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Background: Hepatocellular carcinoma (HCC) is a malignant tumor of the digestive sys-
tem characterized by mortality rate and poor prognosis. To indicate the prognosis of HCC
patients, lots of genes have been screened as prognostic indicators. However, the predic-
tive efficiency of single gene is not enough. Therefore, it is essential to identify a risk-score
model based on gene signature to elevate predictive efficiency.
Methods: Lasso regression analysis followed by univariate Cox regression was employed
to establish a risk-score model for HCC prognosis prediction based on The Cancer Genome
Atlas (TCGA) dataset and Gene Expression Omnibus (GEO) dataset GSE14520. R package
‘clusterProfiler’ was used to conduct function and pathway enrichment analysis. The infil-
tration level of various immune and stromal cells in the tumor microenvironment (TME) were
evaluated by single-sample GSEA (ssGSEA) of R package ‘GSVA’.
Results: This prognostic model is an independent prognostic factor for predicting the prog-
nosis of HCC patients and can be more effective by combining with clinical data through
the construction of nomogram model. Further analysis showed patients in high-risk group
possess more complex TME and immune cell composition.
Conclusions: Taken together, our research suggests the thirteen-gene signature to possess
potential prognostic value for HCC patients and provide new information for immunological
research and treatment in HCC.

Introduction
Hepatocellular carcinoma (HCC) is a common malignant tumor of human digestive system. Its early di-
agnosis and treatment are becoming a worldwide problem [1]. Therefore, seeking prognostic markers is
urgent for identifying high-risk patients of HCC patients, which may be helpful to implement individu-
alized treatment.

Increasing studies have shown that gene signatures have an advantage in predicting the overall survival
(OS). Long et al. constructed a four-gene signature based on CENPA, SPP1, MAGEB6 and HOXD9 ex-
pression to predict the OS of HCC [2]. Zheng et al. also established a four-gene signature based on SPINK1,
TXNRD1, LCAT and PZP to predict the OS of HCC patients in The Cancer Genome Atlas (TCGA) co-
hort [3]. However, little research has been done to study causes of different risk between patients, such as
the composition of tumor microenvironment (TME).

In our study, we constructed a thirteen-gene signature-based risk-score model that included LDHA,
GPC1, GRM8, PPAT, SLC29A3, EMCN, GDI2, CBX2, LILRA2, ADAMTS5, GSR, WEE1 and SLC1A5.
The risk-score model was validated in Gene Expression Omnibus (GEO) database. Furthermore, we built
and validated a nomogram in the TCGA cohort to predict OS of HCC patients. Functional analysis of
the differentially expressed genes (DEGs) between high- and low-risk groups was conducted. The infil-
tration level of various immune and stromal cells in the TME was evaluated. In general, the prognostic
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model might help effectively predict OS of HCC patients and evaluate the infiltration level of immune and stromal
cells in HCC tissue.

Materials and methods
Data preparation
TCGA and GEO database were used to establish and validate risk score model. For TCGA cohort, 371 patients pos-
sessed RNA seq data, in which 365 patients with OS data were selected for the construction of prognostic model.
The TCGA mRNA expression was generated with HTseq-FPKM. Then, 365 patients were randomly grouped into
183 cases as internal training set and 182 cases as internal testing set. For external testing set, we obtained GEO HCC
dataset (access no: GSE14520, platform: GPL571) which included 247 HCC samples, in which 221 patients possessed
available OS information for validation of prognostic model. The clinical baseline data of TCGA and GSE14520 are
provided in Supplementary Table S1.

Construction of the risk-score prognostic model
Lasso regression analysis followed by univariate Cox regression was conducted to investigate and narrow OS related
genes. A total of 436 genes that meet the standard of P-value <0.001 by univariate Cox regression analysis were se-
lected for Lasso-penalized regression. Lasso-penalized regression was conducted by R package ‘glmnet’ with ten-fold
cross-validation. According to the expression of each gene, we screened eligible genes and calculated corresponding
coefficients and risk score for each patient. A thirteen-gene signature was established based on univariate and Lasso
regression analyses. The prognosis index (PI) = (0.094 * LDHA expression) + (0.076 * of GPC1 expression) + (0.087
* GRM8 expression) + (0.279 * PPAT expression) + (0.189 * SLC29A3 expression) + (−0.147 * EMCN expression)
+ (0.016 * GDI2 expression) + (0.187 * CBX2 expression) + (0.637* LILRA2 expression) + (0.368 * ADAMTS5 ex-
pression) + (0.056 * GSR expression) + (0.028 * WEE1 expression) + (0.008 * SLC1A5 expression). Patients of TCGA
HCC cohort were grouped into high- and low-risk groups by the optimal cut-off value. In addition, Kaplan–Meier
survival and receiver operating characteristic (ROC) analysis were conducted to estimate the predictive efficiency of
the risk-score model.

