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MLN4924 is a potent and selective small-molecule inhibitor of NEDD8-activating enzyme,
which showed antitumor effect in several types of malignant tumor types. However, the
mechanism of action of MLN4924 in acute myeloid leukemia (AML) requires further inves-
tigation. Real-time fluorescent quantitative polymerase chain reaction (RT-qPCR) was con-
ducted to detect the mRNA levels of genes. Gene expression was knocked down by short
hairpin RNA (shRNA). Moreover, the protein expression was detected by Western blotting
(WB) assay. The proliferation and apoptosis of AML cells were measured by Cell Count-
ing Kit-8 (CCK8) assay and flow cytometry (FCM). In the present study, we observed that
the mRNA expression levels of NEDD8, UBA3, UBE2M and RBX1 in AML patients were
up-regulated compared with healthy controls, which were correlated with worse overall sur-
vival (OS) of patients. Besides, knockdown of UBA3, UBE2M and RBX1 inhibited the NED-
Dylation of CULs and increased the protein expression of p53 and p21 in MOLM-13 cell
line. In AML cells, MLN4924 inhibited cell proliferation, promoted cell apoptosis, and in-
duced cell cycle arrest at the G2/M phase. As revealed by experiments in vivo and in vitro,
the NEDDylation of CULs was significantly inhibited and the p53 signaling pathway was ac-
tivated after MLN4924 treatment. So, we concluded that NEDD8, UBA3, UBE2M and RBX1
may serve as the prognostic biomarkers and novel therapeutic targets for AML. Inhibition of
the NEDDylation pathway resulted in an anti-leukemia effect by activating the p53 signaling
pathway.

Introduction
NEDD8 (neural precursor cell-expressed developmentally down-regulated 8) is a small ubiquitin-like
molecule, which can covalently regulate the activity of CRLs (cullin-ring ligases, the largest family of E3
ubiquitin ligases). NEDD8 is similar to ubiquitin in structure, which shares 60% identity and 80% homol-
ogy to ubiquitin and is encoded by 81 amino acids [1]. First of all, NEDD8 is synthesized as a precursor
molecule with 5 residues in the downstream of glycine at position 76 (Gly76); thereafter, it is lysed into a
mature NEDD8 molecule by a C-terminal hydrolase [1]. Mature NEDD8 molecules can be activated by
the E1 (NEDD8-activating enzyme (NAE), which contains the UBA3/UBE1C and APPBP1/NAE1 sub-
units). Afterwards, a high-energy thioester bond is formed between the C-terminal Gly76 of NEDD8
and the UBA3 cysteine active site. The activated NEDD8 is later transferred to the cysteine active site of
a NEDD8 conjugation enzyme E2 (UBE2M/UBC12 or UBE2F/NCE2) for the formation of a thioester
bond [2,3]. Finally, by the involvement of E3 ligase, the glycine at position 76 of the NEDD8 C-terminal
binds to the lysine residue of the substrate via an isopeptide bond. The post-translational modification
of the protein bound to NEDD8 is called NEDDylation, which is an important biochemical process em-
ployed to regulate protein function. Notably, the most common substrate for NEDDylation is the CUL
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subunit of CRLs, which covalently binds NEDD8 to CUL as well as other target molecules via a cascade reaction that
involves the E1 activating enzyme, the E2 conjugation enzyme and the E3 ligase [4,5]. Some CRL substrates, such as
signal transducers, cell cycle regulators, transcription factors, tumor suppressors, and oncoproteins, are the key reg-
ulatory molecules with short lifespans [6–9]. CRLs regulate numerous biological processes by targeting degradation
[5–7]. There are approximately ten types of NEDD8 E3 ligases, most of which possess a RING domain. Thus, CUL
NEDDylation is a process that activates CRLs to promote the ubiquitination of their protein substrates.

MLN4924 is a newly discovered inhibitor of NAE [8]. It forms a covalent adduct with NEDD8, which is catalyzed
by NAE. The MLN4924-NEDD8 adduct is similar to the adenosylated NEDD8 in that it closely binds to the active site
of NAE and blocks the activity of NAE, thus preventing subsequent enzymatic reactions [10,11]. Only one NAE can
catalyze the first step of NEDDylation, and its inhibitor MLN4924 should block the entire NEDDylation pathway. As
a matter of fact, MLN4924 effectively inhibits the NEDDylation of CULs [12,13], including CUL1-CUL3, CUL4A,
CUL4B and CUL5 [10]. Given that CUL NEDDylation is required for the activities of CRLs, which are abnormally
activated in human cancers [4,14], MLN4924 inactivates the entire family of CRL E3 ligases by blocking the NEDDy-
lation of CULs [5]. Consequently, several key CRL substrates accumulate, which trigger a variety of cellular responses
leading to cell cycle arrest, apoptosis, senescence and autophagy in a cell type-dependent manner.

