. and Millar, S.E. (2002) WNT signals are required for the initiation of hair follicle development. Dev. Cell 2, 643–653,
https://doi.org/10.1016/S1534-5807(02)00167-3

9 Lee, J., Saha, P.K., Yang, Q.-H., Lee, S., Park, J.Y., Suh, Y. et al. (2008) Targeted inactivation of MLL3 histone H3-Lys-4 methyltransferase activity in the
mouse reveals vital roles for MLL3 in adipogenesis. Proc. Natl. Acad. Sci. U.S.A. 105, 19229–19234, https://doi.org/10.1073/pnas.0810100105

10 Wang, Y., Li, Y., Guo, C., Lu, Q., Wang, W., Jia, Z. et al. (2016) ISL1 and JMJD3 synergistically control cardiac differentiation of embryonic stem cells.
Nucleic Acids Res. 44, 6741–6755, https://doi.org/10.1093/nar/gkw301

11 Uribe Rosa, A., Buzzi Ailı́n, L., Bronner Marianne, E. and Strobl-Mazzulla Pablo, H. (2015) Histone demethylase KDM4B regulates otic vesicle
invagination via epigenetic control of Dlx3 expression. J. Cell Biol. 211, 815–827, https://doi.org/10.1083/jcb.201503071

12 Fan, Z., Yamaza, T., Lee, J.S., Yu, J., Wang, S., Fan, G. et al. (2009) Bcor regulates mesenchymal stem cell function by epigenetic mechanisms. Nat.
Cell Biol. 11, 1002–1009, https://doi.org/10.1038/ncb1913

13 Kamiunten, T., Ideno, H., Shimada, A., Arai, Y., Terashima, T., Tomooka, Y. et al. (2017) Essential roles of g9a in cell proliferation and differentiation
during tooth development. Exp. Cell. Res. 357, 202–210, https://doi.org/10.1016/j.yexcr.2017.05.016

14 Khan, Q.E.S., Sehic, A., Skalleberg, N., Landin, M.A., Khuu, C., Risnes, S. et al. (2012) Expression of delta-like 1 homologue and insulin-like growth
factor 2 through epigenetic regulation of the genes during development of mouse molar. Eur. J. Oral Sci. 120, 292–302,
https://doi.org/10.1111/j.1600-0722.2012.00976.x

15 Ng, S.B., Bigham, A.W., Buckingham, K.J., Hannibal, M.C., McMillin, M.J., Gildersleeve, H.I. et al. (2010) Exome sequencing identifies MLL2 mutations
as a cause of Kabuki syndrome. Nat. Genet. 42, 790–793, https://doi.org/10.1038/ng.646

16 Cheon, C.K., Sohn, Y.B., Ko, J.M., Lee, Y.J., Song, J.S., Moon, J.W. et al. (2014) Identification of KMT2D and KDM6A mutations by exome sequencing in
Korean patients with Kabuki syndrome. J. Hum. Genet. 59, 321–325, https://doi.org/10.1038/jhg.2014.25

17 Atar, M., Lee, W. and O’Donnell, D. (2006) Kabuki syndrome: oral and general features seen in a 2-year-old chinese boy. Int. J. Pediatr. Dent. 16,
222–226, https://doi.org/10.1111/j.1365-263X.2006.00699.x

18 Rocha, C.T., Peixoto, I.T.A., Fernandes, P.M., Torres, C.P. and de Queiroz, A.M. (2008) Dental findings in Kabuki make-up syndrome: a case report. Spec.
Care Dentist. 28, 53–57, https://doi.org/10.1111/j.1754-4505.2008.00011.x

19 Porntaveetus, T., Abid, M.F., Theerapanon, T., Srichomthong, C., Ohazama, A., Kawasaki, K. et al. (2018) KMT2D expanding the oro-dental and
mutational spectra of Kabuki syndrome and expression of and in human tooth germs. Int. J. Biol. Sci. 14, 381–389, https://doi.org/10.7150/ijbs.23517

20 Hu, D., Gao, X., Morgan, M.A., Herz, H., Smith, E.R. and Shilatifard, A. (2013) The MLL3/MLL4 branches of the COMPASS family function as major
histone H3K4 monomethylases at enhancers. Mol. Cell. Biol. 33, 4745–4754, https://doi.org/10.1128/MCB.01181-13

21 Lee, J., Wang, C., Xu, S., Cho, Y., Wang, L., Feng, X. et al. (2013) H3K4 mono- and di-methyltransferase MLL4 is required for enhancer activation during
cell differentiation. eLife 2, e01503, https://doi.org/10.7554/eLife.01503

22 Lin-Shiao, E., Lan, Y., Coradin, M., Anderson, A., Donahue, G., Simpson, C.L. et al. (2018) KMT2D regulates p63 target enhancers to coordinate
epithelial homeostasis. Genes Dev. 32, 181–193, https://doi.org/10.1101/gad.306241.117

