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Osteogenesis imperfecta (OI) is an inherited connective tissue disorder with a broad clinical
spectrum that can overlap with Ehlers–Danlos syndrome (EDS). To date, patients with both
OI and EDS have rarely been reported. In the present study, we investigated a family with
four members, one healthy individual, one displaying OI only, and two displaying the com-
pound phenotype of OI and EDS, and identified the pathogenic mutations. Whole exome
sequencing was applied to the proband and her brother. To verify that the mutations were
responsible for the pathogenesis, conventional Sanger sequencing was performed for all
members of the family. We identified a known COL1A1 (encoding collagen type I α 1 chain)
mutation (c.2010delT, p.Gly671Alafs*95) in all three patients (the proband, her brother, and
her mother) in this family, but also a novel heterozygous COL5A1 (encoding collagen type V
α 1 chain) mutation (c.5335A>G, p.N1779D) in the region encoding the C-terminal propep-
tide domain in the proband and her mother, who both had the compound phenotype of OI
and EDS. The results of the present study suggested that the proband and her mother pre-
sented with the compound OI–EDS phenotype caused by pathogenic mutations in COL5A1
and COL1A1.

Introduction
Osteogenesis imperfecta (OI), or brittle bone disease, is a clinically and genetically heterogeneous disorder
that mainly results in osteopenia, bone fragility, blue sclerae, dentinogenesis imperfecta, and hearing loss
[1]. OI can be classified into types I–IV, and approximately 85–90% of individuals with OI have a mutation
in either collagen type I α 1 chain (COL1A1) or collagen type I α 2 chain (COL1A2). Type I collagen
is the most abundant protein in bone, skin, and the tendon extracellular matrix [2]. The OI Mutation
Consortium, an international collaboration of many laboratories that identify OI mutations, has found
that 80% of COL1A1/COL1A2 mutations give rise to substitution of glycine residues in the type I collagen
chain, and the remaining 20% of mutations result in abnormalities of mRNA splicing [3]. Mutations in the
gene coding type I procollagen produce a range of disorders, including autosomal dominant OI and the
rare arthrochalasis subtype of Ehlers–Danlos syndrome (EDS) [4–6]. EDS is a connective tissue disorder
that is characterized by abnormal wound healing, easy bruising, atrophic scarring, and joint hypermobility
[7]. Classic-type EDS (cEDS) occurs because of a COL5A1/2 (encoding collagen type V α 1 or 2 chain)
mutation and is inherited in an autosomal dominant manner. It is estimated that approximately 50% of
patients with cEDS harbor a COL5A1 or COL5A2 mutation [7].

In the present study, we report a rare family presenting with a compound phenotype of OI and EDS, such
as multiple fractures, blue sclerae, atrophic scarring, easy bruising, and joint hypermobility. To understand
the basis of the disorder, provide a theoretical foundation for genetic counseling, and to determine whether
patients simultaneously harbor pathogenic mutations in genes associated with OI and EDS, whole exome
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Figure 1. Family pedigree

The diagonal lines indicate individuals with OI. The gray shading indicates individuals with OI and EDS. / = deceased.

sequencing was performed. We identified a COL1A1 mutation known to be responsible for OI, and a novel
C-propeptide domain mutation in COL5A1. To the best of our knowledge, this is the first report of patients with
compound phenotypes of OI and EDS that harbor both COL1A1 and COL5A1 mutations.

Materials and methods
The study was approved by the Ethics Committee of the Second Hospital, Shantou University Medical College. Written
informed consent was obtained from each individual for their DNA to be used for research purposes.

DNA extraction
DNA extraction was performed using a QIAamp DNA Mini Kit (Cat. No. 51104, Qiagen, Hilden, Germany) according
to the manufacturer’s protocol. Genomic DNA was obtained from peripheral blood samples from the family members
(Figure 1), including the proband (III-1), her brother (III-2), and their parents (II-1, II-2).

Whole exome sequencing
Library preparation and sequencing
Whole exome sequencing was performed for the two affected children (III-1, III-2) at the Beijing Novogene Bioinfor-
matics Technology Co., Ltd (Beijing, China). Exome sequences were enriched using an Agilent liquid capture system
(Agilent SureSelect Human All Exon V6; Agilent Technologies, Santa Clara, CA, U.S.A.) according to the manufac-
turer’s protocol. First, genomic DNA was randomly fragmented to an average size of 180–280 bp using a Covaris S220
sonicator (Covaris, Brighton, U.K.). Second, the DNA fragments were end-repaired and phosphorylated, followed by
A-tailing and ligation at the 3′ ends with paired-end adaptors (Illumina, San Diego, CA, U.S.A.) with a single ‘T’ base
overhang, and purified using AMPure SPRI beads from Agencourt (Azincourt, France). Then, the size distribution
and concentration of the libraries were determined using an Agilent 2100 Bioanalyzer and qualified by using real-time
PCR. The DNA libraries were then sequenced on an IlluminaHiSeq 4000 sequencer for paired-end 150 bp reads at
Beijing Novogene Bioinformatics Technology Co., Ltd. The raw data were saved as a FASTQ (fq) format file.