The NEDDylation pathway was excessively activated in many human tumor tissues compared with adjacent normal
tissues [15–22], and the overexpression of enzymes associated with NEDD8 NEDDylation was associated with disease
progression [16–18,20,21]. Studies had shown that inhibition of NEDD8 pathway had a very good antitumor effect
[23–29]. Currently, chemotherapy is still the main treatment for acute myeloid leukemia (AML). AML patients have
a high rate of chemotherapy resistance and relapse, and a low remission rate after relapse. The median overall survival
(mOS) of relapsed or refractory AML (R/R AML) patients from relapse was about 6 months and the 5-year OS was
only 10% [30]. Treatment for R/R AML remains challenging [31]. Members of our team conducted some studies on
NEDD8 NEDDylation in solid tumors and found that MLN4924 exhibited a good inhibitory effect on solid tumors.
In this context, we wanted to observe the effect of MLN4924 on AML and explore its mechanism. The present study
aimed to explore the activation of molecules associated with the NEDDylation pathway in AML and examine the
effect of inhibiting NEDDylation on AML cells.

Materials and methods
Collection of bone marrow samples
A total of 128 samples of bone marrow were collected from AML patients from September 2018 to September 2019 in
the First Affiliated Hospital of Zhengzhou University (China). The samples included 109 cases of initially diagnosed
AML and 19 cases of refractory-recurrent AML. There were 73 men and 55 women in the cohort, with the age of
14–86 (median, 47.5) years. In addition, 16 normal bone marrow samples were collected from healthy subjects in the
outpatient clinics, including 9 men and 7 women, with the age of 24–72 (median, 38.5) years. The clinical charac-
teristics of both patient and control groups were shown in Table 1. All participants provided the written informed
consents. Ethics approval was obtained from the Human Research Ethics Committee of the First Affiliated Hospital
of Zhengzhou University.

Reverse transcription-quantitative PCR (RT-qPCR)
Mononuclear cells were separated by the use of lymphocyte separation medium (HaoYang, China). Thereafter, total
RNA was extracted from mononuclear cells using TRIzol® (Thermo Fisher Scientific, Inc.). Later, the genomic DNA
was removed from RNase-free RNA I (Thermo Fisher Scientific, Inc), and 1 μg RNA was reverse-transcribed into
cDNA with the RevertAid First Strand cDNA Synthesis kit (Thermo Fisher Scientific, Inc.). Next, RT-qPCR (Maxima
SYBR Green qPCR Master Mix; Thermo Fisher Scientific, Inc.) was carried out to detect the expression of molecules
related to the NEDDylation pathway. The primers were synthesized by Sangon Biotech (Shanghai) Co. Ltd. The primer
sequences were listed below.

For NEDD8: forward, 5′-CAGAGGCTCATCTACAGTGGCA-3′; reverse, 5′-GTCCATCACTGCCTAAGACCAC-3′.
For UBA3: forward, 5′-AATCTCCAGCCATCACAGCCAC-3′; reverse, 5′-GTGACATCAGCAACCGCCAGTT-3′.
For UBE2M: forward, 5′-AGCCAGTCCTTACGATAAACTCC-3′; reverse, 5′-TGCACGTTCTGCTCAAACAGCC-3′.
For RBX1: forward, 5′-ACTGTGCCATCTGCAGGAACCA-3′; reverse, 5′- ACCTGTCGTGTTTTGAGCCAGC-3′.
For β-actin: forward, 5′-ATCATGTTTGAGACCTTCAACA-3′; reverse, 5′-CATCTCTTGCTCGAAGTCCA-3′.

The reaction system consisted of 5 μl diluted cDNA, 12.5 μl Maxima SYBR Green qPCR Master Mix (2×), 0.3 μM
Forward and Reverse primers, and 10 nM ROX Solution. Finally, the reaction mixture was diluted with nuclease-free
H2O to a final volume of 25 μl. The cycling conditions were shown below, 10 min of initial denaturation at 95◦C,
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Table 1 Basic clinical characteristics of all participants

Characteristics AML group Control group

Age/years, median (range) 47.5 (14–86) 38.5 (24–72)

Age group/n (%)

≥60 years 30 (23.4) 6 (37.5)

<60 years 98 (76.6) 10 (62.5)

Gender/n (%)

Men 73 (57.8) 9 (56,2)

Women 55 (42.2) 7 (43.8)

FAB subtypes/n (%)

M0 4 (3.1)

M1 6 (4.7)

M2 68 (53.1)

M4 15 (11.7)

M5 33 (25.8)

M6 1 (0.8)

M7 1(0.8)

Prognosis Risk/n (%)

Good 20 (15.7)

Intermediate 59(46)

Poor 49 (38.3)

Cytogenetics/n (%)

Normal 63 (49.2)

Complex 10 (7.8)

inv(16) or t(16;16)/CBFβ/MYH11 5 (3.9)

t(8;21)/AML1/ETO 21 (16.4)

11q23/MLL 8 (6.2)

t(9;22)/BCR/ABL1 3 (2.4)

Others 18 (14.1)

Molecular genetics/n (%)

FLT3-ITD 23 (17.9)

c-Kit 14 (10.9)

NPM-1 20 (15.6)

TP53 2 (1.5)

RUNX1 3 (2.3)

ASXL1 7 (5.5)

DNMT3a 7 (5.5)

SF3B1 1 (0.8)

CEBPA double mutation 7 (5.5)

IDH1 8 (6.3)

IDH2 8 (6.3)

15 s of denaturation at 95◦C, 30 s of annealing at 60◦C, and 30 s of extention at 72◦C for a total of 41 cycles. The
Quant Studio 5 real-time PCR system was used for RT-qPCR (Thermo Fisher Scientific, Inc.), with β-actin being the
control gene. The Cq values were obtained from the RT-qPCR results, and the relative expression level of each gene
was calculated using the 2−��Cq method.