Construction and validation of a predictive nomogram
To evaluate the probability of 5-year OS, we constructed a nomogram in TCGA HCC cohort [4] based on multivari-
able Cox regression analysis of risk-score model and clinical characteristic parameters. The calibration curve was used
to show the nomogram prediction probabilities against the observed rates. We used DCA plot to calculate the clinical
net benefit and net reduction. The best model possessed the highest net benefit and net reduction as calculated [5].

DEG screening
Median risk score was used to group the patients into the high- and low-risk groups. The DEGs were selected by the
R package ‘Limma’. DEGs with an absolute log2FC (fold change) > 0.5 and the P<0.05 were selected for subsequent
analysis.

Enrichment analyses
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted using R pack-
age ‘clusterProfiler’ [6]. Gene Set Enrichment Analysis (GSEA) was conducted using gseGO, gseKEGG and gsePath-
way function in R package ‘clusterProfiler’, with the parameters: nPerm = 1000, minGSSize = 10, maxGSSize = 1000,
pvalue-Cutoff = 0.05.

Generation of TME gene signatures and signature score computation
We used TME-related gene sets, the scoring method curated by Mariathasan et al. [7]. Briefly, a principal component
analysis (PCA) was performed, and principal component 1 was considered to serve as gene signature score.

Immune cell infiltration
The single-sample GSEA (ssGSEA) was used to evaluate the infiltration level of 28 immune cells. The gene sets of
various immune cells were obtained from a recent publication [8]. The infiltration score of each immune cell was
calculated through ssGSEA of ‘GSVA’ R package in the R software. The ssGSEA score was normalized to uniform
distribution, for which the ssGSEA score is distributed between 0 and 1.
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Human tissue samples
The experiments involving human samples in our study were in accordance with the principles of the Declaration
of Helsinki, and approved by the Institutional Review Board of Nanfang Hospital, Southern Medical University of
Guangdong, China (NFEC-201208-K3). A total of ten liver cancer and paired non-cancerous tissues were collected
and used for qRT-PCR.

qRT-PCR
TRIzol® reagent (TaKaRa, Tokyo, Japan), PrimeScript™ First Strand cDNA Synthesis Kit (TaKaRa, Tokyo, Japan)
and SYBR® Green PCR kit (TaKaRa, Tokyo, Japan) were used to perform the extraction of total RNA, synthesis of
First-Strand cDNA and real-time PCR, respectively. Primers are provided in Supplementary Table S2.

Statistical analysis
All data are presented as the mean +− standard deviation (SD). Student’s t test (two-tailed) was used to analyze differ-
ences between two groups using R software (version: 3.6.2). P<0.05 was considered statistically significant: *P<0.05;
**P<0.01; ***P<0.001 and ****P<0.0001.

Results
Risk-score model construction
Three hundred and sixty-five HCC patients in TCGA cohort were included. These patients were randomly separated
into two groups, including internal training set (n=183) and internal testing set (n=182). Univariate Cox regression
analysis identified 436 OS-related genes (P<0.001) (Supplementary Table S3). Then, Lasso analysis was conducted
in the internal training set to further shrink the OS-related genes. Thirteen genes (including LDHA, GPC1, GRM8,
PPAT, SLC29A3, EMCN, GDI2, CBX2, LILRA2, ADAMTS5, GSR, WEE1 and SLC1A5) were screened and subse-
quently used to construct a prognostic risk-score model (Figure 1). We further calculated the risk score for each
patient and seek the best optimal cutoff using the R package ‘Survminer’. Kaplan–Meier curve and ROC analysis were
performed to estimate the efficiency of the thirteen-gene signature in the internal training cohort (Figure 2A), inter-
nal testing cohort (Figure 2B) and external testing cohort (Figure 2C). Patients showed significantly poorer OS in the
high-risk group compared with the low-risk group (P<0.001). The areas under the ROC curve (AUCs) for 1-, 3-, and
5-year respectively for internal training cohort, internal testing cohort and external testing cohort were 0.769, 0.746,
0.763; 0.757, 0.635, 0.601; 0.637, 0.666, 0.646.