23 Zheng, L.W., Zhang, B.P., Xu, R.S., Xu, X., Ye, L. and Zhou, X.D. (2014) Bivalent histone modifications during tooth development. Int. J. Oral Sci. 6,
205–211, https://doi.org/10.1038/ijos.2014.60

24 Li, B., Yu, F., Wu, F., Hui, T., A, P., Liao, X. et al. (2018) EZH2 impairs human dental pulp cell mineralization via the Wnt/β-Catenin pathway. J. Dent.
Res. 97, 571–579, https://doi.org/10.1177/0022034517746987

25 Gao, R., Dong, R., Du, J., Ma, P., Wang, S. and Fan, Z. (2013) Depletion of histone demethylase KDM2A inhibited cell proliferation of stem cells from
apical papilla by de-repression of p15INK4B and p27Kip1. Mol. Cell. Biochem. 379, 115–122, https://doi.org/10.1007/s11010-013-1633-7

26 Ang, S.Y., Uebersohn, A., Spencer, C.I., Huang, Y., Lee, J.E., Ge, K. et al. (2016) KMT2D regulates specific programs in heart development via histone H3
lysine 4 di-methylation. Development 143, 810–821, https://doi.org/10.1242/dev.132688

27 Ortega-Molina, A., Boss, I.W., Canela, A., Pan, H., Jiang, Y., Zhao, C. et al. (2015) The histone lysine methyltransferase KMT2D sustains a gene
expression program that represses B cell lymphoma development. Nat. Med. 21, 1199–1208, https://doi.org/10.1038/nm.3943

28 Zhang, J., Dominguezsola, D., Hussein, S., Lee, J., Holmes, A.B., Bansal, M. et al. (2015) Disruption of KMT2D perturbs germinal center B cell
development and promotes lymphomagenesis. Nat. Med. 21, 1190–1198, https://doi.org/10.1038/nm.3940

29 Van Laarhoven, P.M., Neitzel, L.R., Quintana, A.M., Geiger, E.A., Zackai, E.H., Clouthier, D.E. et al. (2015) Kabuki syndrome genes KMT2D and KDM6A:
functional analyses demonstrate critical roles in craniofacial, heart and brain development. Hum. Mol. Genet. 24, 4443–4453,
https://doi.org/10.1093/hmg/ddv180

30 Dong, C., Umar, M., Bartoletti, G., Gahankari, A., Fidelak, L. and He, F. (2019) Expression pattern of Kmt2d in murine craniofacial tissues. Gene Expr.
Patterns 34, 119060, https://doi.org/10.1016/j.gep.2019.119060

31 Andreeva, V., Cardarelli, J. and Yelick, P.C. (2012) Rb1 mRNA expression in developing mouse teeth. Gene Expr. Patterns 12, 130–135,
https://doi.org/10.1016/j.gep.2012.01.004

32 Chen, L.S., Couwenhoven, R.I., Hsu, D., Luo, W. and Snead, M.L. (1992) Maintenance of amelogenin gene expression by transformed epithelial cells of
mouse enamel organ. Arch. Oral Biol. 37, 771–778, https://doi.org/10.1016/0003-9969(92)90110-T

33 Lim, S. and Kaldis, P. (2013) Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Development 140, 3079–3093,
https://doi.org/10.1242/dev.091744

34 Yap, C.-S., Jamuar, S.S., Lai, A.H.M., Tan, E.-S., Ng, I. et al. (2020) Identification of KMT2D and KDM6A variants by targeted sequencing from patients
with Kabuki syndrome and other congenital disorders. Gene 731, 144360, https://doi.org/10.1016/j.gene.2020.144360

14 © 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons
Attribution License 4.0 (CC BY).

D
ow

nloaded from
 http://portlandpress.com

/bioscirep/article-pdf/41/11/BSR
20211148/924811/bsr-2021-1148.pdf by guest on 25 April 2024

https://doi.org/10.1073/pnas.0607289103
https://doi.org/10.1101/gad.8.22.2691
https://doi.org/10.1016/S1534-5807(02)00167-3
https://doi.org/10.1073/pnas.0810100105
https://doi.org/10.1093/nar/gkw301
https://doi.org/10.1083/jcb.201503071
https://doi.org/10.1038/ncb1913
https://doi.org/10.1016/j.yexcr.2017.05.016
https://doi.org/10.1111/j.1600-0722.2012.00976.x
https://doi.org/10.1038/ng.646
https://doi.org/10.1038/jhg.2014.25
https://doi.org/10.1111/j.1365-263X.2006.00699.x
https://doi.org/10.1111/j.1754-4505.2008.00011.x
https://doi.org/10.7150/ijbs.23517
https://doi.org/10.1128/MCB.01181-13
https://doi.org/10.7554/eLife.01503
https://doi.org/10.1101/gad.306241.117
https://doi.org/10.1038/ijos.2014.60
https://doi.org/10.1177/0022034517746987
https://doi.org/10.1007/s11010-013-1633-7
https://doi.org/10.1242/dev.132688
https://doi.org/10.1038/nm.3943
https://doi.org/10.1038/nm.3940
https://doi.org/10.1093/hmg/ddv180
https://doi.org/10.1016/j.gep.2019.119060
https://doi.org/10.1016/j.gep.2012.01.004
https://doi.org/10.1016/0003-9969(92)90110-T
https://doi.org/10.1242/dev.091744
https://doi.org/10.1016/j.gene.2020.144360


