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In liver cirrhosis with portal hypertension, the uneven distribution of vasoactive substances
leads to increased intrahepatic vascular resistance and splanchnic vasodilatation. Angio-
genesis also induces increased portal inflow and portosystemic collaterals. The collater-
als may induce lethal complications such as gastroesophageal variceal hemorrhage, but
the therapeutic effect of vasoconstrictors is still suboptimal due to poor collateral vasore-
sponsivenss. Curcumin has aroused much attention for its antifibrosis, vasoactive, and
anti-angiogenesis actions. However, whether it affects the aforementioned aspects is un-
known. Liver cirrhosis was induced by common bile duct ligation (CBDL) in Sprague–Dawley
rats. Sham-operated rats were controls. CBDL and sham rats were randomly allocated
to receive curcumin (600 mg/kg per day) or vehicle since the 15th day after BDL. On the
29th day, portal hypertension related parameters were surveyed. Portosystemic collateral
in situ perfusion was performed to evaluate vascular activity. Chronic curcumin treatment
decreased portal pressure (PP), cardiac index (CI) and increased systemic vascular resis-
tance (SVR) in cirrhotic rats. In splanchnic system, curcumin decreased superior mesenteric
artery (SMA) flow and increased SMA resistance. Mesenteric angiogenesis was attenuated
by curcumin. Acute administration of curcumin significantly induced splanchnic vasocon-
striction. The mesenteric protein expressions of p-endothelial nitric oxide synthase (eNOS),
cyclooxygenase (COX) 2 (COX2), vascular endothelial growth factor (VEGF), p-VEGF recep-
tor 2 (VEGFR2), and p-Erk were down-regulated. In collateral system, curcumin decreased
portosystemic shunting and induced vasoconstriction. In conclusion, chronic curcumin ad-
ministration in cirrhotic rats ameliorated portal hypertension related hemodynamic derange-
ments and portosystemic collaterals. Curcumin also attenuated splanchnic hyperdynamic
circulation by inducing vasoconstriction through inhibition of eNOS activation and by de-
creasing mesenteric angiogenesis via VEGF pathway blockade.

Background
Liver cirrhosis is an end-stage condition induced by acute or chronic liver injury. The hemodynamic
changes characterized by increased intrahepatic resistance and splanchnic vasodilatation with increased
portal inflow induce portal hypertension. When the increased portal inflow confronts the difficulty in
entering the liver, the portosystemic collaterals develop gradually with an attempt to divert the stagnant
blood flow. Amongst them, gastroesophageal varices bleeding could be lethal and the efficacy of phar-
macological treatment is still suboptimal. Traditionally, splanchnic vessel dilatation was thought as a key
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factor. However, recent studies have indicated that angiogenesis participates in the development and maintenance of
splanchnic hyperemia and portosystemic collateral vascular bed in portal hypertension [1,2]. Furthermore, angio-
genesis blockade could be beneficial in the control of portal hypertension [3,4].

Portal pressure (PP) is mainly determined by the interaction between hepatic and splanchnic systems. During the
progression of liver cirrhosis, hepatic fibrosis and regeneration nodules compress intrahepatic vessels and increased
hepatic resistance, which is a major pathophysiological factor of portal hypertension. Furthermore, the splanchnic
flow increases because of abnormal angiogenesis (structural component) and vascular dilatation (functional compo-
nent), which elevate portal inflow and subsequently PP. The contractility and amount of collaterals also influence PP
and bring lethal complications. To contract collateral vessels and to decrease the amount of shunting are therefore
fundamental in the control of portal hypertension related complications. However, the therapeutic efficacy of vaso-
constrictors is still limited by their side effects [5] and poorer vasoresponsiveness during acute hemorrhage in portal
hypertension, which were mainly ascribed to nitric oxide (NO) [6].

