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Hypertrophic cardiomyopathy (HCM) is a serious monogenic disease characterized by car-
diac hypertrophy, fibrosis, sudden cardiac death, and heart failure. Previously, we identi-
fied that miR-139-5p was down-regulated in HCM patients. However, the regulatory effects
of miR-139-5p remain unclear. Thus, we investigated the role of miR-139-5p in the regu-
lation of cardiac hypertrophy. The expression of miR-139-5p in left ventricular tissues in
HCM patients and mice subjected to transverse aortic constriction (TAC) was significantly
down-regulated. Knockdown of miR-139-5p expression in neonatal rat cardiomyocytes
(NRCMs) induced cardiomyocyte enlargement and increased atrial natriuretic polypeptide
(ANP) expression. Overexpression of miR-139-5p antagonized isoproterenol (ISO)-induced
cardiomyocyte enlargement and ANP/brain natriuretic peptide (BNP) up-regulation. More
importantly, we found that c-Jun expression was inhibited by miR-139-5p in NRCMs.
Knockdown of c-Jun expression significantly attenuated cardiac hypertrophy induced by
miR-139-5p deprivation. Our data indicated that miR-139-5p was down-regulated in the
hearts of HCM patients and that it inhibited cardiac hypertrophy by targetting c-Jun expres-
sion.

Hypertrophic cardiomyopathy (HCM) is a monogenic disease with an estimated prevalence of 0.2% in
the population [1]. This disease is characterized by cardiac hypertrophy, fibrosis, sudden cardiac death,
and heart failure [2,3]. Although it has been revealed that HCM is mostly caused by mutations in sarcom-
ere genes [4-6], the regulatory mechanisms of cardiac hypertrophy in HCM are not fully understood.

MicroRNAs (miRs) are intracellular small, non-coding RNAs that mainly down-regulate specific target
genes by binding to the 3′-UTR of corresponding mRNAs [7]. Accumulating studies have revealed that
miRs play important roles in regulating cardiac remodeling in HCM, thereby providing potential thera-
peutic targets for this disease [8-11]. By using microarray analyses, we previously screened for miRs in left
ventricular tissues that were differentially expressed between HCM patients and healthy donors [9]. We
identified that miR-139-5p was one of the most down-regulated miRs in the hearts of HCM patients [9].
However, whether miR-139-5p participates in the regulation of cardiac hypertrophy remains unclear.

The β-adrenergic receptor (β-AR) plays an important role in the regulation of cardiac
excitation–contraction; however, hyperactivation of β-AR leads to cardiac remodeling [12,13]. The
stimulation of β-AR activates the downstream activating protein-1 (AP-1), which then transmits
signaling to induce cardiac hypertrophy [14,15]. AP-1 is a transcription factor consisting of a group
of immediate early genes, such as c-Jun and c-Fos. They form homo- or heterodimers to regulate
the expression of their target genes. By using online bioinformative assays (www.targetscan.org), we
predicted that c-Jun might be a target of miR-139-5p in cardiomyocytes, which might participate in
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the regulation of cardiac hypertrophy. Therefore, we investigated this aspect in the present study. We found that
isoproterenol (ISO), a potent β-AR agonist, strongly induced the expression of c-Jun, whereas exogenous addition of
miR-139-5p mimic antagonized its expression and attenuated ISO-induced cardiac hypertrophy.

Materials and methods
Ethics statement
All protocols pertaining to human subjects were approved by the Ethics Committee of Fuwai Hospital (Beijing,
China) in accordance with the Declaration of Helsinki. Written informed consent was obtained from all the par-
ticipants. Left ventricular tissues were obtained as previously described [9]. All the protocols pertaining to animals
were approved by the Ethics Committee for Animal Study of Fuwai Hospital (Beijing, China) (approval number:
0088-R/M-300/200-GZ(X)).

Transverse aortic constriction operation
Transverse aortic constriction (TAC) operation in mice was performed as previously described [16]. In brief, 6–8
weeks old male C57BL/6 mice were weighed and anesthetized with 2.5% avertin (0.018 ml/g) through intraperitoneal
injection. The transverse aorta was ligated for TAC operation. Sham-operated mice served as controls. All mice were
killed at 4 weeks post operation, and the hearts were harvested for miR-139-5p expression analysis.