Bioscience Reports (2021) 41 BSR20211148
https://doi.org/10.1042/BSR20211148

35 Shpargel, K.B., Mangini, C.L., Xie, G., Ge, K. and Magnuson, T. (2020) The KMT2D Kabuki syndrome histone methylase controls neural crest cell
differentiation and facial morphology. Development 147, Dev187997, https://doi.org/10.1242/dev.187997

36 Cho, Y.W., Hong, T., Hong, S., Guo, H., Yu, H., Kim, D. et al. (2007) PTIP associates with MLL3- and MLL4-containing histone H3 lysine 4
methyltransferase complex. J. Biol. Chem. 282, 20395–20406, https://doi.org/10.1074/jbc.M701574200

37 Wang, C., Lee, J.E., Lai, B., Macfarlan, T.S., Xu, S., Zhuang, L. et al. (2016) Enhancer priming by H3K4 methyltransferase MLL4 controls cell fate
transition. Proc. Natl Acad. Sci. U.S.A. 113, 11871–11876, https://doi.org/10.1073/pnas.1606857113

38 Zhang, Z., Guo, Q., Tian, H., Lv, P., Zhou, C. and Gao, X. (2014) Effects of WNT10A on proliferation and differentiation of human dental pulp cells. J.
Endod. 40, 1593–1599, https://doi.org/10.1016/j.joen.2014.07.009

39 Liu, N., Zhou, M., Zhang, Q., Zhang, T., Tian, T., Ma, Q. et al. (2018) Stiffness regulates the proliferation and osteogenic/odontogenic differentiation of
human dental pulp stem cells via the WNT signalling pathway. Cell Prolif. 51, e12435, https://doi.org/10.1111/cpr.12435

40 Cho, J.H., Dimri, M. and Dimri, G.P. (2013) A positive feedback loop regulates the expression of polycomb group protein BMI1 via WNT signaling
pathway. J. Biol. Chem. 288, 3406–3418, https://doi.org/10.1074/jbc.M112.422931

41 Lu, X., Sun, S., Qi, J., Li, W., Liu, L., Zhang, Y. et al. (2017) Bmi1 regulates the proliferation of cochlear supporting cells via the canonical wnt signaling
pathway. Mol. Neurobiol. 54, 1326–1339, https://doi.org/10.1007/s12035-016-9686-8

42 Lessard, J. and Sauvageau, G. (2003) Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature 423, 255–260,
https://doi.org/10.1038/nature01572

43 Lukacs, R.U., Memarzadeh, S., Wu, H. and Witte, O.N. (2010) Bmi-1 is a crucial regulator of prostate stem cell self-renewal and malignant
transformation. Cell Stem Cell 7, 682–693, https://doi.org/10.1016/j.stem.2010.11.013

44 Yamakami, Y., Kohashi, K., Oyama, K., Mohri, Y., Hidema, S. and Nishimori, K. (2016) LGR4 is required for sequential molar development. Biochem.
Biophys. Rep. 8, 174–183, https://doi.org/10.1016/j.bbrep.2016.08.018

45 Zhou, M., Guo, S., Yuan, L., Zhang, Y., Zhang, M., Chen, H. et al. (2017) Blockade of LGR4 inhibits proliferation and odonto/osteogenic differentiation of
stem cells from apical papillae. J. Mol. Histol. 48, 389–401, https://doi.org/10.1007/s10735-017-9737-0

46 Marmol, F. (2008) Lithium: Bipolar disorder and neurodegenerative diseases Possible cellular mechanisms of the therapeutic effects of lithium. Prog.
Neuropsychopharmacol. Biol. Psychiatry 32, 1761–1771, https://doi.org/10.1016/j.pnpbp.2008.08.012

© 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).

15

D
ow

nloaded from
 http://portlandpress.com

/bioscirep/article-pdf/41/11/BSR
20211148/924811/bsr-2021-1148.pdf by guest on 25 April 2024

https://doi.org/10.1242/dev.187997
https://doi.org/10.1074/jbc.M701574200
https://doi.org/10.1073/pnas.1606857113
https://doi.org/10.1016/j.joen.2014.07.009
https://doi.org/10.1111/cpr.12435
https://doi.org/10.1074/jbc.M112.422931
https://doi.org/10.1007/s12035-016-9686-8
https://doi.org/10.1038/nature01572
https://doi.org/10.1016/j.stem.2010.11.013
https://doi.org/10.1016/j.bbrep.2016.08.018
https://doi.org/10.1007/s10735-017-9737-0
https://doi.org/10.1016/j.pnpbp.2008.08.012