Curcumin (curcumin [1,6-heptadiene3,5-dione,1,7-bis(4-hydroxy-3-methoxyphenyl); C21H20O6]), an active in-
gredient in the dietary agent turmeric, has potent antiproliferative, anti-inflammatory, and anti-angiogenic properties
[7]. It has been consumed daily throughout Asian countries over centuries without significant toxicity [8]. Curcumin
administered at the onset of liver disease has been proved to alleviate liver fibrosis in animals [9]. Curcumin also sup-
pressed angiogenesis in vivo [10]. Furthermore, curcumin exerts various vasoactive effects through different mecha-
nisms [11]. However, the relevant influence of curcumin on portal hypertension and related derangements have not
been surveyed. The present study thus aimed to evaluate the effects of curcumin on the aforementioned aspects in
cirrhotic rats.

Materials and methods
Animal model: common bile duct ligation
Male Sprague–Dawley rats (260–280 g) were caged at 24◦C with a 12-h light/dark circle and allowed free access to
food and water. Secondary biliary cirrhosis was induced by common bile duct ligation (CBDL) [12]. In brief, under
ketamine anesthesia (100 mg/kg, intramuscularly), the common bile duct was exposed through a midline abdominal
incision and doubly ligated with 3-0 silk. The section between the ligatures was cut. The incision was then closed
and the animal allowed to recover. A high yield of secondary biliary cirrhosis was noted 4 weeks later [13]. Weekly
vitamin K injection (50 μg/kg, intramuscularly) was applied to avoid coagulation defect.

The Taipei Veterans General Hospital Animal Committee approved the study (grant number IACUC 2012-106).
All animals received humane care according to the criteria outlined in the ‘Guide for the Care and Use of Laboratory
Animals’ prepared by the National Academy of Sciences and published by the National Institutes of Health (NIH
Publication 86-23, revised 1985).

Experiment design
Effects of chronic curcumin administration on portal hypertension related parameters
To determine the role of curcumin in the progression of cirrhosis and portal hypertension, CBDL and sham rats were
randomly allocated to receive curcumin (600 mg/kg/day, oral gavage) or vehicle (distilled water, DW) for 2 weeks
since the 15th day after CBDL or sham operation. On the 29th day after operations, the following parameters were
determined: (i) systemic hemodynamic effects of curcumin; (ii) effects of curcumin on hepatic system; (iii) effects
of curcumin on splanchnic system: mesenteric vascular density and protein expressions; (iv) effects of curcumin
on collateral vascular bed: portosystemic shunting. Part (iv) was performed in parallel groups because of technical
requirement.

Effects of curcumin on splanchnic system: acute effects of curcumin on splanchnic
hemodynamics
To determine the acute effects of curcumin on splanchnic vascular hemodynamics, CBDL rats were applied. On
the 29th day after operations, a single dose of curcumin (1000 mg/kg, oral gavage) or vehicle was given. Splanchnic
hemodynamics were measured at 5, 25, and 45 min after curcumin administration.
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Effects of curcumin on collaterals: acute effect of curcumin on vascular contractility of collateral
vascular bed
To further explore the effects of curcumin on the vasoresponsiveness to arginine vasopressin (AVP) in collateral
vascular bed, in situ collateral perfusion was performed with Krebs solution (vehicle) or curcumin (10 mM) prein-
cubation for 20 min. Then the perfusion pressure changes to AVP (10−10, 10−9, 3 × 10−9, 10−8, 3 ×10−8, and 10−7

M) were evaluated.

Measurement of systemic and portal hemodynamics
The right femoral artery was cannulated with a PE-50 catheter that was connected to a Spectramed DTX transducer
(Spectramed Inc., Oxnard, CA, U.S.A.). Continuous recordings of mean arterial pressure (MAP), heart rate (HR), and
PP were performed on a multichannel recorder (model RS 3400, Gould Inc., Cupertino, CA, U.S.A.). The external
zero reference was placed at the level of the midportion of the rat. The abdomen was then opened with a midline
incision, and a mesenteric vein was cannulated with a PE-50 catheter connected to a Spectramed DTX transducer.
The abdominal cavity was then closed and the PP was recorded on a Gould model RS 3400 recorder [14,15].

The superior mesenteric artery (SMA) was identified at its aortic origin and a 5-mm segment was gently dissected
free from surrounding tissues. An ultrasonic flow transducer was placed around the SMA and secured with a 4-0 silk
tie threaded through the cuff, and the flow was detected through a small animal blood flow meter (TS420, Transonic
Systems Inc., NY, U.S.A.).