Cell lines and cell culture
THP-1 cells were purchased from Xiehe Cell Bank of Beijing, MOLM-13 cells were presented by the Second Affiliated
Hospital of Zhejiang University, and 293 T cells were presented by the Cell Therapy Center of the First Affiliated
Hospital of Zhengzhou University. In addition, the fresh bone marrow samples were collected from two patients
with newly diagnosed AML, and mononuclear cells were isolated with the lymphocyte separation medium. These
were used as the primary AML cell samples. Afterwards, all the AML cells were cultured in RPMI-1640 medium
(MilliporeSigma), whereas 293 T cells were cultured in DMEM both of which contained 10% fetal bovine serum
(FBS), 1% penicillin and streptomycin (Gibco; Thermo Fisher Scientific, Inc.). The cells were cultured at a constant
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temperature of 37◦C and 5% CO2, and fresh medium was replaced every three days. Cells at logarithmic growth phase
were harvested for subsequent experiments.

Preparation of the lentivirus and shRNA-mediated knockdown
The short hairpin RNA (shRNA) vectors (GV248-GFP) targeting respectively UBA3, UBE2M and RBX1 respectively
were constructed by Shanghai GeneChem Co., Ltd. Typically, three shRNA vectors were designed for each gene.
Meanwhile, an empty plasmid served as the negative control. The RNAi target sequences were listed below.

UBA3-RNAi#1(34824-1): ccTCTATTGAAGAACGAACAA; UBA3-RNAi#2(34825-1): gcCTGGAATGACTG
CTTGTAT; UBA3-RNAi#3(34826-1): cgACACTTTCTATCGACAATT; UBE2M-RNAi#1(80842-1): CGGCTGTT
TGAGCAGAACGTG; UBE2M-RNAi#2(80843-1): TACATCGGCTCCACCTACTTT; UBE2M-RNAi#3(80844-1):
GAGGTCCCACCAGGCTATTAA; RBX1-RNAi#1(41656-11): ctGCATCTCTCGCTGGCTCAA; RBX1-RNAi#2
(41658-1): atGTCAAGCTAACCAGGCGTC; and RBX1-RNAi#3(41659-1): ctTTCCCTGCTGTTACCTAAT.

The second generation lentivirus packaging system was used. In brief, the shRNA vectors (25 μg) were mixed
with the packaging vectors pSPAX2 (8 μg) and pMD2.G (4 μg) (presented by the Cell Therapy Center of the First
Affiliated Hospital of Zhengzhou University). Thereafter, Lipofectamine® 3000 Transfection reagent (Thermo Fisher
Scientific, Inc.) was added into the above mixture, and the sample was added dropwise into the dish (diameter: 10
cm) containing 10 ml DMEM, where the 293T cells were in adherent growth. After 72 h, the viral supernatant was
harvested by ultrarcentrifugation in the Beckman centrifuge at 4◦C and 25,000 rpm for 4 h. The lentiviruses were
later transfected into MOLM-13 cells with polybrene by centrifugation at 1500 g and room temperature for 90 min
in a sterile environment. Thereafter, the puromycin was added to screen the MOLM-13 cells. The gene knockdown
efficiency was assessed by RT-qPCR. Then, the shRNA vectors with the highest inhibitory rate were selected for
subsequent experiments according to the RT-qPCR results. Besides, the protein expression of target gene was detected
by Western blotting (WB) assay, and the effect of gene knockdown on the NEDDylation of CULs, p53 and p21 was
also determined.

Detection of cell proliferation, apoptosis and cell cycle
THP-1 and MOLM-13 cells, as well as the primary AML cells were treated with MLN4924 (MedChemExpress) for
24, 48 and 72 h, respectively. The 0.01% dimethyl sulfoxide (DMSO) was used as a negative control. The effect of
MLN4924 on cell proliferation was detected by Cell Counting Kit-8 (CCK-8, Higashi, Japan) assay. The absorbance
at 450 nm was measured after CCK-8 was added to AML cells for 4 h at a constant temperature of 37◦C and 5% CO2.
Triplicate wells were set up for each condition.

After THP-1 and MOLM-13 cells were treated with MLN4924 for 24 h, the cell apoptosis and cell cycle progression
were analyzed using a FACSCanto™ II, flow cytometer (BD Biosciences). Additionally, Annexin V-FITC/PI Apoptosis
Detection Kit and Cell Cycle Detection Kit (Nanjing KeyGen Biotech Co., Ltd.) were utilized to analyze the apoptosis
and cell cycle progression, respectively. These assays were performed in triplicate. FlowJo 10.0.7 was employed for
data analysis (FlowJo LLC).