Cell culture
Primary neonatal rat cardiomyocytes (NRCMs) were cultured as previously described [17]. In brief, ventricles from
neonatal Wistar rats were isolated and cut into small pieces. The tissues were washed with PBS and digested with
0.06% collagenase II (Worthington Biochemical Corporation, Lakewood, NJ, U.S.A.) at 37◦C. The cell suspension
was centrifuged and resuspended with Dulbecco’s modified Eagle’s medium (DMEM) containing 10% FBS. For dif-
ferential adhesion, the cells were maintained in an atmosphere with 5% CO2 at 37◦C for 90 min. The supernatants
were resuspended with complete DMEM containing 0.1 mM bromodeoxyuridine, seeded in corresponding plates
and routinely cultured for 24 h. Then, the medium was replaced with DMEM containing 1% FBS for experiments.

Cell transfection and treatment
NRCMs were transiently transfected with miR-139-5p mimics or inhibitors (GenePharma, Suzhou, China) at a
final concentration of 100 nM. For the knockdown of c-Jun expression, a predesigned specific siRNA was used
(Silencer R© Select, s127979, Thermo Fisher, Carlsbad, CA, U.S.A.). All the above small RNAs were transfected by
using Lipofectamine R© RNAiMAX Reagent (Thermo Fisher) according to the manufacturer’s protocol. For inducing
cardiac hypertrophy in vitro, NRCMs were treated with 100 nmol/l ISO for 24 h [18].

Determination of cell surface area
NRCMs (5 × 105 cells/ml) were seeded in 24-well plates and routinely cultured. The cells were fixed with 4%
paraformaldehyde and permeabilized with 1% Triton X-100 in PBS for 5 min. The cells were then washed with PBS
and stained with Texas Red-Phalloidin (Thermo Fisher) for 30 min at room temperature. The nuclei were stained
with 0.1 μg/ml DAPI for 5 min. The cells were visualized with a fluorescence microscope, and the cell surface area
was measured by analyzing 30 NRCMs from at least five random fields with ImagePro Plus 6.0 Software (Media
Cybernetics, Bethesda, MD, U.S.A.).

Quantitative real-time PCR analysis
Total RNA was extracted by using TRIzol reagent (Thermo Fisher), quantitated, and nor-
malized. To analyze the expression of miR-139-5p, a specific primer containing a stem loop
structure was used for cDNA synthesis with a cDNA synthesis kit (Takara, Dalian, China):
5′-CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGACTGGAGA-3′. The expression of miR-139-5p was
determined using the following primers: forward, 5′-ACACTCCAGCTGGGTCTACAGTGCACGTGTC-3′ and
reverse, 5′-TGGTGTCGTGGAGTCG-3′, and normalized to U6 expression determined with the following primers:
forward, 5′-CTCGCTTCGGCAGCACA-3′ and reverse, 5′-AACGCTTCACGAATTTGCGT-3′.

For the routine quantitation of mRNAs, cDNA was synthesized with a cDNA Synthesis Kit (Takara).
The following specific primers for real-time PCR were used: atrial natriuretic polypeptide (ANP) forward,
5′-GGGCTCCTTCTCCATCAC-3′ and reverse, 5′-CGGCATCTTCTCCTCCAG-3′; brain natriuretic peptide (BNP)
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Figure 1. miR-139-5p is down-regulated in hypertrophic hearts

(A) Expression of miR-139-5p in 16 HCM patients and 8 healthy donors (Control). (B) Expression of miR-139-5p in mice subjected

to TAC (n=8); sham-operated mice were used as controls (n=8). Real-time PCR assay was performed; and U6 was employed as

an internal control. Data represent the mean +− S.E.M. *P<0.05 and **P<0.01 compared with the control group.

forward, 5′-AGAACAATCCACGATGCAGAAG-3′ and reverse, 5′-AAACAACCTCAGCCCGTCACA-3′; and 18S
rRNA forward, 5′-CTTAGAGGGACAAGTGGCG-3′ and reverse, 5′-GGACATCTAAGGGCATCACA-3′. The rela-
tive expression of target genes was determined by using the ��Ct (cycle threshold) method.

Western blotting
Total protein was extracted with RIPA lysis buffer, quantitated, and normalized. Approximately 20 μg protein from
each sample was separated using SDS/PAGE and blotted on to a nitrocellulose membrane. The membrane was
blocked with 5% BSA at room temperature for 1 h and then incubated with the following primary antibodies at
4◦C overnight: rabbit anti-Akt, anti-p-Akt, anti-β-catenin, anti-GAPDH (Cell Signaling Technology, Beverly, MA,
U.S.A.), anti-c-Jun, anti-IGF-1 receptor (anti-IGF-1R) (Santa Cruz Technology, Dallas, TX, U.S.A.), anti-myocardin
(anti-MyoCD) (Sigma, St. Louis, MO, U.S.A.), and anti-Wnt1 (Abcam, Cambridge, MA, U.S.A.). Then, the membrane
was washed three times with TBS Tween-20 (TBS-T) and incubated with goat anti-rabbit secondary antibody (Cell
Signaling Technology) at room temperature for 1 h. The bands were visualized and analyzed using Quantity One
software V 4.6.2 (Bio–Rad, Hercules, CA, U.S.A.).