Cardiac output (CO) was measured by thermodilution, as previously described [16]. Briefly, a thermistor was
placed in the aortic arch just distal to the aortic valve and the thermal indicator (100 μl of normal saline) was in-
jected into the right atrium through a PE-50 catheter. The aortic thermistor was connected to a Columbus Instru-
ments Cardiotherm 500-AC-R (Columbus Instruments International Co., OH, U.S.A.). Five thermodilution curves
were obtained for each CO measurement. The final value was obtained from the arithmetic mean. Cardiac index
(CI, ml/min/100 g body weight (BW)) was calculated as CO per 100 g BW: systemic vascular resistance (SVR,
mmHg/ml/min/100 g BW) was calculated by dividing MAP by CI. SMA resistance (mmHg/ml/min/100 g BW) was
calculated by (MAP-PP)/SMA flow per 100 g BW [16].

Hepatic fibrosis determination with Sirius Red staining
The liver paraffin section was stained with Sirius Red staining kit (Polysciences Inc., Warrington, PA, U.S.A.). ImageJ
(available for downloading from the National Institutes of Health (http://rsb.info.nih.gov/ij/)) was used to measure
the percentage of Sirius Red stained area. Briefly, gray-scale image was used, then the red-stained collagen was iso-
lated using thresholding function. After that, the thresholded area was measured and shown as the percentage of
thresholded area per image.

Hematoxylin and Eosin staining
The tissue was fixed in 10% formalin, embedded in paraffin, sectioned in 5 μm, and stained with Hematoxylin and
Eosin (H&E).

Immunofluorescence study for the hepatic and mesenteric vascular
density
Hepatic and mesenteric angiogenesis were quantitated by CD31-labeled microvascular networks in rat liver and
mesenteric connective tissue windows according to the previous study [3,4]; (×100)-magnification immunofluo-
rescent images were assessed using an upright fluorescent microscope (AX80, Olympus, Japan) and thresholded by
ImageJ software. The vascular length and area was manually measured with the pencil tool and histogram function,
respectively. The unit of vascular length per unit area of mesenteric window would be μm/μm2 = μm−1 and the vas-
cular area per unit area of mesenteric window, actually, could be pixel/pixel without being converted into μm2/μm2.

Western blotting
Mesentery was immediately frozen in liquid nitrogen and stored at −80◦C until required. The protein extracts were
made by pulverizing in grinder with liquid nitrogen, then using a ratio of 1 ml of lysis buffer (PBS containing 1%
NP-40, 0.5% sodium deoxycholate, 0.1% SDS, and 0.05% protease inhibitor cocktail solution (Roche Diagnostics
GmbH, Penzberg, Germany) for each 100-mg sample. Protein concentration was determined for each sample by
the Bradford method [17]. An aliquot of 20–40 μg protein from each sample that dissolved in sample buffer (63
mmol/l of Tris/HCl, pH 6.8, containing 2% SDS, 10% glycerol, 5% 2-mercaptoethanol, and 0.005% Bromophenol
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Blue), and 10 μg positive control were separated on denaturing SDS/polyacrylamide gels (10%) by electrophoresis
(Mini-PROTEAN R© 3 Cell, Bio–Rad Laboratories, Hercules, CA, U.S.A.). Prestained proteins markers (SDS-PAGE
Standards, Bio–Rad Laboratories) were used for molecular weight determinations. Proteins were transferred on to
a PVDF membrane (Immum-BlotTM PVDF Membrane, Bio–Rad Laboratories) by a semidry electroblotting sys-
tem (Trans-Blot R© SD Semi-dry Electrophoretic Transfer Cell, Bio–Rad Laboratories) for 1.5 h at 4◦C. To block
non-specific binding, membranes were blocked for 30 min with 3% non-fat dry milk in TBS-T, pH 7.4 (25 mmol/l
Tris base, 137 mmol/l NaCl, 2.7 mmol/l KCl, 1% Tween 20). Blots were incubated with the primary antibody (in-
ducible NO synthase (iNOS) (Millipore, Billerica, MA, U.S.A.) used in 1:1000 dilution from Millipore AB5382; p-Erk
used in 1:1000 dilution from Signaling 4370; Erk used in 1:1000 dilution from Millipore 05-1152; vascular endothelial
growth factor (VEGF) used in 1:500 dilution from Genetex 59912; VEGF receptor 2 (VEGFR2) used in 1:1000 dilu-
tion from Cell Signaling 9698; p-VEGFR2 used in 1:1000 dilution from Origene TA309974; cyclooxygenase (COX) 1
(COX1) used in 1:1000 dilution from Cell Signaling 9896; COX2 used in 1:1000 dilution from Thermo PA5-27283),
diluted with 5% non-fat dry milk in TBS-T, then washed. After that, the blots were incubated with the secondary
antibody diluted with 5% non-fat dry milk in TBS-T (peroxidase-labeled anti-rabbit IgG, 1:6000, room temperature
for 60 min for iNOS, p-Erk, VEGF, VEGFR2, COX-1, and COX-2, Millipore AP132P; peroxidase-labeled anti-mouse
IgG, 1:6000, room temperature for 60 min for Erk, Millipore AP124P) and washed. Subsequent detection of the spe-
cific proteins was performed by ECL (BCIP/NBT solution, Amresco Co., Ohio, U.S.A.). With a computer-assisted
video densitometer and digitalized software (Kodak Digital ScienceTM ID Image Analysis Software, Eastman Kodak
Co., Rochester, NY, U.S.A.), the blots were scanned, photographed, and the signal intensity (integral volume) of the
appropriate band was analyzed.

