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Objective: Previous studies have demonstrated Stromal interaction molecule 1
(STIM1)-mediated store-operated Ca2+ entry (SOCE) contributes to intracellular Ca2+

accumulation. The present study aimed to investigate the expression of STIM1 and its
downstream molecules Orai1/TRPC1 in the context of myocardial ischemia/reperfusion
injury (MIRI) and the effect of STIM1 inhibition on Ca2+ accumulation and apoptosis in H9c2
cardiomyocytes subjected to hypoxia/reoxygenation (H/R).
Methods: Expression of STIM1/Orai1/TRPC1 was determined by RT-PCR and Western blot
in mice subjected to MIRI and H9C2 cardiomyocytes subjected to H/R. To knock-down
STIM1, H9C2 cardiomyocytes was transfected with Stealth SiRNA. Apoptosis was ana-
lyzed by both flow cytometry and TUNEL assay. Cell viability was measured by MTT assay.
Intracellular Ca2+ concentration was detected by laser scanning confocal microscopy using
Fluo-3/AM probe. Furthermore, the opening of mitochondrial permeability transition pore
(mPTP) was assessed by coloading with calcein AM and CoCl2, while ROS generation was
evaluated using the dye DCFH-DA in H9C2 cardiomyocytes.
Results: Expression of STIM1/Orai1/TRPC1 significantly increased in transcript and transla-
tion level after MIRI in vivo and H/R in vitro. In H9C2 cardiomyocytes subjected to H/R, intra-
cellular Ca2+ accumulation significantly increased compared with control group, along with
enhanced mPTP opening and elevated ROS generation. However, suppression of STIM1
by SiRNA significantly decreased apoptosis and intracellular Ca2+ accumulation induced by
H/R in H9C2 cardiomyocytes, accompanied by attenuated mPTP opening and decreased
ROS generation. In addition, suppression of STIM1 increased the Bcl-2/Bax ratio, decreased
Orai1/TRPC1, and cleaved caspase-3 expression.
Conclusion: Suppression of STIM1 reduced intracellular calcium level and attenuated hy-
poxia/reoxygenation induced apoptosis in H9C2 cardiomyocytes. Our findings provide a
new perspective in understanding STIM1-mediated calcium overload in the setting of MIRI.

Introduction
Reperfusion therapy with either intravenous thrombolysis or coronary revascularization is effective strat-
egy to reduce infarct size and improve clinical outcome after the onset of acute myocardial infarction
[1]. However, the restoration of blood to the ischemic myocardium may also cause ischemia/reperfusion
(I/R) injury, leading to reduced benefit from reperfusion [2]. Currently, the underlying pathophysiolog-
ical mechanisms of myocardial I/R injury have not yet been fully elucidated. As an important second
messenger, intracellular calcium (Ca2+) has demonstrated to be implicated in the signaling networks that
regulate pathological conditions, in addition to the process of myocardial contraction. Actually, abundant
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evidence suggested that intracellular Ca2+ overload might participate in the pathogenesis and progress of the I/R
injury [3-5].

Recent studies revealed that store-operated Ca2+ entry (SOCE) was one of the major mechanisms account for
Ca2+ entry in virtually all nonexcitable cells and certain excitable cells, containing the cardiomyocytes [6,7]. As the
response to initial Ca2+ release from endoplasmic reticulum (ER), SOCE promotes the influx of Ca2+ from the extra-
cellular space, followed by a sustained raise in cytosolic Ca2+ concentration and subsequent activation of numerous
signal transduction pathways [8,9]. Emergent evidence suggest that both Stromal interaction molecule 1 (STIM1) and
Orai1 are key mediators of SOCE [7,10,11]. It has been demonstrated that SOCE implicated in various pathological
conditions of the cardiovascular system, including myocardial I/R injury [11-13]. To the best of our knowledge, there
is no direct evidence on the role of STIM1 and Orail1 in the context of myocardial I/R injury. The present study was
designed to investigate whether STIM1 exerts protective effect on cardiomyocytes during myocardial I/R injury by
modulating the intracellular Ca2+ concentration and reducing subsequent cardiomyocytes apoptosis.

Materials and methods
Animals
Adult male wild-type C57 BL/6 mice (10–12 weeks old; 26–30 g) were provided by the Anhui Medical University
Laboratory Animal Center (SCXK 2006-0015). All animals used in the present study received ethical and humane
care. Experimental procedures were conducted in compliance with the National Institutes of Health Guidelines for
Care and Use of Laboratory Animals and were approved by the Bioethics Committee of Anhui Medical University.