Protein extraction and WB assay
AML cells were lysed with the cell lysis buffer containing protease inhibitors (Roche, Diagnostics). Later, the proteins
were extracted and the protein concentration was detected by dicarboxylic acid (BCA) assay (Beijing Solarbio Sci-
ence & Technology Co., Ltd). The protein loading was 30 μg/20 μl. Thereafter, protiens were separated by sodium
dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) on the 10% separation gels (at 80 V for 100 min),
then transferred on to the polyvinylidene fluoride (PVDF) membranes (MilliporeSigma) at 200 mA for 2 h. Then the
PVDF membranes were incubated in 5% skim milk powder at room temperature for 2 h. After overnight incubation
with primary antibodies (Abcam) at 4◦C, the memebranes were incubated with secondary antibodies (Abcam) at
room temperature for 1 h. The primary antibodies used in the present study were as follows. Anti-Cullin 1 (product
code ab75817; dilution 1:1,000; Abcam), anti-Cullin 2 (product code ab166917; dilution 1:1,000; Abcam), anti-Cullin
3 (product code ab75851; dilution 1:20,000; Abcam), anti-Cullin-4A (product code ab92554; dilution 1:20,000; Ab-
cam), anti-Cullin-4B (product code ab227724; dilution 1:500; Abcam), anti-Cullin 5 (product code ab184177; dilution
1:10,000, Abcam), anti-NEDD8 (product code ab81264; dilution 1:1,000, Abcam), anti-UBA3 (product code ab38649;
dilution 1:500; Abcam), anti-UBE2M (product code ab109507; dilution 1:10,000; Abcam), anti-RBX1 (product code
ab133565; dilution 1:1000; Abcam), anti- GAPDH (product code ab8245; dilution 1:5000; Abcam), anti-p53 (product
no. 10442-1-AP; dilution 1:1000; proteintcch, China) and anti-p21 (product no. 10355-1-AP; dilution 1:1000; pro-
teintcch, China). The secondary antibodies used included anti-Mouse IgG (product code ab6728; dilution 1:5,000;
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Abcam) and anti-Rabbit IgG (product code ab6721; dilution 1:5,000; Abcam). The protein bands were detected us-
ing the enhanced chemiluminescence (ECL) reagent (Affinity Company). The AI600 control software (version 1.2.0;
Cytiva) was utilized to analyze the staining intensity.

Establishment of tumor xenograft mouse model
The 4- to 5-week-old specific-pathogen-free (SPF) female NOD/SCID mice weighing 16.5 +− 2 g were purchased
from Beijing Weitonglihua Laboratory Animal Technology Co., Ltd. All mice met the requirements of quality in-
spection and were kept in the SPF animal house. The health and behaviors of mice were monitored once a week
by Henan Academy of Medical and Pharmacology Sciences (Zhengzhou University). Thereafter, the mice were ran-
domly divided into two groups, namely, control group (n=5) and experimental group (n=5). MOLM-13 cells were
selected and marked with the luciferase gene by lentivirus packaging and transfection. Next, 1 × 106 MOLM-13 cells
(0.1 ml) were injected into the right flank of NOD/SCID mice to establish the AML xenograft tumor model. The
xenograft tumor was visible after 1 week. Mice were given intraperitoneal injection of luciferin (Beijing Solarbio Sci-
ence & Technology Co., Ltd) and anesthetized with 2.5% isoflurane inhalation in an anesthesia cage (Matrx Animal
Anesthesia Ventilator System). After 15 min, the xenograft tumor was examined in vivo using an animal imaging
system (PerkinElmer Inc.). On the following day, 60 mg/kg MLN4924 dissolved in corn oil (MedChemExpress) was
intraperitoneally injected into each experimental mouse twice a day for 5 days a week for 2 weeks. At the same time,
vehicle (corn oil) was used to treat control mice by the same methods. The size of the xenograft tumor was measured
using a caliper and the small animal in imaging system in vivo. Fourteen days after MLN4924 injection when the
maximum tumor diameter reached nearly 20 mm, all the mice were killed by intraperitoneal injection with 1% pen-
tobarbital sodium (150 mg/kg) to achieve cardiac arrest. Thereafter, xenograft tumors were isolated from the mice
and positioned in liquid nitrogen for quick freezing. Then, the total proteins were extracted from the xenograft tu-
mors for WB analysis. The effect of MLN4924 on the expression of NEDD8-CULs, p21 and p53 in mice was detected
by WB assay. All the animal experiments were performed in Henan Academy of Medical and Pharmacology Sciences
and in accordance with the U.K. Animals (Scientific Procedures) Act (1986) and associated guidelines, as well as the
EU Directive 2010/63/EU for animal experiments. The experiments were approved by the Institutional Animal Care
and Use Committee of the First Affiliated Hospital of Zhengzhou University.

Statistical analysis
The SPSS 23.0 software (IBM Corp.) was employed to analyze the experimental data. All data were represented by
mean +− standard deviation (SD). The means between two groups were compared by an independent sample t-test,
while those among multiple groups were compared by one-way ANONA and LSD-t test. Chi-square test was adopted
to compare qualitative data. The Kaplan–Meier (KM) method was utilized to draw the survival curves of patients, and
log-rank tests were used to compare the survival rates. Both univariate and multivariate Cox repression analyses were
conducted to determine whether the expression of the interested genes was the independent factor for overall survival
(OS). Statistical analysis was conducted at an inspection level of α=0.05, where P<0.05 was considered statistically
significant, P<0.01, statistically significant difference and P<0.001, extremely significant statistical difference.