Correlation of risk-score model and clinical features
Forest map showed the univariate Cox regression analysis results of these thirteen genes (Figure 3A). The
Kaplan–Meier survival analysis based on TCGA cohort revealed that EMCN was a favorable factor for prognosis
(Supplementary Figure S1A), while the other 12 genes were risk factors for prognosis (Supplementary Figure S1B–M),
which was consistent with the result of univariate Cox regression analysis. The mRNA expression level of each mRNA
except EMCN, was higher in the high-risk group (Supplementary Figure S2A–M). Through correlation analysis, we
found that the mRNA level of these 13 genes have a strong correlation: EMCN was negatively correlated with other
12 mRNAs, while these 12 mRNAs have positive correlation with each other (Figure 3B). In addition, we found that
among the 13 genes in the prognosis model, 8 genes have been studied and proved to promote HCC progress, includ-
ing CBX2 [9], SLC1A5 [10], LDHA [11], GSR [12], GPC1 [13], GDI2 [14], ADAMTS5 [15] and WEE1 [16]. While
the other five genes have not been experimentally studied in HCC, including EMCN, LILRA2, PPAT, SLC29A3 and
GRM8. We further verified the expression of these five genes using qRT-PCR. Our results showed that SLC29A3 and
PPAT were high-expressed and EMCN was low-expressed in HCC tissues compared with adjacent normal tissues
(Supplementary Figure S3A–C). There was no difference in LILRA2 and GRM8 expression between HCC tissues
and adjacent normal tissues (Supplementary Figure S3D–W).

Moreover, we found that the risk score was higher in the high stage of HCC both in TCGA and GSE14520 cohort
(Figure 3C,D). Univariate and multivariate Cox regression analyses were performed to evaluate the independent pre-
dictive ability of the risk-score model in TCGA HCC cohort. Results suggested the risk-score status, person neoplasm
cancer status and tumor stage to act as independent prognostic factors (Table 1).

Construction and validation of predictive nomogram
We further built a nomogram to predict OS according to the results of multivariate cox regression in TCGA HCC
cohort (Figure 4A). The calibration curves for the 1-, 3- and 5-year OS showed good agreement between the prediction
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Figure 1. The work flow showing the scheme of our study

Table 1 The results of univariate and multivariate analyses

Univariate analysis Multivariate analysis
TCGA LIHC cohort (n=366) HR (95% CI) P-value HR (95% CI) P-value

Neoplasm histologic grade (G3-4/G1-2) 1.083 (0.839–1.397) 0.542

Person neoplasm cancer status (With tumor/Tumor free) 1.877 (1.42–2.48) <0.001 1.461 (1.081–1.975) 0.014

Relative family cancer history (Yes/No) 1.125 (0.867–1.458) 0.375

Vascular tumor cell type (None/Micro or Macro) 0.808 (0.602–1.084) 0.155

Gender (Male/Female) 0.867 (0.675–1.113) 0.263

Age (>median/<median) 1.13 (0.881–1.448) 0.337

Tumor stage (Stage III+IV/I+II) 1.883 (1.448–2.448) <0.001 1.423 (1.056–1.918) 0.02

Risk score (Low/High) 0.476 (0.364–0.614) <0.001 0.503 (0.369–0.686) <0.001

BCLC (B+C/A) 1.403 (0.851–2.311) 0.184

from the nomogram and the actual observations (Figure 4B). The AUCs for 1-, 3- and 5-year respectively for risk-score
model and nomogram model in TCGA cohort were 0.807, 0.736, 0.709 (Figure 4C) and 0.778, 0.766, 0.763 (Figure
4D). The clinical usefulness was assessed using DCA. The results showed the nomogram model to perform better to
help identify high-risk patients for intervention and low-risk patients to avoid over treatment, especially for 3- and
5-year prediction (Figure 4E–J). In addition, the C-index of our nomogram model was 0.729, which was higher than
that in other five published models (Figure 4K) [17].
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Figure 2. Construction of risk-score predictive model

(A) Kaplan–Meier curve, heatmap of normalized mRNA expression, scatterplot of risk score and patient survival status, and ROC

curve of the risk-score model in the internal training set of TCGA cohort. (B) Kaplan–Meier curve, heatmap of normalized mRNA

expression, scatterplot of risk score and patient survival status, and ROC curve of the risk-score model in the internal testing set

of TCGA cohort. (C) Kaplan–Meier curve, heatmap of normalized mRNA expression, scatterplot of risk score and patient survival

status, and ROC curve of the risk-score model in the external testing set of GSE14520 cohort.
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Figure 3. Correlation of risk-score model and WHO stages

(A) The hazard ratios (HRs) with 95% confidence interval (95% CI) and P-value of univariate Cox regression were showed by Forest

plot. (B) Correlation between thirteen genes, red and green curve respectively represents positive and negative correlation. (C) Risk

score of samples in indicated stages in the TCGA cohort. (D) Risk score of samples in indicated stages in the GSE14520 cohort.