Color microsphere method for portosystemic shunting degree analysis
Portosystemic shunting degree was determined using the technique described by Chojkier and Groszmann [18] and
substituting color for radioactive microspheres; 30000 of 15-μm yellow microspheres (Dye Track; Triton Technol-
ogy, San Diego, CA, U.S.A.) were slowly injected into the spleen. The rats were killed, and the livers and lungs were
dissected and placed into new polypropylene centrifuge tubes. The number of microspheres in each tissue was de-
termined following the protocol provided by the manufacturer. In brief, 3000 blue microspheres (Dye Track; Triton
Technology) were added to each tube as an internal control. Tissue was digested overnight with 1 M KOH at 60◦C
and thoroughly sonicated. After centrifugation, the supernatant was removed, and the pellet was washed once with
10% Triton X-100 and twice with acidified ethanol. At the end of the process, a minimum pellet containing the micro-
spheres was allowed to dry overnight. The color of the microspheres was diluted with 200 μl of acidified Cellosolve
acetate (Spectrum Chemicals, Gardens, CA, U.S.A.). The absorbance of the solution was read at 448-nm wavelength
(yellow) and 670-nm wavelength (blue) in a spectrophotometer (Shimadzu, Columbia, MD, U.S.A.), and the number
of microspheres was calculated by comparison with standards. Spillover between wavelengths was corrected with the
matrix inversion technique. Portosystemic shunting was calculated as lung microspheres/(liver microspheres + lung
microspheres). Assuming a worst-case scenario in which two-thirds of the microspheres remain trapped in the spleen,
this technique detects a minimum shunt of 3.5%. Studies using color microspheres have been shown to provide results
similar to those using radioactive microspheres [19].

Portosystemic collateral system perfusion
The in situ perfusion system was performed as previously described [20]. Briefly, both jugular veins were cannulated
with 16-gauge Teflon cannulas. The abdomen was then opened and an 18-gauge Teflon cannula was inserted in
the distal SMV and fixed with cyanoacrylate glue. To exclude the liver from perfusion, the second loose ligature
around the portal vein was tied. All the experiments were performed 20 min after starting perfusion at a constant
rate of 12 ml/min. In each individual preparation, after testing experimental agents, the contracting capability of the
portosystemic collateral vessels was challenged with 125 mM potassium chloride solution at the end of experiments.

Drugs
Curcumin was purchased from Sigma Chemical Co. (St. Louis, MO. U.S.A.). All solutions were freshly prepared on
the days of experiment.