Establishment of myocardial I/R injury model in mice
Mice myocardial I/R injury model was produced as described previously [14,15]. In brief, mice were anesthetized
with an intraperitoneal injection of a mixture of xylazine (5 mg/kg) and ketamine (100 mg/kg). To establish the in
vitro myocardial I/R, the left ascending artery (LAD) was occluded using an 8-0 silk suture tied transiently over
PE-10 tubing for 30 min, then the knot on the PE-10 tubing was cut. Successful ischemia was determined by the
elevation of ST segment and reperfusion was determined by recovery of the elevated ST segment on surface ECG.
Sham-operated mice underwent the same surgical procedures with the exception of left anterior descending coronary
artery occlusion.

Measurement of myocardial infarct size
2,3,5-triphenyltetrazolium chloride (TTC) and Evans Blue were obtained from Sigma-Aldrich (St. Louis, MO, U.S.A.).
Following 24h reperfusion, myocardial infarct size was evaluated using TTC/Evans Blue stain, as previously described
[16,17]. Briefly, the LAD was retied followed by intravenous administration of 2 ml of 2% Evans Blue dye through
the jugular vein. Fifteen minutes later, mice were killed and hearts were excised. The left ventricle was frozen at
−20◦C for 10 min and then sectioned transversely into 2-mm slices and incubated in 1% TTC dissolved in PBS at
37◦C for 10 min. Subsequently, each section was immersed in 4% formaldehyde for 24 h before being photographed.
Areas of infarct size (INF) and area-at-risk (AAR) were measured digitally using ImageJ software. INF and AAR were
expressed as percentages of the left ventricular area (INF/LV and AAR/LV respectively).

Assessment of apoptosis in the myocardium from mice underwent I/R
injury
Cardiomyocyte apoptosis was evaluated using the terminal deoxynucleotidyl transferase-mediated dUTP nick-end
labeling (TUNEL) technique as previously described [17]. TUNEL Apoptosis Assay Kit was the product of Roche di-
agnostics (Mannheim, Germany) and purchased from Sigma-Aldrich (Cat No.11684795910, St. Louis, MO, U.S.A.).
Briefly, 50 μl of TUNEL reaction mixture was added on samples, and the slides were incubated in humidified atmo-
sphere for 60 min at 37◦C in the dark and then rinsed with PBS (pH 7.4) three times with 5 min. DAPI staining was
performed for total nuclei quantification. The percentage of TUNEL (green fluorescence) positive cells in total cells
per field was used to quantify cardiomyocytes apoptosis in ischemic myocardium. The myocardial apoptotic index
was calculated as the percentage of TUNEL-positive nuclei per 1000 total nuclei, in the infracted border region in ten
random high power field (HPF) per mouse (n = 6 per group).

Exposure of H9C2 cells to hypoxia/reoxygenation (H/R)
H9C2 cells were purchased from ATCC (Manassas, VA, U.S.A.), seeded at constant density (10,000/cm2) and grown
to 80% in DMEM containing 10% fetal bovine serum and antibiotics. Cells were washed with Hank’s balanced salt
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solution (HBSS) and rendered quiescent in serum-free DMEM for 24 h prior to experiments. To mimic the myocardial
I/R in vitro, H9C2 cells at 80% confluence were incubated with a glucose-free medium (previously bubbled with gas
mixture containing 95% N2 and 5% CO2) for 6 h at 37◦C [18]. Then the cells were provided with fresh medium and
then moved to 95% O2/5% CO2 for reoxygenation. The control plates were kept in the incubator with 95% O2/5%
CO2 at 37◦C. Cells were harvested 16 h post-reoxygenation for analysis.

Synthesis and selection of SiRNA for STIM1
Desalted Stealth RNAi duplexes were designed using Block-iT RNAi Designer (Thermo Fisher scientific, Shanghai,
China) against STIM1 (GenBank Accession No. NM 001108496.2). Three different nonoverlapping RNAi duplexes
with the following sequences were obtained (Invitrogen):

1. (STIM1 547): 5′- CAGUGAAGAUGAGAAGCUCAGCUUU-3′ (sense),
5′- AAAGCUGAGCUUCUCAUCUUCACUG-3′ (antisense);

2. (STIM1 664): 5′-CAATTACCATGACCCTACAGTGAAA-3′ (sense),
5′-UUUCACUGUAGGGUCAUGGUAAUUG-3′ (antisense);

3. (STIM1 696): 5′-CCUUCCAUGGUGAGGACAAGCUUAU-3′(sense),
5′-AUAAGCUUGUCCUCACCAUGGAAGG-3′ (antisense).

H293 cells were chosen to test transfection and inhibition efficiency of the three sequences. STIM1 547 showed the
highest inhibition efficiency at 81.03%, and a 50 nM dose was selected. H9C2 cardiomyocytes were transfected with
siRNA duplexes using Lipofectamine RNAi MAX reagent (Invitrogen) according to the manufacturer’s instructions.
The cells were used for experiments 48 h after siRNA transfection.