Statistical analysis
Statistical analyses were performed with IBM SPSS 19.0 Software (SPSS, Inc., Chicago, IL, U.S.A.). Two-tailed Stu-
dent’s t test or ANOVA was used to determine the differences. The data are expressed as the mean +− S.E.M., and
P<0.05 was considered statistically significant.

Results
miR-139-5p is down-regulated in hypertrophic hearts
To validate whether miR-139-5p is down-regulated in hypertrophic hearts, we detected its expression in left ven-
tricular tissues from 16 HCM patients and 8 healthy donors. We found that the expression of miR-139-5p in left
ventricular tissues of HCM patients was down-regulated to 57.6% of that in the healthy donors (P<0.05, power:
0.505) (Figure 1A). We then performed TAC operation to induce cardiac hypertrophy in mice. Consistently, the ex-
pression of miR-139-5p in the hearts of TAC-operated mice was significantly down-regulated compared with that in
sham-operated mice, indicating that miR-139-5p is down-regulated in hypertrophic hearts (P<0.01, power: 0.765)
(Figure 1B).

miR-139-5p is required for maintaining normal cell size in
cardiomyocytes
To investigate the role of miR-139-5p in cardiac hypertrophy, we knocked down its expression in NRCMs by
transfecting a specific miR inhibitor. The levels of miR-139-5p were down-regulated to 25.4% of that in con-
trol NRCMs at 48 h post transfection (Figure 2A). We then measured changes in cell surface area by staining
NRCMs with Texas Red-conjugated Phalloidin. We found that the cell surface area was significantly increased in
miR-139-5p-deprived NRCMs (Figure 2B). ANP and BNP are two known biomarkers of cardiac hypertrophy. The
knockdown of miR-139-5p induced a 2.06-fold increase in ANP expression (P<0.05); however, the expression of
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Figure 2. Knockdown of miR-139-5p expression induces cardiac hypertrophy.

(A–C) NRCMs were transfected with miR-139-5p inhibitor or the inhibitor control RNA for 48 h. Intracellular F-actin was stained with

Texas Red-Phalloidin, and nuclei were stained with DAPI; scale bars: 100 μm (A). Cell surface area was quantitated with ImagePro

Plus 6.0 from at least 30 cells in three independent experiments. Data are expressed as the mean +− S.E.M. *P<0.05 compared

with the controls (B). Expression of ANP and BNP were quantitated by using real-time PCR. 18S rRNA was used as the loading

control. Relative expression was indicated as the mean +− S.E.M. (n=4), and P-values are shown as indicated (C).

BNP was unchanged (Figure 2C). These results indicated that miR-139-5p is required to maintain normal cell size in
cardiomyocytes.

Overexpression of miR-139-5p attenuates ISO-induced cardiac
hypertrophy
Since miR-139-5p participates in the regulation of cell size in cardiomyocytes, we wanted to explore whether the ex-
ogenous administration of miR-139-5p is able to antagonize cardiac hypertrophy. ISO is aβ-AR agonist that is widely
used to induce cardiac hypertrophy. Treating NRCMs with 100 nmol/l ISO for 24 h induced a significant increase in
cell size (Figure 3A,B). Pre-transfection of NRCMs with the miR-139-5p mimic for 48 h attenuated ISO-induced
cellular enlargement (Figure 3A,B). Consistently, the expression of ANP and BNP was up-regulated by ISO treatment
by 2.11- and 7.68-fold, respectively (Figure 3C), whereas the transfection of NRCMs with the miR-139-5p mimic at-
tenuated the ISO-induced increase in ANP and BNP expression (Figure 3C). In addition, miR-139-5p did not affect
cell surface area or ANP/BNP levels under basal conditions (Figure 3A–C). These data indicated that miR-139-5p
attenuates ISO-induced cardiac hypertrophy in vitro.
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Figure 3. Overexpression of miR-139-5p attenuates ISO-induced cardiac hypertrophy

(A–C) NRCMs were transfected with the miR-139-5p mimic or scrambled control small RNAs for 48 h, followed by ISO treatment

for 24 h. Intracellular F-actin and nuclei were stained with Texas Red-Phalloidin and DAPI, respectively. Scale bars: 100 μm (A).