Statistical analysis
All results are expressed as mean +− S.E.M. The Shapiro–Wilk normality test was applied to check the distribution
pattern of the data. Most of the datasets were normally distributed except for liver and renal biochemistry data. They
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Table 1 BW and hemodynamic parameters in sham or CBDL rats with DW or curcumin treatment

Sham DW Sham curcumin CBDL DW CBDL curcumin

n=5 n=5 n=7 n=8

BW (g) 425 +− 7 415 +− 8 367 +− 11† 390 +− 10

MAP (mmHg) 110 +− 4 111 +− 4 98 +− 6 92 +− 6

HR (beats/min) 329 +− 9 306 +− 11 294 +−19 256 +− 16

PP (mmHg) 6.8 +− 1.0 6.7 +− 1.0 15.4 +− 1.0† 11.2 +− 1.2*

CI (ml/min/100 g) 22.7 +− 1.2 22.9 +− 0.9 38.0 +− 1.6† 26.9 +− 3.1*

SVR (mmHg/ml/min/100 g) 5.0 +− 0.4 4.7 +− 0.1 2.5 +− 0.2† 3.1 +− 0.2*,‡

SMA flow (ml/min/100 g) 2.6 +− 0.1 2.5 +− 0.1 5.5 +− 0.3† 3.9 +− 0.4*

SMA resistance
(mmHg/ml/min/100 g)

39.4 +− 2.1 40.7 +− 3.2 15.3 +− 1.5† 22.2 +− 2.5*,‡

*P<0.05, curcumin-treated group compared with parallel DW-treated group;
†P<0.05, DW-treated CBDL group compared with DW-treated sham group;
‡P<0.05, curcumin-treated CBDL group compared with curcumin-treated sham group.
CBDL: common bile duct ligation; DW: distilled water (control)
BW: body weight; MAP: mean arterial pressure; HR: heart rate; PP: portal pressure; CI: cardiac index: SVR: systemic vascular resistance; SMA: superior
mesenteric artery.

Table 2 Plasma biochemistry parameters in sham or CBDL rats with DW or curcumin treatment

Sham DW Sham curcumin CBDL DW CBDL curcumin

AST (U/l) 109 +− 8 135 +− 11 662 +− 148† 822 +− 151‡

ALT (U/l) 58 +− 3 34 +− 4 140 +− 33† 192 +− 33‡

Total bilirubin (mg/dl) <0.7* <0.7* 6.03 +− 1.14† 8.20 +− 1.03‡

BUN (mg/dl) 24.3 +− 1.7 26.6 +− 1.6 21.4 +− 1.1 23.5 +− 3.5

Creatinine (mg/dl) 0.63 +− 0.11 0.53 +− 0.10 0.22 +− 0.03† 0.17 +− 0.00

Abbreviations: ALT, alanine transaminase; AST, aspartate transaminase; BUN, blood urea nitrogen.
*Under the detection limit;
†P<0.05, DW-treated CBDL group compared with DW-treated sham group;
‡P<0.05, curcumin-treated CBDL group compared with curcumin-treated sham group.
AST: aspartate transaminase; ALT: alanine transaminase; BUN: blood urea nitrogen.

were analyzed with Mann–Whitney test and the others with t test or one-way ANOVA test as appropriate. SPSS 21
for Windows (SPSS Inc., Chicago, IL, U.S.A.) was used. Results are considered statistically significant at a two-tailed
P-value less than 0.05.

Results
Systemic effects of curcumin
BW and portal hypertension related hemodynamics
Table 1 shows the systemic and portal hemodynamic parameters of DW-treated rats, either sham- or CBDL operated.
In DW-treated rats, cirrhotic rats had significantly lower BW, higher PP, lower SVR and SMA resistance, and higher
CI and SMA flow as compared with the sham rats.

In cirrhotic rats, curcumin significantly decreased PP, CI, and SMA flow. Curcumin also increased SVR and SMA
resistance as compared with the DW-treated cirrhotic rats. Curcumin did not affect the hemodynamic parameters in
sham-operated rats.

Plasma liver and kidney biochemistry parameters
The liver and kidney biochemistry parameters of experimental groups are shown in Table 2. There was no significant
difference between curcumin and paralleled DW-treated groups.