Assessment of apoptotic cell death in cultured H9C2 Cells
Apoptotic H9C2 cardiomyocytes were measured using both flow cytometry and TUNEL staining. For flow cytom-
etry, cells were harvested and stained with Annexin V-FITC and propidium iodide (PI) (Thermo Fisher Scientific,
Shanghai, China) for 20 min at room temperature. The cells were then washed twice with PBS, and the fluorescence
was analyzed with CellQuest (BD Biosciences, Franklin Lakes, NJ) software on data obtained from the cell popu-
lation. For TUNEL assay, H9C2 cardiomyocytes were fixed with 4% neutral buffered formalin solution for 30 min.
Then labeling protocol was done according to the manufacturer’s instruction. Apoptotic cells were observed using a
fluorescence microscope, and were counted with at least 100 cells from four randomly selected fields in each group.

Assessment of cell viability in cultured H9C2 cells
Cell viability was assessed using the methylthiotetrazole (MTT) assay kit (Beyotime, China) according to the manu-
facturer’s instructions [19]. Briefly, cells were cultured in a 96-well plate at a density of 1 × 104 cells/well and incubated
for 24 h. The cells were administered with fresh medium and MTT solution (20 μl out of 5 mg/ml) for 4 h followed
by incubation with formazan solution (10 μl) for 4 h at 37◦C. The optical density (OD) values at 570 nm were mea-
sured using Synergy2 microplate reader (Biotek Instruments Inc., Vermont, U.S.A.). Each experiment was repeated
six times and the data were expressed as a percentage of the control.

Real-time quantitative PCR
Total RNA was isolated from myocardial homogenate and cultured H9C2 cardiomyocytes using the TRIzol reagent
(Thermo Fisher scientific, Shanghai, China) according to the manufacture’s instructions and stored at −80◦C. Quan-
titative specific RNA expression was performed in one step with SYBR Green Master kit (TOYOBO). All reactions
were performed in triplicate in ABI PRISM R© 7500 Sequence Detection System (Thermo Fisher scientific, Shanghai,
China). After initial denaturation step at 95◦C for 5 min, temperature cycling was initiated for 40 cycles of amplifi-
cation (denaturation at 94◦C for 30 s, annealing at 62◦C for 30 s, and elongation at 72◦C for 32s). The value obtained
for the target gene expression were normalized to 18s rRNA and analyzed by the relative gene expression 2−��CT

method. The following primers were used to assess gene expression of STIM1 and 18s rRNA:

STIM1: Forward 5′-TGC CAA GGC TAG CTG TAA CAA-3′,
Reverse 5′-TCA GGT GAT TGT GGC GAGTC-3′;

Orai1: Forward 5′-AGG TGA TGA GCC TCA ACGAG-3′,
Reverse 5′-TAA CCC TGG CGG GTA GTCAT-3′;
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TRPC1: Forward 5′-AGA TGT GCT TGG GAG AAA TGCT-3′,
Reverse 5′-CGT TCC ATA AGT TTC TGA CAA CCG-3′;

18s rRNA: Forward 5′-CCT GGA TAC CGC AGC TAGGA-3′,
Reverse 5′-GCG GCG CAA TAC GAA TGC CCC-3′.

Western blot analyses
The operation procedure was described in detail elsewhere [17]. The primary antibodies against STIM1, cleaved
caspase-3, and β-actin were purchased from Cell Signaling Technology and the antibodies against Orai1, Bcl-2, Bax,
and Transient receptor potential channel 1 (TRPC1) from Abcam. The positive protein bands were developed using
a chemiluminescent system, and the bands were scanned and quantified by densitometry analysis using an image
analyzer Quantity One System (Bio-Rad, Richmond, U.S.A.).

Intracellular Ca2+ concentration measurements by Laser scanning
confocal microscopy
To detect intracellular calcium concentration, H9C2 cardiomyocytes were incubated with Fluo-3/AM (Alexis, In-
vitrogen, U.S.A.) at 37◦C for 60 min according to the manufacturer’s protocol which has been described before [18].
Fluorescence was monitored at 528 nm (excitation: 490–500 nm) using a LSM510 confocal laser scanning microscope
(Carl-Zeiss, Jena, Germany). Images were acquired and quantitative analysis of laser scanning confocal microscopy
was conducted using Image-Pro Plus 6.0 software (Media Cybernetics Inc., Silver Spring, MD, U.S.A.). Values were
expressed as IOD and represented as mean +− SEM.

Mitochondrial permeability assay
To analyze the opening of mitochondrial permeability transition pore (mPTP), H9C2 cardiomyocytes were loaded
with 1.0 mM of calcein–acetomethoxy ester (Molecular Probes) and 1.0 mM CoCl2 in HBSS (Gibco) for 20 min at
37◦C, then the cells were observed and photographed by fluorescence microscopy.