Selection of valid sequencing data
Initially, reads with adapter contamination were filtered out. Then, reads that contained more than 10% uncertain
nucleotides and paired reads with single reads of low quality (Phred-like quality score (Q score) <5) were also dis-
carded.

Sequencing data mapping to reference sequences and variant calling
The valid sequencing data were mapped to the reference human genome (UCSC hg19) using Burrows–Wheeler
Aligner (BWA) software (version 0.7.8; https://sourceforge.net/p/bio-bwa/mailman/message/32169236/). Subse-
quently, Samtools software 1.0 (also from Sourceforge) was used to sort the BAM files. Picard (http://broadinstitute.
github.io/picard) was then employed to identify and delete duplicates. Finally, Samtool smpileup and BCF tools were
used to perform variant calling and identify single nucleotide polymorphisms (SNPs) and indels, which were stored
as a variant call format (VCF) file.
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Table 1 Clinical features of all members of the proband’s family

Family
Proband (III1) III2 II1 II2

Age (years) 18 14 40 42

OI phenotype

Multiple fractures + + + -

Dentinogenesis - - - -

Imperfect

Blue sclerae + + + -

Hearing loss - - - -

EDS phenotype

Joint hypermobility + - + -

Joint laxity + - + -

Easy bruising + - + -

Atrophic scarring + - + -

Ligament rupture + - - -

Other symptoms

Prominent ears + + + -

Functional annotation and variant filter
ANNOVAR (http://annovar.openbioinformatics.org/en/latest/) was used to annotate the VCF file. The variant po-
sition, variant type, conservation prediction, and other information were obtained at this step using a variety of
databases, such as dbSNP, 1000 Genome, ExAC, CADD, and HGMD. Gene transcript annotation databases, such
as Consensus CDS, RefSeq, Ensembl, and UCSC, were also applied for annotation to identify amino acid alterations.
Variants were filtered with a Minor Allele Frequency (MAF) > 0.1% in the 1000 Genomes databases (1000 Genomes
Project Consortium). Then, synonymous single nucleotide variants (SNVs) were discarded and the retained non-
synonymous SNVs were submitted to PolyPhen-2, SIFT, MutationTaster, and CADD for functional prediction. A
nonsynonymous SNV was retained if at least two out of the four software programs showed it to be ‘not benign’.
Finally, we focused on genes known to be associated with OI and EDS.

Sanger sequencing of candidate variants
To confirm the candidate variants identified by whole exome sequencing, Sanger sequencing was performed for all
members of the family displaying complicated phenotypes of OI and EDS. Primers were designed by using Premier
Primer 5 software (PREMIER Biosoft International, Palo Alto, CA, U.S.A.). We used genomic DNA to amplify the
region of the respective variant using Takara ExTaq® Hot Start Version (RR006A; Takara, Shiga, Japan). The Beijing
Genomics Institute performed the purification of the PCR-amplified DNA and Sanger sequencing (using an ABI
3730XL sequencer).

Evolutionary conservation analysis
To evaluate the evolutionary conservation of the site of the novel COL5A1 mutation, the protein sequences of
COL5A1 from eight animal species, including human, rhesus, mouse, elephant, opossum, chicken, Xenopus laevis,
and zebrafish, were aligned using ClustalW embedded in MEGA7 (https://www.megasoftware.net/).

Results
Clinical characteristics of a Chinese family with OI
This OI family had two patients with a compound OI and EDS phenotype, a patient with only OI, and a healthy
individual (Figure 1). In this family, the female proband (III-1), who was 18 years old, appeared to be healthy before the
age of 12 years. Thereafter, fractures of long bones occurred three times, and her knee ligament ruptured when she was
involved in a car accident at 17 years old. She also presented with blue sclerae, atrophic scarring, joint hypermobility,
prominent ears, and easy bruising (Table 1 and Figure 2).

Similarly, the proband’s mother (II-1), 40 years old, not only presented with multiple fractures of long bones and
blue sclerae, but also suffered from easy bruising after minor trauma, atrophic scarring, joint hypermobility, joint
laxity, and prominent ears (Table 1). The proband’s brother (III-2) was 14 years old, and showed multiple fractures
of long bones and blue sclerae, but did not have easy bruising, atrophic scarring, joint hypermobility, or joint laxity
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Figure 2. Radiographic images, magnetic resonance imaging, and photographs of the findings in proband III-1

Radiographic images: (A) right tibia fracture, (B) right femoral fracture. (C,D) Magnetic resonance imaging (MRI) of the posterior

cruciate ligament rupture in the right knee-joint. Photographs of joint hypermobility (E,F), atrophic scarring (G).