Effects of curcumin on hepatic system
In the aforementioned experiment, curcumin reduced PP. The following experiments were therefore designed to
evaluate if the portal hypotensive effect of curcumin was contributed via the hepatic system.
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Liver fibrosis
Figure 1A reveals that Sirius Red stained area was significantly less in CBDL rats with curcumin treatment as com-
pared with the DW-treated CBDL rats. Figure 1B reveals the representative H&E and Sirius Red images of CBDL
rats with curcumin or DW treatment. Liver cirrhosis was induced by CBDL, featured by the presence of bridging
fibrosis and regeneration nodules. Curcumin significantly alleviated the severity of liver fibrosis. Sirius Red also re-
vealed increased collagen in CBDL-DW rats with the characteristic deep-red (white light image) or orange-red color
(immunofluoscent image), which was less in CBDL-curcurmin rats.

Hepatic vascular density
Figure 1C reveals that in CBDL rats treated with curcumin, the intrahepatic vascular area was significantly less than
DW-treated CBDL rats. The representative image is shown in Figure 1B: the intrahepatic vascular area was represented
by CD31 staining.

Effects of curcumin on splanchnic system
In the aforementioned experiments, curcumin significantly alleviated splanchnic hemodynamic derangements. The
following experiments were therefore designed to explore how curcumin affected splanchnic system.

Mesenteric vascular density
Figure 2A shows that the vascular length and area per unit area of mesenteric window were significant lower in
curcumin-treated CBDL rats as compared with the DW-treated CBDL rats. The representative CD31 staining images
are shown in Figure 2B.

Acute effects of curcumin on splanchnic hemodynamics
To further determine if curcumin affected splanchnic vascular contractility, the acute effects of curcumin on splanch-
nic hemodynamics were evaluated. In CBDL rats, a single dose of curcumin or DW was given. The changes in SMA
flow and resistance were recorded at 5, 25, and 45 min after curcumin administration, respectively. Figure 2C reveals
that curcumin decreased SMA flow and increased SMA resistance. The effects could be observed since 25 min after
curcumin administration. This suggests that curcumin reduces splanchnic inflow by augmenting vascular contrac-
tility.

Mesenteric protein expressions
Figure 3 discloses that p-endothelial nitric oxide synthase (eNOS), COX2, VEGF, p-VEGFR2, and p-Erk expressions
significantly decreased in the mesentery of CBDL-curcumin rats. The protein expression of iNOS, COX1, and p-Akt
was not influenced by curcumin.

Effects of curcumin on collateral system
Portosystemic shunting
Figure 4A depicts the severity of portosystemic shunting. Curcumin, as compared with DW, significantly attenuated
the severity of shunting in CBDL rats (shunting degree: DW, curcumin (%): 79.8 +− 1.4, 64.3 +− 5.3).

Acute effect of curcumin on vascular contractility of collateral vascular bed
The effect of curcumin on collateral vascular bed was determined by in situ collateral perfusion (Figure 4B). Cur-
cumin preincubation significantly increased the perfusion pressure changes to AVP in CBDL rats.

Discussion
CBDL is a widely adopted cirrhotic animal model. Hepatic fibrosis could be observed since the second week after
CBDL and liver cirrhosis established on the fourth week [21]. As a result, therapeutic agent given since the 14th day
after CBDL is quite relevant to the clinical condition, when patients start to receive therapy after the detection of liver
injury. In the present study, curcumin administered since the third to fourth week after CBDL effectively attenuated
portal hypertension related abnormalities. Therefore, the use of curcumin is potentially beneficial in alleviating portal
hypertension related complications. It is also worth noting that curcumin increased SVR and decreased CI, suggesting
that curcumin corrected systemic hyperdynamic circulatory status in portal hypertension.
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Figure 1. Curcumin reduced liver fibrosis and vascular density in rats with CBDL-induced cirrhosis