Results
NEDD8, UBA3, UBE2M and RBX1 were over-expressed in AML patients
and were correlated with worse OS
To investigate the expression of genes associated with the NEDD8 pathway in AML, bone marrow samples were col-
lected from 128 AML patients and 16 healthy controls. According to our results, there was no significant difference in
gender distribution (P=0.953) or average age (P=0.493) between AML and control groups. Meanwhile, the expres-
sion of NEDD8 mRNA was significantly higher in AML patients than in healthy controls (P<0.001, Figure 1A). In ad-
dition, UBA3, UBE2M and RBX1 mRNA expression significantly increased in AML patients (P<0.01, Figure 1B–D).
As revealed by French–American–British (FAB) subtype analysis, the mRNA expression levels of NEDD8, UBA3,
UBE2M and RBX1 were higher in AML-M5 patients than in controls (P<0.05, Figure 1G). In patients with AML-M4
and AML-M2, the mRNA levels of NEDD8, UBE2M and RBX1 were higher than those in controls (P<0.001); how-
ever, there was no significant difference in the UBA3 mRNA expression (P>0.05, Figure 1E,F). Statistical analysis
was not performed in the other FAB subtypes because of the small sample size. In patients carrying the AML1/ETO
fusion gene, the UBA3 mRNA expression levels were up-regulated compared with controls (P<0.05), while those of
NEDD8, UBE2M and RBX1 did not show any significant difference (P>0.05). No statistical analysis was performed
due to the small number of patients carrying the CBFβ/MYH11 fusion gene.

© 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).

5

D
ow

nloaded from
 http://portlandpress.com

/bioscirep/article-pdf/42/8/BSR
20220994/935998/bsr-2022-0994.pdf by guest on 19 April 2024



Bioscience Reports (2022) 42 BSR20220994
https://doi.org/10.1042/BSR20220994

Figure 1. NEDD8, UBA3, UBE2M and RBX1 were over-expressed in AML patients and were correlated with worse OS

(A–D) Compared with normal control, the mRNA levels of NEDD8, UBA3, UBE2M and RBX1 were significantly higher in AML

patients. (E–G) As revealed by FAB subtype analysis, the mRNA expression levels of NEDD8, UBE2M and RBX1 were higher in

patients with AML-M2, M4 and M5 than those in healthy controls. In patients with AML-M5, the mRNA expression of UBA3 was

higher than that in the control group. (H–K) Survival analysis revealed that the OS rate of patients with overexpression of NEDD8,

UBA3, UBE2M and RBX1 was lower than that of patients with low-expression. ROC curves were plotted based on the mRNA

expression levels of NEDD8, UBA3, UBE2M and RBX1, respectively, and Jorden index was calculated to determine the cut-off

value (NEDD8, 1.4257; UBA3, 1.6511; UBE2M, 1.6146; RBX1, 1.4026) to divide the samples into high and low expression groups.

An independent sample t-test was conducted to compare the means between the two groups. Triplicates were set for each gene

in each sample for RT-qPCR. Chi-square test was performed to compare the qualitative data. The KM method was employed to

draw the survival curves of patients, and log-rank tests were utilized to compare the survival rates. Univariate and multivariate Cox

analyses were adopted to determine whether the expression of the interested genes was the independent prognostic factor for

OS; ***P<0.001, **P<0.01, *P<0.05.
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Moreover, survival analysis was performed to further investigate the roles of these up-regulated genes. Receiver
operating characteristic (ROC) curves were plotted based on the mRNA expression levels of NEDD8, UBA3, UBE2M
and RBX1, respectively. In addition, Jorden index was calculated to determine the cut-off value (NEDD8, 1.4257;
UBA3, 1.6511; UBE2M, 1.6146; RBX1, 1.4026), which was later used as the criterion to divide samples into the high-
and low-expression groups. KM analysis showed that the OS rate of AML patients with high NEDD8 expression was
lower than that of patients with low NEDD8 expression (P<0.01, log-rank test, Figure 1H). Moreover, the results
of univariate and multivariate Cox regression analyses showed that over-expression of NEDD8 was an independent
prognostic factor for OS in AML (P<0.01). Age and sex were not identified as the independent risk factors affecting
the OS of AML patients with over-expression of NEDD8 (P>0.05). Similarly, over-expression of UBA3, UBE2M
and RBX1 was associated with worse survival of AML patients (P<0.001, log-rank test, Figure 1I–K), which was an
independent prognostic factor for OS in AML (P<0.01).

UBA3, UBE2M and RBX1 knockdown inhibited the NEDD8 NEDDylation of
CULs and activated the p53 signaling pathway in MOLM-13 cells
To explore the functions of UBA3, UBE2M and RBX1, these three targets were knocked down by shRNA lentiviral
transfection. The knockdown efficiency was >70%, as evidenced by RT-qPCR (Figure 2A, P<0.001). Thereafter,
the shRNA plasmid with the highest inhibitory rate was selected for subsequent experiments. After transfection, the
expression of UBA3, UBE2M and RBX1 proteins was significantly reduced in MOLM-13 cells, as indicated by WB
assay (Figure 2B,E, P<0.001).