Cell surface area was measured using ImagePro Plus 6.0 software from at least 30 cells in three independent experiments (B).

Expression of ANP and BNP were quantitated by using real-time PCR and normalized to the level of 18S rRNA (n=3 per group) (C).

Data are indicated as the mean +− S.E.M., and P-values are shown as indicated.

miR-139-5p down-regulates c-Jun expression in ISO-induced cardiac
hypertrophy
miRs specifically bind to the 3′-UTR of its target mRNAs to regulate their expression. By using TargetScan (http:
//www.targetscan.org/vert 71/), an online tool for predicting miR target genes, we identified c-Jun, IGF-1R, MyoCD,
Wnt1, and β-catenin as candidate target genes of miR-139-5p. We transfected NRCMs with the miR-139-5p mimic
for 48 h and found that the levels of c-Jun, IGF-1R, and β-catenin were all down-regulated, whereas the levels of My-
oCD and Wnt1 were unaffected (Figure 4A,B). Interestingly, miR-139-5p overexpression inhibited the ISO-induced
up-regulation of c-Jun expression (Figure 4A,B). In contrast, the knockdown of endogenous miR-139-5p increased
the level of c-Jun (Figure 4E,F). These results indicated that miR-139-5p inhibits the expression of c-Jun in cardiomy-
ocytes and thus might play an important role in the regulation of cardiac hypertrophy.
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Figure 4. miR-139-5p targets c-Jun expression in cardiomyocytes

(A–D) NRCMs were treated as indicated. Levels of c-Jun, IGF-1R, MyoCD, Wnt1, and β-catenin (A) and the phosphorylation status

of Akt (B) were detected using Western blotting. The relative expression intensity (B,D) was obtained from three independent

experiments were performed. (E–I) siRNAs for knocking down (KD) c-Jun expression were co-transfected into to NRCMs with the

miR-139-5p inhibitor or the inhibitor control RNA for 48 h. Expression of c-Jun was determined using Western blotting (E) and the

relative expression of c-Jun was quantitated (F). F-actin and nuclei were stained with Texas Red-Phalloidin and DAPI, respectively.

Scale bars: 100 μm (G). Cell surface area was quantitated from at least 30 cells in three independent experiments (H). Expression

of ANP was quantitated by using real-time PCR and normalized to the level of 18S rRNA (n=3 per group) (I). Data are indicated as

the mean +− S.E.M., *P<0.05 and **P<0.01 compared between the indicated groups.
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The expression of IGF-1R was down-regulated by miR-139-5p in NRCMs, although ISO alone slightly
down-regulated IGF-1R expression (Figure 4A,B). The IGF-1R signaling pathway has been reported to regulate car-
diac hypertrophy via PI3K/Akt [19]. As expected, miR-139-5p suppressed ISO-induced hyperphosphorylation of
Akt in NRCMs, indicating that the IGF-1R/Akt pathway might also contribute to the antihypertrophic effects of
miR-139-5p (Figure 4C,D). Wnt1/β-catenin has been reported to be regulated by miR-139-5p [20]. We observed
that miR-139-5p indeed down-regulated β-catenin expression under basal conditions, but it failed to inhibit Wnt1
or β-catenin expression in response to ISO stimulation (Figure 4A,B).

Inhibition of c-Jun activation suppresses miR-139-5p
knockdown-induced cardiac hypertrophy
As the expression of c-Jun was found to be regulated by miR-139-5p in NRCMs, we proposed that the up-regulation
of c-Jun might be required in miR-139-5p deprivation-induced cardiac hypertrophy. To investigate this aspect,
we knocked down c-Jun expression by transfecting c-Jun-specific siRNAs into miR-139-5p-deprived NRCMs. The
knockdown of miR-139-5p expression in NRCMs significantly increase c-Jun levels, whereas the knockdown of c-Jun
expression prevented this increase (Figure 4E,F). As expected, the increase in cell surface area and the up-regulation
of ANP expression induced by miR-139-5p deprivation were restored by c-Jun knockdown (Figure 4G–I). These
results indicated that c-Jun is indispensable in miR-139-5p deprivation-mediated cardiac hypertrophy in vitro.