(A) The extent of liver fibrosis evaluated by Sirius Red. The Sirius Red stained area, indicative of hepatic collagen fiber, was sig-

nificantly lower in CBDL rats with curcumin treatment (CBDL-DW (vehicle, DW) compared with CBDL-curcumin n=6, 6). (B) The

representative images of liver histological staining. The first panel: H&E staining images. As compared with CBDL-DW group, the

curcumin-administered group showed less whitish fibrotic band. The second panel: Sirius Red staining images observed by white

light, showing less Sirius Red stained area in curcumin-treated group. The third panel: Sirius Red stained images observed by fluo-

rescence, showing less Sirius Red stained immunofluorescent area in curcumin-treated group. The fourth panel: CD31 (a vascular

endothelial cell marker)-stained immunofluorescence images. (C) Hepatic vascular density determined by CD31 immunofluores-

cence staining was less in curcumin-treated group (n=6, 6). *P<0.05.
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Figure 2. Curcumin reduced mesenteric angiogenesis and blood flow in rats with CBDL-induced liver cirrhosis

(A) Mesenteric vascular density evaluated by CD31 (a vascular endothelial cell marker) immunofluorescence staining. Curcumin

significantly reduced the mesenteric CD31-stained vascular area of the mesenteric window (n=6, 8). (B) The representative images

of CD31-stained mesenteric windows. The stained vessels were less in curcumin-treated group. (C) The influence of curcumin on

the flow and resistance of SMA (the representative vessel of splanchnic circulation) evaluated by Doppler flow probe. After 25 min

of administration, curcumin significantly increased SMA resistance and decreased SMA flow (n=3, 3). *P<0.05.

Portal hypertension is mainly determined by hepatic and splanchnic systems. Curcumin alleviated CCl4− or
alcohol-induced liver fibrosis in rats [22,23]. The antifibrotic effect was thought mainly through inhibition of hep-
atic stellate cell activation, the major triggering event in liver fibrosis [9]. Recent evidences also indicate that hepatic
angiogenesis is linked to fibrogenesis [24], which can be ameliorated by curcumin: Yao et al. [25] had identified that
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Figure 3. Curcumin significantly down-regulated the mesenteric proangiogenic and vasoactive factors protein expressions

in rats with CBDL-induced liver cirrhosis

The p-eNOS, COX2 , VEGF, p-VEGFR2, and p-Akt protein expressions determined by Western blot were significantly down-regu-

lated in CBDL rats with curcumin treatment (n=6, 6; CD, CBDL-DW; CC, CBDL-curcumin). *P<0.05.

Figure 4. Curcumin reduced portosystemic collateral shunting degree and enhanced collateral vasoconstriction in rats with

CBDL-induced liver cirrhosis

(A) The shunting degree determined by color microsphere method was significantly lower in the curcumin-treated group (n=7, 5).

(B) The portosystemic collateral vascular constriction evaluated by a collateral in situ perfusion model. As compared with vehicle

(Krebs solution), curcumin preincubation significantly increased the perfusion pressure changes to AVP in the collateral vascular

bed of CBDL rats (n=7, 5). *P<0.05.

c© 2017 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 5. Beneficial effects of curcumin on liver cirrhosis and portal hypertension

In liver cirrhosis, portal hypertension develops due to the abnormal hemodynamic changes in liver, splanchnic systems, and col-

laterals. Curcumin attenuates portal hypertension by alleviating the hepatic fibrosis, extrahepatic angiogenesis, and hyperdynamic

circulation. The beneficial effects over splanchnic and collateral vascular beds are at least partly through the inhibition of VEGF,

COX2, and eNOS pathways.

curcumin ameliorated intrahepatic angiogenesis and sinusoid capillarization in cirrhotic rats. Zhang et al. [26] also
reported that curcumin attenuated angiogenesis in liver fibrosis and inhibited angiogenic actions of hepatic stellate
cells. In this study, curcumin was found to mitigate liver cirrhosis even being administered after fibrosis development.
The antifibrotic effects of curcumin obviously contributed to improvement of portal hypertension.