Student’s t-test. *P <0.05, ***P<0.001, ****P<0.0001.

Functional enrichment analysis
To explore the differences between high- and low-risk groups, we divided the samples of TCGA HCC cohort into
high- and low-risk groups according to the median of risk score. The volcano plot and heatmap showed the DEGs
between high- and low-risk groups (Figure 5A,B). GSEA was conducted to search GO (Figure 5C) and Reactome
Pathways (Figure 5D). Cell cycle-related terms were significantly enriched in high-risk group, such as G1/S transition
of mitotic cell cycle, cell cycle and S phase terms. To further explore the potential functional pathways, functional
pathway analysis was conducted based on the DEGs using R packages ‘clusterProfiler’. Results revealed that these
genes were mainly associated with carboxylic acid biosynthetic process, organic acid biosynthetic process and steroid
metabolic process in biological process (BP) category. For cellular component (CC) category, the DEGs were mainly
enriched in collagen-containing extracellular matrix and endoplasmic reticulum lumen. In molecular function (MF)
category, the DEGs were mainly enriched in oxidoreductase activity, acting on CH−OH group of donors (Figure
5E). Moreover, KEGG pathway analysis suggested the DEGs were enriched in various cross-talks in malignancy,
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Figure 4. Construction of nomogram to predict OS of HCC patients

(A) Nomogram for predicting probabilities of HCC patients with 1-, 3- and 5-year OS of HCC patients. (B) Calibration plot for

predicting 1-, 3- and 5-year OS of HCC patient. Nomogram-based probability of survival is plotted on the x-axis; actual survival

is plotted on the y-axis. (C,D) The ROC curve of the risk-score model (C) and nomogram model (D) for 1-, 3- and 5-year OS of

HCC patient. (E–J) Net benefit (E–G) and net reduction (H–J) (y-axis) as calculated are plotted against the threshold probabilities of

patients having 1-, 3- and 5-year survival on the x-axis. The green line represents the assumption that all patients have indicated

survival time. The black solid line represents the assumption that no patients have indicated survival time. (K) The C-index values

of prognostic models in indicated studies.

including Metabolism of xenobiotics by cytochrome P450, Retinol metabolism, Drug metabolism–cytochrome P450,
Glycolysis/Gluconeogenesis and PPAR signaling pathway (Figure 5F).
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Figure 5. Function and pathway enrichment analysis of DEGs

(A) The volcano plot of DEGs between high- and low-risk groups. (B) The heatmap showed the top 50 overexpressed genes in

high-risk group and top 50 overexpressed genes in low-risk group. (C,D) Significant GSEA results of DEGs, including GO (C) and

Reactome Pathways (D). (E) Significant GO terms of DEGs, including MF, CC and BP. (F) Significant KEGG pathways of DEGs.
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Figure 6. TME analysis of high- and low-risk groups

(A) Heatmap of normalized (Z-score) score of TME signature. (B) The TME signature score of samples in high- and low-risk groups.

Student’s t-test. ***P<0.001, ****P<0.0001.

TME analysis
TME, especially, immune microenvironment plays a key role in the survival of tumor patients. We hypothesized that
high-risk patients have more complex TME. To our surprise, our analyses revealed that high-risk group was signifi-
cantly associated with all indicated TME signatures (Figure 6A,B). To evaluate the infiltration level of immune cell,
we employed ssGSEA to get the relative infiltration score of 28 immune cells (Figure 7A). We observed two major
features. (1) The high-risk group had more complex immune cell components than the low-risk group, including cells
executing anti-tumor reactivity (activated CD4 T cells, activated dendritic cells, central memory CD4 T cells, central
memory CD8 T cells, Natural killer cells and Natural killer T cells) and cells delivering pro-tumor suppression (im-
mature dendritic cells, MDSCs, plasmacytoid dendritic cell, regulatory T cells and Type 2 T helper cell) (Figure 7B).
(2) Pearson’s correlation analysis revealed the infiltration level of cells executing anti-tumor reactivity and delivering
pro-tumor suppression was positively correlated within a local environment (Figure 7C). This observation suggests
a presence of a feedback mechanism such that the recruitment or differentiation of cells specialized for immune sup-
pression may be facilitated by anti-tumor inflammation.
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Figure 7. ssGSEA of high- and low-risk groups