Measurement of intracellular ROS accumulation
2′,7′-dichlorodihydrofluorescein diacetate (DCFH-DA) was used to detect intracellular ROS level in H9c2 cardiomy-
ocytes. Briefly, H9C2 cardiomyocytes (106 cells/ml) were incubated with 25μM DCFH-DA in DMEM without FBS at
37◦C for 30 min, then washed thrice with PBS. Cells were collected and the 2′,7′-dichlorofluorescein (DCF) fluores-
cence was observed with microplate reader (Bio-Rad, U.S.A.) at an excitation wavelength of 488 nm and an emission
wavelength of 525 nm.

Statistical analyses
All quantitative data were expressed as mean +− SEM. The differences between groups were analyzed with either
independent sample t-test or one-way ANOVA followed by Student–Newman–Keuls post hoc analyses for pair-wise
comparison. P<0.05 was considered to be statistically significant.

Results
Expression of STIM1, Orai1, and TRPC1 in myocardium after I/R injury
To verify the in vivo model of myocardial I/R injury in mice, infarct size was evaluated by TTC/Evans Blue stain-
ing and myocardial apoptosis was assessed by TUNEL assay 24 h after the end of reperfusion. The representative
photographs of mid-ventricular cross-sections and the TUNEL-positive cells in the myocardial slices from mice are
shown in Figure 1. The white zone (unstained by Evans Blue and TTC) was determined as the infarct area. The extent
of infarct myocardium was presented as a percentage of INF/LV. We found that myocardial I/R injury resulted in a
sharp increase in INF/LV percentage compared with Sham group. Furthermore, as shown in Figure 1B, apoptotic
index was significantly higher in the myocardial I/R group than the Sham group. These results suggested that the in
vivo model of myocardial I/R injury was successful.

We then detected the expression of STIM1, Orai1, and TRPC1 by both RT-PCR and Western blot. As shown in
Figure 2A–C, after myocardial I/R, the protein levels of STIM1, Orai1, and TRPC1 significantly increased compared
with the Sham group. As illustrated in Figure 2D, the mRNA levels of STIM1, Orai1, and TRPC1 also dramatically
increased compared with the Sham group.
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Figure 1. Determination of infarct size and apoptosis index in mice subjected to Sham operation and myocardial I/R injury

(A) Representative photomicrographs of TTC/Evan Blue dye in heart tissue from mice underwent Sham operation and I/R injury.

Infarct size significantly increased following myocardial I/R in mice (6.98 +− 1.59% vs 32.53 +− 3.07%, t = − 23.376, P<0.001);

#P<0.05 vs Sham operation; (B) Representative micrographs of left mid-ventricular sections with TUNEL-staining. Apoptosis cells

were identified by TUNEL staining(green), and total nuclei by DAPI staining (blue). Apoptosis index significantly increased following

myocardial I/R in mice (7.13 +− 2.84% vs 42.53 +− 4.53%, t = −20.943, P<0.001, n = 10 in each group). The results shown are

mean +− S.E.M. from three independent experiments; #P<0.05 vs Sham operation.

Expression of STIM1, Orai1, and TRPC1 in H9C2 cardiomyocytes after
H/R injury
To establish the in vitro hypoxia/reoxygenation (H/R) injury model, H9C2 cardiomyocytes underwent hypoxia for
3 h then reoxygenation for 16 h. The validity of H/R model was evaluated by flow cytometry using Annexin V/PI
double staining and TUNEL assay. The results showed that the apoptotic rate measure by flow cytometry in the H/R
injury group was significantly higher than the control group (Figure 3A,B). Furthermore, the apoptotic index assessed
by TUNEL in the H/R injury group was significantly higher than the control group (Figure 3C,D).

Then protein levels of STIM1, Orai1, and TRPC1 were detected by Western blot. As shown in Figure 3E,F, after
H/R injury, the protein levels of STIM1, Orai1, and TRPC1 remarkably increased compared with the Control group.

Transfection of specific SiRNA inhibited STIM1 expression
To determine the interaction between up-regulation of STIM1 and H/R injury, STIM1 was suppressed by transfecting
with specific SiRNA. Scramble SiRNA labeled with FAM (Thermo Fisher scientific, Shanghai, China) was used to
establish the negative control and evaluate the transfection efficacy. Cells transfected with Lipofectamine reagent
only were considered as a negative control (Mock group). The transfection efficacy was 67.6 +− 8.4% as illustrated
in Figure 4A. To further determine the inhibition efficacy, expression of STIM1 was detected 48h after transfection.
As shown in Figure 4B,D, specific SiRNA against STIM1 significantly decreased mRNA and protein expression of
STIM1. Furthermore, there were no significant differences in the apoptosis rate and cell viability among the groups
before being subjected to H/R injury (Figure 5), suggesting no toxicity of SiRNA and transfection reagent on H9C2
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Figure 2. Up-regulated expression of STIM1/Orai1/TRPC1 in mice subjected to Sham operation and myocardial I/R injury.