In splanchnic system, both abnormal angiogenesis and vasodilatation drain excessive blood flow into portal sys-
tem. Amongst the molecular mechanisms of pathological neovascularization in portal hypertension, VEGF is one of
the most important factors [1]. Curcumin and turmeric attenuated arsenic-induced angiogenesis and inhibited VEGF
expression in HCT-116 human colon cancer cells [27]. In mice fed with high-fat diet, curcumin supplementation re-
duced microvessel density in adipose tissue, which was coincided with VEGF and VEGFR2 down-regulation [28].
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Decreased VEGF levels in conditioned media from cells treated with curcumin have also been noted [29]. VEGF in-
duces angiogenesis via the activation of various signaling pathways such as phosphatidylinositol 3-kinase (PI3K)/Akt,
protein kinase C (PKC), and mitogen-activated protein kinase (MAPK) cascades [30]. It has been found that cur-
cumin inhibited Akt activation and down-regulated the expression of 5-lipooxygenase [31]. Prostaglandins synthe-
sized by COX2 also participate in angiogenesis [32]. It has been reported that curcumin inhibited VEGF-induced
COX2 mRNA and protein expressions as well as PGE2 production in human intestinal microvascular endothelial
cells [33]. Furthermore, NO plays a role in abdominal angiogenesis of portal hypertensive rats [34] and is the down-
stream molecule of VEGF signaling pathway [35]. Consistently, we identified that curcumin down-regulated mesen-
teric VEGF, p-VEGFR2, p-Erk, COX2, and p-eNOS protein expressions in cirrhotic rats, which are implicated in the
alleviation of splanchnic angiogenesis and thus reduction in SMA flow and PP.

In cirrhosis, excess vasodilatory substances release, especially NO, results in peripheral and splanchnic vasodilata-
tion, which is the functional component of splanchnic hyperemia. Effects of curcumin in NO synthases expression
are controversial in different tissues under various pathophysiological conditions. Some studies have demonstrated
that curcumin decreased intestinal NO level in rats with ischemia–reperfusion injury [36], and eNOS expression in
endothelial cells [37]. Curcumin also improved survival in rats with thioacetamide-induced hepatotoxicity by inhibit-
ing the nuclear binding of NF-kB and iNOS protein expression [38]. In this study, acute curcumin administration was
found to decrease SMA flow and increase SMA resistance. Chronic curcumin treatment also down-regulated mesen-
teric eNOS activation. This suggested that curcumin reduces splanchnic flow, not only by inhibiting angiogenesis, but
also through restoring the vascular contractility via the inhibition of mesenteric eNOS phosphorylation.

The portosystemic collateral vessels develop with the aim to divert the stagnant splanchnic and portal blood flow.
However, it brings lethal complications such as gastroesophagel variceal hemorrhage. In the present study, curcumin
administration significantly attenuated shunting degree. This may be due to curcumin-induced reduction in hepatic
fibrosis and splanchnic inflow. Furthermore, curcumin was also demonstrated to induce collateral vasoconstriction.
The data suggest that curcumin are potentially beneficial in the control of shunting-related complications.

There is a limitation of the present study. Chronic curcumin administration in cirrhotic rats alleviates portal hyper-
tension related hemodynamic derangements and portosystemic collaterals. As curcumin ameliorated liver cirrhosis,
mitigated portal hypertension and splanchnic vascular bed dilatation are highly expected. However, only acute ex-
periment was applied to test the effect of curcumin on splanchnic vasculature in the current study.

In conclusion, chronic curcumin treatment alleviated portal hypertension (Figure 5). This was due to ameliorated
hepatic fibrosis and splanchnic inflow. The beneficial effects of curcumin on splanchnic inflow were due to the at-
tenuation of abnormal angiogenesis and restoring vascular contractility, which were through inhibition of VEGF
signaling, in which COX and NOS were also implicated. Due to the aforementioned effects, portosystemic collaterals
were also alleviated. Curcumin, a traditional seasoning without significant toxicity, even though administered after
liver fibrosis has been developed, exerts potential benefits in the treatment of liver cirrhosis and portal hypertension.

Clinical perspectives
• Portal hypertension induced by liver cirrhosis results in lethal complication. Angiogenesis and va-

sodilatation are important pathological factors, which may be affected by curcumin.

• Curcumin attenuated portal hypertension in cirrhotic rats via inducing vasoconstriction in splanchnic
system and decreasing mesenteric angiogenesis through inhibition of eNOS and VEGF pathway,
respectively.

• Clinical investigations based on the present study may contribute to a better control of portal hyper-
tension in cirrhotic patients.
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