Furthermore, following the knockdown of UBA3, UBE2M and RBX1, NEDD8 NEDDylation of CUL1-4 was sig-
nificantly inhibited (Figure 2C,F–H, P<0.001). The NEDDylation of CUL5 was suppressed by the knockdown of
UBA3 but up-regulated by the knockdown of UBE2M and RBX1. Study showed that UBE2M paired RBX1 to reg-
ulate the NEDDylation of CUL1-4, while UBE2F paired RBX2 to regulate that of CUL5 in an E2-RING-dependent
manner [32]. We inferred that, UBE2F was relatively active, thus promoting NEDDylation of CUL5 after UBE2M
was knocked down by shRNA. In addition, the p53 signaling pathway was activated after UBA3, UBE2M and RBX1
were knocked down, and the expression of p53 and p21 was significantly up-regulated. (Figure 2D,I–K, P<0.001).

MLN4924 inhibited the proliferation and induced the apoptosis of AML
cells
MLN4924 has been shown to possess anti-tumor activity against several malignant tumor types [33–39]. Therefore,
the effect of this compound was examined in AML cells in this work. In CCK-8 assays, MLN4924 significantly in-
hibited the proliferation of THP-1 and MOLM-13 cells. The proliferation of primary cells collected from two AML
patients was also inhibited by MLN4924. Typically, MLN4924 at the concentration of ≥1 μM had stronger effects,
with the strongest effect being obtained at 72 h (Figure 3A).

The FCM results demonstrated that the apoptotic cell frequency significantly increased following 24 h MLN4924
treatment in THP-1 cells (P<0.001, Figure 3B,C). Even at the dose of 0.1 μM, the apoptotic cell frequency was signifi-
cantly increased (42.4% versus 6.97%, P<0.001). MLN4924, except for the 0.1μM dose group of MLN4924 (P>0.05),
also induced the apoptosis of MOLM-13 cells (Figure 3D,E, P<0.001). Moreover, MLN4924 induced cell cycle arrest
in both THP-1 and MOLM-13 cell, as evidenced by the significantly increased proportion of cells at the G2/M phase
(Figure 3F–H, P<0.001).

MLN4924 inhibited the NEEDylation of CULs in AML cells
MLN4924 is a newly discovered inhibitor of NAE [8]. MLN4924 inhibits NEDD8 binding to CULs proteins and thus
decreases the NEDDylation of CULs proteins, including CUL1-5. It has been reported that CUL1, CUL2, CUL4A and
CUL5 are efficiently deNEDDylated by MLN4924 in MCF breast cancer cells [4]. In the present study, MLN4924 sig-
nificantly inhibited the NEDD8 NEDDylation of CUL1-5 in THP-1 cells (Figure 4A,D) and MOLM-13 cells (Figure
4B,E) treated with MLN4924 for 48 h. MLN4924 significantly reduced the NEDD8-modified CULs (P<0.001). More-
over, in primary cells collected from two AML patients, MLN4924 (2 μM) inhibited the NEDD8 NEDDylation of
CUL1-5 proteins (Figure 4C,F,G).

MLN4924 activated the p53 signaling pathway in AML cells
To further investigate the mechanism by which MLN4924 induced the apoptosis of AML cells, the p53 signaling
pathway was examined. As revealed by WB assay, 48 h treatment with MLN4924 significantly increased the protein
expression levels of p21 and p53 in THP-1 cells (Figure 5A) and MOLM-13 cells (Figure 5B). Similarly, MLN4924
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Figure 2. UBA3, UBE2M and RBX1 knockdown inhibited the NEDD8 NEDDylation of CULs and activated the p53 signaling

pathway in MOLM-13 cells

(A) The knockdown efficiency of shRNA was >70% by RT-qPCR. (B and E) After transfection of shRNA in MOLM-13 cells, the

expression of UBA3, UBE2M and RBX1 proteins was reduced. (C) and (F–H) NEDD8 NEDDylation of CUL1-4 was significantly

inhibited following the knockdown of UBA3, UBE2M and RBX1. The NEDDylation of CUL5 was suppressed by the knockdown

of UBA3 but up-regulated by the knockdown of UBE2M and RBX1. (D) and (I–K) The expression of p21 and p53 significantly

increased following UBA3, UBE2M and RBX1; ***P<0.001, **P<0.01. An independent sample t-test was adopted to compare the

means between two groups. Each experiment was carried out in triplicate.
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Figure 3. MLN4924 inhibited the proliferation and induced the apoptosis of AML cells

(A) MLN4924 significantly inhibited the proliferation of THP-1 cells, MOLM-13 cells and the primary cells collected from two AML

patients in a concentration- and time-dependent manner. (B–E) The numbers of apoptotic cells of THP-1 and MOLM-13 cells

significantly increased following treatment with MLN4924 (except for the 0.1 μM dose group of MLN4924 in MOLM-13 cells,

P>0.05). (F–H) MLN4924 induced cell cycle arrest in both THP-1 and MOLM-13 cells at the G2/M phase, and significantly increased

the cells at G2/M phase; ***P<0.001. The means among multiple groups were compared by one-way ANONA and LSD-t test. Each

experiment was carried out in triplicate.
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Figure 4. MLN4924 inhibited the NEDDylation of CULs in AML cells