Discussion
Pathological cardiac remodeling in HCM is associated with the deregulated expression of many intracellular miRs
[8-11]. In the present study, we reported that miR-139-5p was down-regulated in heart tissues of HCM patients. The
knockdown of miR-139-5p expression in NRCMs induced cardiac hypertrophy, whereas the exogenous overexpres-
sion of miR-139-5p antagonized ISO-induced cardiac hypertrophy. These findings indicated that miR-139-5p acts
an anti-hypertrophic miR in the heart.

HCM is a monogenic myocardial disease, which is characterized by cardiac hypertrophy, sarcomere disarrange-
ment, cardiac fibrosis, heart failure, and cardiac sudden death [2]. By using microarray analysis, we found that
miR-139-5p was significantly down-regulated in the left ventricular tissues of HCM patients. Moreover, the expres-
sion of miR-139-5p was down-regulated in the hearts of TAC-operated mice, and knockdown of miR-139-5p in
NRCMs induced cardiomyocyte enlargement. These data indicated that miR-139-5p is indispensable in normal car-
diomyocytes.

The β-AR signaling pathway, which is classically activated by catecholamines, is one of the well-known pathways
in the induction of cardiac hypertrophy [12,13]. The activation of β-AR regulates cardiac excitation–contraction
and leads to the increase in heart rate and cardiomyocyte contractility [21-23]. The hyperactivation of β-AR re-
sults in cardiac hypertrophy, fibrosis, senescence, inflammation, and cardiomyocyte apoptosis and necrosis [24-29].
The treatment of NRCMs with ISO caused cardiomyocyte enlargement and increased the expression of ANP and
BNP. We observed that miR-139-5p overexpression attenuated ISO-induced cardiac hypertrophy, which indicated
that miR-139-5p plays an antihypertrophic role in the heart. It has been reported that the stimulation of β-AR
can induce the activation of AP-1, which is associated with the activation of the CaMKII, ERK, and JNK pathways
[14,15]. AP-1 acts as a transcription factor for a group of immediate early genes, including c-Jun, c-Fos, JunB, and
JunD. These proteins form homo- or heterodimers and bind to the promoters of various genes to regulate their ex-
pression, which subsequently induces cardiac hypertrophy [14,30-32]. In the present study, we observed that c-Jun
expression was strongly induced by ISO-treatment, whereas miR-139-5p inhibited this increase. Consistently, the
knockdown of c-Jun expression significantly attenuated miR-139-5p deprivation-induced cardiac hypertrophy. The
miR-139-5p/c-Jun axis has been reported to form a feedback loop in human gastric cancer cells [33]. Our data in-
dicated that the down-regulation of c-Jun is indispensable for the anti-hypertrophic effects of miR-139-5p in car-
diomyocytes.

The activation of β-AR induced the phosphorylation of Akt/GSK3β in NRCMs, which is associated with the
up-regulation of ANP expression [34]. In colitis-associated tumorigenesis, miR-139-5p inhibits the cross-talk be-
tween the PI3K/Akt and Wnt pathways by targetting IGF-1R [35]. Our results indicated that overexpression of
miR-139-5p in NRCMs antagonizes ISO-induced activation of Akt. miR-139-5p also inhibits the expression of
IGF-1R in cells both under basal and ISO-stimulated conditions, indicating that the down-regulation of IGF-1R
and inhibition of Akt might be involved in preventing cardiac hypertrophy. Mi et al. [20] reported that Wnt1 and
β-catenin were directly targetted by miR-139-5p in C2C12 cells. In our study, we observed that miR-139-5p in-
deed down-regulated β-catenin expression under basal conditions; however, it failed to antagonize the ISO-induced
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up-regulation of β-catenin in NRCMs. The expression of Wnt1 was not altered by miR-139-5p overexpression in
NRCMs. These data indicated that the Wnt1/β-catenin pathway might not be associated with the antihypertrophic
effects of miR-139-5p. In addition, we found that the predicted MyoCD was not a target of miR-139-5p in NRCMs,
as its expression was not altered under basal or ISO-stimulated conditions.

Taken together, our study highlights that miR-139-5p is a novel antihypertrophic miR in cardiomyocytes.
miR-139-5p attenuates cardiac hypertrophy possibly through the down-regulation of c-Jun expression in vitro. Our
data indicated that the exogenous delivery of the miR-139-5p mimic to the heart might be a potential therapeutic
strategy for pathological cardiac hypertrophy. These findings provide evidences that the miR-139-5p/c-Jun axis is a
novel target for the prevention and treatment for cardiac remodeling. The future study will focus on the mechanism
of miR-139-5p expression and its association with c-Jun.
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