(A–C) Levels of STIM1, Orai1, and TRPC1 protein analyzed by Western blot. The protein levels of STIM1, Orai1, and TRPC1 in-

creased 5.95-fold (t = − 148.388, P<0.001), 4.65-fold (t = −167.414, P<0.001), and 4.19-fold (t = −204.411, P<0.001) respectively,

compared with the Sham group; #P<0.05 vs Sham operation. (D) Levels of STIM1, Orai1, and TRPC1 mRNA analyzed by RT-PCR.

The mRNA levels of STIM1, Orai1, and TRPC1 increased 7.03-fold (t = −142.880, P<0.001), 5.94-fold (t = −87.303, P<0.001), and

5.05-fold (t = −66.339, P<0.001) respectively, compared with the Sham group (n = 10 in each group); #P<0.05 vs Sham operation.

The results shown are mean +− S.E.M. from three independent experiments.

cardiomyocytes.

Suppression of STIM1 decreased apoptosis in H9C2 cardiomyocytes
induced by H/R
Then the impact of STIM1 knock-down on apoptosis of H9C2 cardiomyocytes after H/R was evaluated by both flow
cytometry and TUNEL assay. The result showed that the apoptotic rate in the H/R injury group was significantly
higher than the control group (Figure 6A,B). In addition, the apoptosis index assessed by TUNEL in the H/R in-
jury group was also significantly higher than the control group (Figure 6C,D). Knock-down of STIM1 before H/R
decreased the apoptosis rate compared with that of the cells that underwent H/R alone (Figure 6A,B). Furthermore,
the apoptosis index of H9C2 cells in STIM1 knock-down group was also significantly less than that of the cells that
underwent H/R alone (Figure 6C,D).
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Figure 3. Determination of apoptosis and expression of STIM1/Orai1/TRPC1 in H9C2 cardiomyocytes subjected to Control

and H/R injury.

(A and B) Representative photographs of flow cytometry using Annexin V/PI double staining in cardiomyocytes underwent Control

and H/R. Apoptosis rate significantly increased following H/R in cardiomyocytes(34.86 +− 6.16% vs 9.16 +− 4.07%, P<0.001, n = 6

in each group); #P<0.05 vs Control; (C and D) Representative photographs of TUNEL assay in cardiomyocytes underwent Control

and H/R. Apoptosis index significantly increased following H/R in cardiomyocytes (26.56 +− 3.35% vs 5.57 +− 1.63%, P<0.001, n =
6 in each group); #P<0.05 vs Control. (E and F) Levels of STIM1, Orai1, and TRPC1 protein analyzed by Western blot. The protein

levels of STIM1, Orai1, and TRPC1 increased 4.25-fold (t = −27.717, P<0.001), 2.26-fold (t = −15.418, P<0.001), and 2.51-fold

(t = −19.925, P<0.001) respectively, compared with the Control group; #P<0.05 vs Control. The results shown are mean+− S.E.M.

from three independent experiments.

Suppression of STIM1 by RNAi reduced intracellular Ca2+ accumulation
induced by H/R in H9C2 cardiomyocytes
Ca2+ overload is known to be an important mechanism responsible for MIRI. To examine whether intracellular Ca2+

accumulation was affected by blocking STIM1, the intensity of Ca2+ fluorescence marked by fluo-3/AM was measured
under confocal microscope after the H/R procedure. We found that the intensity was increased significantly after H/R
(Figure 7A) compared with control group. The result indicated that intracellular Ca2+ accumulation was increased
in H/R treated H9C2 cells. Besides, the intensity of Ca2+ fluorescence was significantly decreased in transfected cells
after the H/R, when compared with that in those without transfection (Figure 7A).

Suppression of STIM1 by RNAi inhibited mPTP opening and ROS
generation induced by H/R in H9C2 cardiomyocytes
Due to mitochondria plays a central role in apoptosis and Ca2+ overload is believed to prime the mPTP to open at the
stage of myocardial reperfusion, the mPTP opening was evaluated in H9C2 cardiomyocytes after H/R. The occurrence

c© 2017 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).

7

D
ow

nloaded from
 http://portlandpress.com

/bioscirep/article-pdf/37/6/BSR
20171249/808182/bsr-2017-1249.pdf by guest on 25 April 2024



Bioscience Reports (2017) 37 BSR20171249
https://doi.org/10.1042/BSR20171249

Figure 4. Transfection of specific SiRNA inhibited STIM1 expression in H9C2 cardiomyocytes.

(A) Transfection efficiency (assessed by FAM-labeled Scramble SiRNA) was 67.6 +− 8.4%. (B) Levels of STIM1 mRNA was deter-

mined by RT-PCR. Results were expressed as fold change over control group; #P<0.05 vs Control. (C and D) Levels of STIM1

protein was determined by Western blot. Results were expressed as fold change over control group; #P<0.05 vs Control. The

results shown are mean +− S.E.M. from three independent experiments.