(A) MLN4924 significantly inhibited the NEDD8 NEDDylation of CUL1-5 in THP-1 cells. (B) In MOLM-13 cells, the NEDDylation

of CUL1-5 was also inhibited. (C) MLN4924 inhibited the NEDD8 NEDDylation of CUL1-5 in primary AML cells collected from

two AML patients. (D–G) Statistical analysis revealed that MLN4924 inhibited the NEDD8 NEDDylation of CULs in THP-1 cells;

***P<0.001, **P<0.01. An independent sample t-test was adopted to compare the means between two groups. Each experiment

was conducted in trplicate.
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Figure 5. MLN4924 activated the p53 signaling pathway in AML cells

(A,B) In THP-1 and MOLM-13 cells, the expression levels of p21 and p53 proteins were significantly up-regulated after MLN4924

treatment. (C) In primary AML cells harvested from two AML patients, MLN4924 increased the expression of both p21 and p53

proteins. (D,E) Statistical analysis indicated that the expression of p21 and p53 was up-regulated; ***P<0.001, **P<0.01. An inde-

pendent sample t-test was conducted to compare the means between two groups. Each experiment was carried out in triplicate.

had the same effects on primary cells collected from two AML patients (Figure 5C).

MLN4924 inhibited the growth of xenograft tumors in mice
As demonstrated by the aforementioned in vitro experiments, MLN4924 inhibited the proliferation of AML cells.
Therefore, the present study sought to examine this effect in vivo with xenograft tumors. The results suggested that
MLN4924 suppressed the growth of tumors in mice. Compared with the control group, the growth of xenograft
tumors in the experimental group was significantly reduced (Figure 6A,B). In addition, MLN4924 was confirmed to
be safe in our experiment, with no significant toxic or side effects. WB assay suggested that the NEDDylation of CULs
was inhibited, whereas the expression of p21 and p53 significantly increased, in xenograft tumors of mice that were
treated with MLN4924 (Figure 6C,D, P<0.001), consistent with the in vitro experimental results.

Discussion
The expression levels of NEDD8, E1 NEDD8-activating enzymes (NAE1/UBA3) and the NEDD8 conjugation enzyme
E2 (UBE2M/UBE2F) have been shown to be up-regulated in various solid tumors, such as lung adenocarcinoma and
lung squamous cell carcinoma, intrahepatic cholangiocarcinoma, liver cancer, colorectal cancer, glioblastoma, head
and neck tumor, esophageal squamous cell carcinoma and renal cell carcinoma relative to adjacent normal tissues
[15–22]. Similarly, the NEDD8 E3 ligases, DCN1 and RBX1/2, are also up-regulated in several types of human cancer
types [25,40,41]. The up-regulation of enzymes related to NEDD8 NEDDylation is associated with disease progression
and reduced patient OS [16–18,20,21]. However, to the best of our knowledge, the expression of molecules related to
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Figure 6. MLN4924 inhibited the growth of xenograft tumors in mice

(A) The xenograft tumors were detected by in vivo bioluminescence imaging. (B) Compared with the control group, the growth

of the xenograft tumors in the experimental group was significantly inhibited. (C,D) The NEDDylation of CULs was inhibited and

the protein expression levels of p21 and p53 significantly increased in xenograft tumors of mice treated with MLN4924 (n=5).

***P<0.001. An independent sample t-test was conducted to compare the means between two groups. Each experiment was

carried out in triplicate.

NEDDylation pathway in AML has not been fully examined. The present study demonstrated that the mRNA levels of
NEDD8, UBA3, UBE2M and RBX1 were up-regulated in AML patients, consistent with the aforementioned previous
studies. Moreover, survival analysis indicated that the OS rate of patients with overexpression of these genes was lower
than that in patients with low-expression levels, which was an independent prognostic factor for worse OS in AML
patients. Thus, NEDD8, UBA3, UBE2M and RBX1 may serve as the potential prognostic biomarkers for AML. Our
short observation time might have some influence on the analysis results. In future, we will continue to follow up the
patients to further analyze their survival.

UBA3, UBE2M and RBX1 are important for the proliferation and apoptosis of cancer cells. Indeed, the prolif-
eration of M14 cells is suppressed in vitro and in vivo after UBA3 silencing with RNA interference [23]. UBE2M
silencing disrupted the DNA damage response [24]. RBX1 silencing can inhibit cancer cell growth by inducing apop-
tosis, cell cycle arrest at G2-M phase and senescence [25]. Suppression of the NEDDylation pathway with shRNA
targeting on NEDD8 and RBX1 sensitized AML cells toward azacytidine at the sublethal concentrations [26]. To fur-
ther explore the functions of UBA3, UBE2M and RBX1 in AML, these three genes were knocked down with shRNA.
In MOLM-13 cells, UBA3, UBE2M and RBX1 knockdown inhibited the NEDDylation of CUL1-4. In addition, the
NEDDylation of CUL5 was suppressed by the knockdown of UBA3, and up-regulated by the knockdown of UBE2M
and RBX1. Study showed that UBE2M paired RBX1 to regulate the NEDDylation of CUL1-4, while UBE2F paired
RBX2 to regulate that of CUL5 in an E2-RING-dependent manner [32]. We inferred that UBE2F was relatively active,
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thus promoting NEDDylation of CUL5 after UBE2M was knocked down by shRNA. The expression of p21 and p53
increased following the knockdown of UBA3, UBE2M and RBX1. In addition, the p53 signaling pathway was acti-
vated. Thus, it might be hypothesized that UBA3, UBE2M and RBX1 silencing attenuated the function of enzymes
related to the NEDDylation pathway, thereby inhibiting the NEDDylation of CULs and promoting the accumulation
of their substrates, such as p21 and p53.