(A) Heatmap of normalized (Z-score) score of 28 infiltrating immune cell populations. (B) The signature score of 28 infiltrating

immune cells in high- and low-risk groups. (C) Correlation between infiltration of cell types executing anti-tumor immunity and

cell types executing pro-tumor immune suppressive functions. R coefficient of Pearson’s correlation. The shaded area represents

95% confidence interval. Red points represent high-risk patients, green points represent low-risk patients.*P<0.05, **P<0.01,

***P<0.001, ****P<0.0001.

Discussion
HCC is one of the most malignant tumor types worldwide with its poor prognosis and lack of effective early detection
methods [8,18,19]. Therefore, it is urgent to identify new prognostic markers and establish more accurate prognostic
models. Compared with a single biomarker, the prognostic gene signatures and conventional clinical parameters
may have better prediction effect. In recent years, gene markers based on mRNAs have been widely used in tumor
prognosis prediction [20–23]. However, prognostic gene signatures that could be used to show therapeutic effects is
still very few.

In our study, we built a thirteen-gene prognostic model that included LDHA, GPC1, GRM8, PPAT, SLC29A3,
EMCN, GDI2, CBX2, LILRA2, ADAMTS5, GSR, WEE1 and SLC1A5. The prediction performance of this
thirteen-gene prognostic model was eligible not only in internal training set and internal testing set from TCGA
HCC cohort, but also in external testing set from GSE14520 HCC cohort. The thirteen-gene risk model was also
proved to be an independent prognostic factor for HCC. Patients in high-risk group have significantly worse OS than
patients in low-risk group.

Nomogram is a tool to provide individual patients with the OS probability [24,25]. In our study, we built a nomo-
gram model using the thirteen-gene signature combined with clinical prognostic factors. The calibration plots showed

10 © 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).

D
ow

nloaded from
 http://portlandpress.com

/bioscirep/article-pdf/41/4/BSR
20202870/908684/bsr-2020-2870.pdf by guest on 23 April 2024



Bioscience Reports (2021) 41 BSR20202870
https://doi.org/10.1042/BSR20202870

the actual survival rate to be in good agreement with the predicted survival rate, illustrating that the prediction per-
formance of nomogram is eligible. We further proved the nomogram to be better than a single risk score factor by
DCA plot. In addition, the C-index of our nomogram model was 0.729, which was higher than that in other five
published models.

Since our thirteen-gene signature could effectively predict the OS in HCC patients, we further explore the differ-
ences between high- and low-risk samples. We divided the samples of TCGA HCC cohort into high- and low-risk
groups according to the median of risk score. GSEA results showed that cell cycle-related pathways were significantly
enriched in high-risk group. Cell cycle block or misoperation play an important role in the development of HCC
[26–29]. Our results suggested the poor prognosis of high-risk group to be mainly due to the high level of cell cycle
block or misoperation.

TME cells are an important part of tumor tissue. Increasing evidence has demonstrated their clinicopathological
significance in predicting prognosis and efficacy [30,31]. TME signature based on characteristic gene expression is
a new tool for evaluating comprehensive TME and a powerful biomarker for predicting survival and guiding more
effective immunotherapy strategies [32]. Our results proved that high-risk group was significantly associated with
many TME signatures, especially immune relevant signatures. By investigating the regulation of immune cell infil-
tration level, we observed two major features. (1) The high-risk group had more complex immune cell components
than the low-risk group, including cells executing anti-tumor reactivity (activated CD4 T cells, activated dendritic
cells, central memory CD4 T cells, central memory CD8 T cells, Natural killer cells and Natural killer T cells) and
cells delivering pro-tumor suppression (immature dendritic cells, MDSCs, plasmacytoid dendritic cell, regulatory T
cells and Type 2 T helper cell). (2) Pearson’s correlation analysis revealed the infiltration level of these two categories
of cells to be positively correlated within a local environment. Based on the results of TME analysis, we believed that
it is not enough to use only one or a class of TME components to predict the prognosis, but also depends on the
overall situation of TME. The more complex the TME, the higher the risk of tumor and the worse the prognosis. Our
conclusion is consistent with that of the previously reported article [33].

Overall, our research indicated that the thirteen-gene signature prognostic model is a trustworthy tool for the
prediction of OS in HCC. Further construction of nomogram with this thirteen-gene signature prognostic model
could assist clinicians to choose personalized treatment for patients with HCC.
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