Figure 5. Effect of SiRNA transfection on apoptosis and cell viability of H9C2 cardiomyocytes.

(A and B) Representative photographs of flow cytometry using Annexin V/PI double staining in cardiomyocytes 48 h after transfec-

tion. (C) Cell viability assessed by MTT assay in cardiomyocytes 48 h after transfection. The results shown are mean+− S.E.M. from

three independent experiments.
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Figure 6. Suppression of STIM1 decreased apoptosis in H9C2 cardiomyocytes induced by H/R injury.

(A and B) Apoptosis rate assessed by flow cytometry using Annexin V/PI double staining in H9C2 cardiomyocytes subjected to

Control, H/R, and SiRNA + H/R. The apoptotic rate in the H/R injury group was significantly higher than the control group (32.91 +−
4.45% vs 6.28 +− 3.19% respectively, F = 83.388, P<0.001, n = 6 in each group). In addition, knock-down of STIM1 before H/R

decreased the apoptosis rate compared with that of the cells that underwent H/R alone (12.55 +− 3.44% vs 32.91 +− 4.45%, F =
83.388, P<0.001, n = 6 in each group). (C and D) Apoptosis index assessed by TUNEL assay in H9C2 cardiomyocytes subjected to

Control, H/R, and SiRNA + H/R. The apoptosis index in the H/R injury group was significantly higher than the control group (25.94
+− 5.99% vs 2.84 +− 1.29%, F = 52.788, P<0.001). Furthermore, the apoptosis index in STIM1 knock-down group was significantly

lower than H/R group (11.55 +− 2.98% vs 25.94 +− 5.99%%, F = 83.388, P<0.001); #P<0.05 vs control; �P<0.05 vs H/R group.

The results shown are mean +− S.E.M. from three independent experiments.

of mPTP opening in intact cells was investigated by monitoring the fluorescence of mitochondrial-entrapped calcein
with the calcein-AM and CoCl2 coloading method. As shown in Figure 7B, compared with the control group, the
fluorescence intensity of mitochondrial calcein was significantly decreased in H/R group, indicating that the extent of
mPTP opening was enhanced following H/R. Moreover, knock-down of STIM1 markedly increased the fluorescence
intensity compared with the H/R, implying that knock-down of STIM1 inhibited H/R-induced mPTP opening in
H9c2 cardiomyocytes.

As oxidative stress plays an important role in the myocardial I/R injury, the effect of STIM1 knock-down upon
ROS generation was evaluated using the dye DCFH-DA. As shown in Figure 7C, the fluorescence intensity of DCF
significantly raised in H/R group, indicating that the ROS level increased following H/R. Furthermore, knock-down of
STIM1 markedly reduced the fluorescence intensity compared with the H/R, suggesting that knock-down of STIM1
decreased ROS generation.

c© 2017 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 7. Suppression of STIM1 by RNAi reduced intracellular Ca2+ accumulation, mPTP opening and ROS generation

induced by H/R in H9C2 cardiomyocytes.

(A) Intracellular Ca2+ levels was detected by laser scanning confocal microscopy 48 h following transfection. Intensity of Ca2+ fluo-

rescence marked by fluo-3/AM under confocal microscope significantly enhanced (4.7-fold than the Control, F = 19.902, P<0.001)

after H/R and remarkably decreased, but still stronger than control group cells; #P<0.05 vs control; �P<0.05 vs H/R group. (B)

The opening of the transient mPTP was assessed by coloading with calcein AM and CoCl2 in H9C2 cardiomyocytes. Opening of

mPTP significantly enhanced after H/R and remarkably decreased, but still stronger than control group cells; #P<0.05 vs control;

�P<0.05 vs H/R group. (C) ROS generation was evaluated using the dye DCFH-DA in H9C2 cardiomyocytes. ROS generation sig-

nificantly increased after H/R and remarkably decreased, but still stronger than control group cells; #P<0.05 vs control; �P<0.05

vs H/R group. The results shown are mean +− S.E.M. from three independent experiments.

Suppression of STIM1 by RNAi increased the Bcl-2/Bax ratio, decreased
Orai1/TRPC1, and cleaved caspase-3 expression
To investigate the effects of STIM1 suppression on the expression the downstream molecules, Orai1 and TRPC1
protein levels were measured with Western blot. As shown in Figure 8A, the expression of Orai1 significantly increased
in H9C2 cells that underwent H/R, and this increase was blocked by suppression of STIM1. In addition, the expression
of TRPC1 significantly increased in H9C2 cells that underwent H/R, and this increase was also blocked by suppression
of STIM1.