(Table 1). In this family, the proband’s father (II-2), 42 years old, was healthy (i.e., presented no symptoms of OI or
EDS); all patients had normal mental development and normal hearing (Table 1).

Identification of mutations
To identify the causative mutations of OI in the family, whole exome sequencing was performed on proband (III-1)
and her brother (III-2). The total raw data comprised 27.35 GB for the proband and her brother. An average of 98.2%
of the reads had a Q score greater than 20, and 95.5% of the reads had a Q score greater than 30. Quality control
indicated that 99.4% of the raw data were valid sequencing data. For III-1 and III-2, the average sequencing depth on
target was 165.5× and 129.4×, respectively, and the fractions of the target covering a depth of at least 10× were 99.5
and 99.6%, respectively.

In this family, we not only found a heterozygous mutation (c.2010delT, p.Gly671Alafs*95) in COL1A1 in III-1 and
III-2, but also observed a novel heterozygous mutation of COL5A1 (c.5335A>G). To validate the results of whole
exome sequencing, Sanger sequencing was performed on the entire family. The COL1A1 mutation (c.2010delT) was
identified in all patients (II-1, III-1, and III-2) (Figure 3A), and the COL5A1 mutation (c.5335A>G) was only iden-
tified in the proband (III-1) and her mother (II-1) (Figure 3B). Neither mutation was found in the father (II-2)
(Figure 3A,B). COL5A1 (c.5335A>G) resulted in the substitution of an asparagine residue in the C-propeptide
domain in the proband (III-1) (Figure 3C). No potential variants were found in 18 other genes (BMP1, COL1A2,
CREB3L1, CRTAP, FKBP10, IFITM5, MBTPS2, P3H1, P4HB, PLOD2, PLS3, PPIB, SERPINF1, SERPINH1,
SPARC, TMEM38B, WNT1, and SEC24D) associated with OI or in 10 other genes (ADAMTS2, B3GALT6,
B4GALT7, COL3A1, COL5A2, DSE, FKBP14, PLOD1, PLOD3, and TNXB) associated with EDS. The COL5A1
mutation was predicted by SIFT, Mutation Taster, CADD, and Polyphen2 to be deleterious, disease causing, dam-
aging, and benign, respectively. This mutation was classified as uncertain significance and likely benign in ClinVar
database. Comparison of the COL5A1 protein sequences from related animal species indicates that this COL5A1
mutation occurred at an evolutionarily conserved site (Figure 3D).

Discussion
We characterized three patients with OI and a healthy individual from the same Chinese family. Among them, two
patients had a compound OI and EDS phenotype, manifesting as multiple fractures, blue sclerae, atrophic scarring,
easy bruising, and joint hypermobility. To understand cause of the phenotypic variability, we performed whole exome
sequencing and identified a COL1A1 mutation and a novel COL5A1 mutation in the patients with the compound
OI/EDS phenotype.

Type I collagen is the most abundant organic component of bone, skin, and tendon extracellular matrix [2]. To date,
more than 1000 COL1A1/2 mutations have been identified in patients with OI. OI caused by COL1A1/2 mutations
is classified into two types. The first type involves the substitution of a glycine within the Gly-x-y triplet domain of
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Figure 3. COL1A1 and COL5A1 variants, structure of the collagen type V α-chain, and evolutionary conservation of the

COL5A1 mutated site

(A) Sequences of the genomic region mutated in COL1A1. The mutation in the mother (II-1), proband (III-1), and brother (III-2) are

marked by black arrows. (B) Sequences of the mutation in COL5A1. The mutation in the mother (II-1) and proband (III-1) are marked

by black arrows. (C) Structure of collagen type V α-chain: purple indicates the site of the mutation (c.5335A>G, P. N1779D) in the

C-terminal propeptide. (D) The site of the COL5A1 mutation is evolutionarily conserved. The mutation is marked by a red arrow.

the triple helix, which can give rise to the abnormal synthesis of collagen fibrils. The second type of mutation takes
the form of frameshift, nonsense, and splice-site mutations, which can result in haploinsufficiency [1,8].

In this family, the patient (proband (III-1), her mother (II-1), and her brother (III-2)) have the heterozygous
COL1A1 mutation (c.2010delT) and the COL1A1 mutation in proband (III-1) and her brother (III-2) were inherited
from their affected mother. This frameshift mutation (c.2010delT) has been reported in type I/IV OI [9,10], and is
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predicted to cause premature termination at codon 94 [10], which could result in haploinsufficiency. Thus, our results
further support the view that the COL1A1 mutation (c.2010delT) can result in OI.