Bcl-2 and Bax are known to be involved in the control of apoptotic pathways. Particularly, the ratio of Bcl-2 to Bax
protein determines whether cells will die via apoptosis or be protected from it. As shown in Figure 8B, the Bcl-2/Bax
ratio was significantly decreased in the H/R group. However, suppression of STIM1 by RNAi resulted in a noticeable
increase in the Bcl-2/Bax ratio compared with that of the H/R group. As illustrated in Figure 8C, the expression
of cleaved caspase-3 significantly increased in H9C2 cells that underwent H/R, and this increase was blocked by
suppression of STIM1.

Discussion
The present study found that myocardial I/R injury resulted in the up-regulation of STIM1/Orai1/TRPC1 in the in
vivo mouse model. The in vitro study then revealed that knock-down of STIM1 with specific SiRNA attenuated
H/R-induced apoptosis in H9C2 cardiomyocytes by reducing intracellular Ca2+ accumulation and inhibiting mPTP,
thereby altering the expression of TRPC1 as well as apoptosis-related proteins including Bcl-2, Bax, and caspase-3.
These results suggested the therapeutic potential of STIM-1/Orai1 for myocardial I/R injury.

10 c© 2017 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 8. Suppression of STIM1 by RNAi increased the Bcl-2/Bax ratio, decreased TRPC1, and cleaved caspase-3

expression.

(A) The levels of Orai1 and TRPC1 protein increased in H9C2 cardiomyocytes after H/R and significantly decreased in H9C2 car-

diomyocytes transfected with STIM1–SiRNA after H/R. The expression of Orai1 significantly increased in H9C2 cells that underwent

H/R (7.2-fold vs the control group, χ2 = 15.189, P=0.001), and this increase was blocked by suppression of STIM1 (0.39-fold vs

the H/R group, P=0.001). In addition, the expression of TRPC1 significantly increased in H9C2 cells that underwent H/R (4.4-fold

vs the control group, χ2 = 15.158, P=0.001), and this increase was also blocked by suppression of STIM1 (0.44-fold vs the H/R

group, P=0.001); #P<0.05 vs control; � P<0.05 vs H/R group. (B) The Bcl-2/Bax ratio was significantly decreased in the H/R

group. Suppression of STIM1 by RNAi resulted in a noticeable increase in the Bcl-2/Bax ratio compared with the H/R group. The

Bcl-2/Bax ratio was significantly decreased in the H/R group (0.25-fold in H/R group vs the control group, F = 143.399, P<0.001).

However, suppression of STIM1 by RNAi resulted in a noticeable increase in the Bcl-2/Bax ratio compared with that of the H/R

group (2.58-fold vs the H/R group, P<0.001); #P<0.05 vs control; �P<0.05 vs H/R group. (C) The levels of cleaved caspase-3

protein significantly increased in H9C2 cells underwent H/R and this increase was blocked by suppression of STIM1. The expres-

sion of cleaved caspase-3 significantly increased in H9C2 cells that underwent H/R (6.12-fold vs the control group, F = 214.178,

P<0.001), and this increase was blocked by suppression of STIM1 (0.45-fold vs the H/R group, P<0.001); #P<0.05 vs control;

�P<0.05 vs H/R group. The results shown are mean +− S.E.M. from three independent experiments.

In recent years, STIM1 has been shown to act as an ER sensor and mediate SOCE, a major mechanism of Ca2+

influx in nearly all excitable cells, including cardiomyocytes. Previous studies provided substantial evidence that
STIM1-mediated SOCE plays a key role in mediating cardiomyocyte hypertrophy, both in vitro and in vivo. In ad-
dition, pharmacological inhibition of SOCE has been confirmed to attenuate Ca2+ overload in cardiac microvascular
endothelial cells and cardiomyocytes [20,21], suggesting the potential contribution of SOCE to Ca2+ overload in the
process of ischemia/reperfusion injury. These previous evidence helped the current study to put forward ideas in
cardiomyocytes suffering from I/R injury. The first problem needed to be resolved was expression of STIM1/Orai1
at reperfusion stage. In present study, we found that in a mouse model of myocardial I/R injury, along with extended
infarct size and increased apoptosis, the levels of STIM1, Orai1 and TRPC1 mRNA, and protein increased dramati-
cally compared with Sham group. Similarly, the protein levels of STIM1, Orai1, and TRPC1 significantly increased in
cultured H9C2 cardiomyocytes in a simulated H/R injury model. These results provided a hint that up-regulation of
STIM1/Orai1/TRPC1 might participate in the pathogenesis of myocardial I/R injury.

It is well known that apoptosis is one of the major pathogenic mechanisms underlying I/R injury and previous
studies have demonstrated that blockade of apoptosis could effectively decrease the loss of contractile cells, mini-
mize I/R-induced myocardial injury and, therefore, slowdown or even prevent the occurrence of heart failure. Al-
though STIM1/Orai1/TRPC1 was proven to be up-regulated during myocardial reperfusion, it is unknown whether
down-regulation of STIM1/Orai1 prevents the heart against I/R injury. Up-regulation of STIM1/Orai1 has been re-
ported to trigger apoptosis in several cells. For example, down-regulation of STIM1/Orai1 counteracts the apoptosis of
nasopharyngeal carcinoma cells induced by NaBu [22]. Similarly, down-regulated SOCE by SiRNA targeting STIM1
significantly inhibited soft substrate-induced epithelial cell apoptosis [23]. To investigate the effect of down-regulation
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of STIM1 in the context of myocardial I/R injury, we performed in vitro studies in which H9C2 cardiomyocytes was
subjected to H/R injury to mimic myocardial I/R injury and STIM1 was knocked down with specific SiRNA. The
results revealed that knock-down of STIM1 significantly inhibited apoptosis in H9C2 cardiomyocytes subjected to
H/R as evidenced by both TUNEL assay and flow cytometry using Annexin V/PI staining. The present study also
demonstrated that suppression of STIM1 up-regulated Bcl-2 and down-regulated Bax and cleaved caspase-3 protein
expression levels in cultured H9C2 cardiomyocytes. Therefore, as above, it was suggested that inhibiting apoptosis
of cardiomyocytes was one of the important mechanisms by which suppression of STIM1 exerted cardioprotective
effects during H/R injury.

Abundant evidence from previous studies have demonstrated that a rise in intracellular Ca2+([Ca2+]i) preceded ir-
reversible myocardial injury and drugs or protocols that block the rise in [Ca2+]i could reduce or delayed myocardial
death. The molecular mechanisms underlying [Ca2+]i accumulation has not been fully elucidated. Both the Na+–H+

exchanger (NHE) and the voltage gated L-type calcium channel have been demonstrated to be the primary mecha-
nisms leading to lethal Ca2+ overload during the reperfusion stage. Previous study revealed that activation of STIM1
in cardiomyocytes led to enhanced Ca2+ entry [9]. This increase in intracellular Ca2+ mediated by SOCE has been
demonstrated critical elements in the upstream, Ca2+-dependent control of pathological cardiac hypertrophy [9,24].
In addition, in cardiac microvascular endothelial cells exposed to reperfusion conditions, the enhanced Ca2+ over-
load is due to SOC-mediated Ca2+ influx [20,21]. In agreement with previous studies, we observed a raise in Ca2+

concentration in cultured H9C2 cardiomyocytes after being exposed to H/R. Moreover, the increase in [Ca2+]i accu-
mulation in H9C2 cardiomyocytes induced by H/R injury was significantly attenuated after suppression of STIM1.
These results suggest that Ca2+ accumulation mediated by STIM1 may contribute to Ca2+ overload following H/R
injury.

Increase in ROS is also a key mediator of myocardial I/R injury. Indeed, STIM1-mediated Ca2+ influx has been
shown to increase mitochondrial ROS production in many different cells [25-27]. Similarly, the present study ob-
served significant ROS increase in H9C2 cells during H/R injury. However, H/R injury induced ROS generation
was attenuated when STIM1 was knocked down by SiRNA, suggesting that ROS generation may contribute to the
H/R injury in H9C2 cardiomyocytes. Excessive ROS generation triggers the opening of mPTP, which initiates death
pathways. Correspondingly, our study also showed prompted mPTP opening in H9C2 cardiomyocytes after H/R.
Furthermore, suppression of STIM1 by SiRNA obviously reversed H/R injury induced mPTP opening during H/R.
Taken together, these data indicate that the inhibition of mPTP opening triggered by excessive ROS generation may
independently contribute to the cardioprotective effects of STIM1 suppression in cardiomyocytes suffering from H/R
injury.

In summary, our results show that both STIM1 and its target molecules Orai1/TRPC1 were up-regulated in the
context of myocardial I/R injury. Furthermore, STIM1-induced intracellular Ca2+ accumulation may involve in ROS
production and then induce the opening of mPTP, finally lead to cell death and apoptosis in H9C2 cardiomyocytes
subjected to H/R injury. Our findings provide a novel cellular mechanism involved in the pathophysiology of my-
ocardial I/R injury.

The present study has some limitations. First, in the present study, we used the H9C2 cardiomyocytes to establish
the in vitro H/R model. However, the extent to which H9C2 cells can accurately mimic the H/R responses of primary
cardiac myocytes has not yet been fully established. In addition, the present study on H9c2 cells was designed to
uncover the potential signaling mechanisms impacting on Ca2+ accumulation after I/R. Due to the complexity of the
in vivo environment, especially after I/R, results from H/R study are not sufficient to explain the exact function of
STIM1/Orai1/TRPC1 in Ca2+ overload post I/R. But this study suggested at least a feasibility of carrying such study
on mammalian myocardial cells, and provided a theoretical and experimental basis to put these findings into further
understanding of the mechanisms underlying the accumulation of calcium via STIM1/Orai1 signaling pathway in
the myocardial systems under both physiological and pathological conditions.
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