The proband’s brother harbors only the c.2010delT COL1A1 mutation, and only has the clinical symptoms of OI.
However, the phenotypes of the proband (III-1) and her mother are different from those of her brother. Interestingly,
we identified an additional heterozygous gene mutation in the region of COL5A1 encoding the C-terminal propep-
tide domain, which correlates with the EDS phenotype, and the COL5A1 mutation in proband (III-1) is inherited
from her affected mother. This finding may explain why the phenotypes of proband III-1 and her mother are different
from those of proband’s brother. The molecular basis of cEDS is essentially a deficiency of type V collagen, which is
a quantitatively minor fibrillar collagen that is widely distributed in a variety of connective tissues [11]. The major
variant of type V collagen is a heterotrimer that is composed of two pro-α1 (V) chains and a single pro-α2 (V) chain,
which are encoded by the COL5A1 and COL5A2 genes, respectively [12,13].

The COL5A1 gene encodes the α1 chain of type V collagen, which is a minor fibrillar collagen found in ligament
and tendons, as well as other tissues [14]. Mutations in the COL5A1 C-terminal propeptide domain can cause ‘func-
tional’ haploinsufficiency of type V collagen [15,16], either because of inefficient trafficking of the mutant protein
through the endoplasmic reticulum [17] or the impaired incorporation of the mutant α1 chain into type V collagen,
and is an important factor in the pathogenesis of cEDS [16,18]. The mutant α1 chain of type V collagen also plays
a negative role by disrupting the interactions with other ECM components, which can be observed in patients with
COL5A1 mutations in the C-terminal propeptide domain [19].

Type I and V collagens are the two main components of ligaments. Thus, mutations in COL1A1 and COL5A1 are
potential risk factors for ligament rupture [20], as displayed by our proband. The action of an external force could
make the ligament easier to rupture. The proband experienced ligament rupture caused by trauma resulting from a
car accident, not from a spontaneous rupture. In addition, the proband’s mother had no history of trauma, and had
not suffered ligament rupture. The type V collagen plays a central role in collagen fibrillogenesis and co-assembles
with type I collagen to form heterotypic fibrils [12,23]. Type V collagen intercalates into the core of type I collagen
fibrils, where it is involved in the organization and regulation of type I collagen fibril diameter [21]. In col5a1+/− mice,
tendons have larger diameter fibrils, resulting in an irregular shape [22]. Irregularly shaped fibrils generate a dimin-
ished dynamic mechanical response of col5a1+/− tendons [22], and COL5A1 mutations give rise to structural tendon
pathology and low tendon stiffness responsible for joint hypermobility [23]. The COL5A1 mutation (c.5335A>G)
results in a change from asparagine to aspartic acid. However, interpreting the COL5A1 mutation as disease causing
without some functional studies is a limitation of our report. Mutations described previously in the C-propeptide do-
main of the COL5A1 gene have involved Cysteine residues. Cysteine residues form disulfide bonds between collagen
chains and changing Cysteine to another amino acid interferes with the ability of the individual collagen molecule to
assemble into a trimer [18]. The effect of a mutation involving asparagine to aspartic acid change in the C-propeptide
domain of COL5A1 has been not reported. However, the c.5335A>G mutation in COL5A1 was predicted by SIFT,
Mutation Taster and CADD, respectively, to be deleterious, disease causing and damaging, indicating that this muta-
tion could be potentially causative of disease, consistent with a role in EDS. In support of this, the site of this COL5A1
mutation is evolutionarily conserved, suggesting that it has an important biological function. Other known and po-
tential pathogenic variants for OI and EDS were not identified by whole exome sequencing in this family. In addition,
the COL5A1 mutation was not found in the proband’s brother, who did not display the clinical symptoms of EDS.
Finally, mutations in TNXB, which has been associated with EDS and COL1A1 can give rise to overlapping phe-
notypes of OI and EDS [24]. Therefore, we speculated that the combined mutations in COL1A1 and the COL5A1
C-terminal propeptide domain could result in the hybrid EDS-OI phenotype of the proband III-1 and her mother,
both of whom exclusively carry the COL5A1 (c.5335A>G) mutation within the family. Further functional studies
with a larger sample size are needed to confirm the results.

In conclusion, in a family with OI, we identified a COL1A1 mutation known to be responsible for OI, and further
identified a novel second mutation in the COL5A1 C-terminal propeptide domain in patients with OI and EDS.
These results suggested that a combination of COL5A1 and COL1A1 mutations might lead to compound phenotypes
of OI and EDS. To the best of our knowledge, this is the first report showing that members of a family with both
COL1A1 and COL5A1 mutations present with a hybrid phenotype of OI and EDS. In addition, our results support
the conclusion that that COL1A1 (c.2010delT) can result in OI. Whole exome sequencing can help us to understand
the basis of diseases with compound phenotypes and provide a theoretical foundation for genetic counseling.
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