In the present study, the lentivirus was only transfected into MOLM-13 cells, but not THP-1 cells. In future studies,
the transfection conditions and methods will be optimized to replicate the current findings in more cell lines.

MLN4924 (pevonedistat) is an inhibitor of NAE, which has been widely studied in various solid tumors
[33–39,42–45]. MLN4924 inhibited NEDDylation to play an antitumor role, and induced apoptosis, senescence, au-
tophagy, angiogenesis inhibition, inflammatory response and chemosensitization/radiosensitization [46]. In AML,
MLN4924 induced DNA re-replication and damage by disrupting nucleotide metabolism and augments the efficacy
of cytarabine [47]. MLN4924 also partially inhibited the transduction of mTOR signaling [48]. Swords et al. [49]
found that MLN4924 induced AML cell death and led to the inhibition of NF-κB activity, DNA damage, and the
generation of reactive oxygen species (ROS). MLN4924 alone or in combination with azacytidine could induce apop-
tosis by up-regulating NOXA in AML and synergize with Bcl-2 inhibitors [50,51]. Moreover, MLN4924 decreased the
binding of NF-κB to the microRNA-155 promoter and down-regulated microRNA-155 in FLT3-ITD AML cells [52].
However, the effect of MLN4924 on p53 signaling pathway in AML has rarely been studied. In AML, p53 mutations
are associated with chemoresistance and a high risk of relapse [53]. Study has found that MLN4924 activates the p53
tumor suppressor via the RPL11/RPl5-Mdm2 pathway [54]. p53 is not only modified by ubiquitination but also the
substrate of NEDD8 NEDDylation. Both NEDD8 and ubiquitin modification of p53 were regulated by Mdm2, while
the latter promoted the binding of ubiquitin and NEDD8 to p53 independently [55]. In colorectal cancer, p53 was
identified as an important mediator of the apoptotic response to MLN4924 [33]. p21 was thought to induce tumor
growth inhibition through the activity of wild-type p53 [56]. p53 can induce p21 expression in response to cellular
stress, such as DNA damage or oxidative stress. In addition to cell cycle arrest, p21 also plays an important role in
senescence in both p53-dependent and non-dependent manners [57,58]. In response to the activation of p53 tran-
scription factor, p21 induction can lead to tumor growth stagnation by inhibiting the cyclin-kinase complexes, pro-
liferative nuclear antigens, transcription factors and co-activators [57]. The MLN4924-induced cell senescence and
death have been observed in various cancer cell types, which were mainly dependent on p21. For example, follow-
ing MLN4924 treatment, p21 significantly accumulated, while p21 knockout significantly inhibited the senescence
induced by MLN4924 [59–61]. MLN4924 is a strong inhibitor of CUL NEDDylation [12,13]. In addition, following
6 h treatment with MLN4924, CUL1, CUL2, CUL4A and CUL5 are efficiently deNEDDylated in MCF breast cancer
cells [4]. In the present study, the p53 signaling pathway was activated by MLN4924 in AML cells. The expression
of p53 and p21 proteins increased. Besides, the proliferation of AML cells was significantly inhibited by MLN4924.
MLN4924 promoted the apoptosis of THP1 and MOLM-13 cells and induced cell cycle arrest. According to our
results, MLN4924 significantly inhibited the NEDDylation of CUL1-5 in AML cells. MLN4924 formed a covalent
adduct with NEDD8, which was catalyzed by the NAE. The MLN4924-NEDD8 adduct was similar to the adeno-
sylated NEDD8 in that it could closely bind to the active site of NAE and block the activity of NAE enzyme, thus
preventing the subsequent enzymatic reactions [10,11]. MLN4924 inhibited NEDD8 binding to CULs proteins and
thus decreased the NEDDylation of CULs proteins, including CUL1-5. Therefore, a decrease in NEDD8-CULs was
observed. It was hypothesized that MLN4924 inhibited the NEDDylation of CULs and inactivated CRLs in AML,
leading to the accumulation of CRL substrates, including p21 and p53. In this way, the p53 signaling pathway was
activated by MLN4924, which inhibited the proliferation of AML cells and induced their apoptosis. Thus, MLN4924
exerted an anti-leukemia effect and might represent a potential research avenue for AML treatment.

In the in vivo experiments, MLN4924 induced the apoptosis of vascular smooth muscle cells via p53 and p62,
and improved neointimal hyperplasia by promoting the apoptosis of mouse smooth muscle via p53 [8]. A phase-1b
trial on elderly patients with AML unfit for high-dose induction therapy showed that MLN4924 was well tolerated in
combination with azacytidine. The overall response rate (ORR) was 50% and the median duration of remission was
8.3 months [62]. In the present study, MLN4924 had an inhibitory effect on AML xenograft tumor growth in mice.
Moreover, MLN4924 was well tolerated, with no obvious side effects. In xenograft tumors, MLN4924 inhibited the
NEDDylation of CULS and increased the expression of p21 and p53 proteins. Thus, MLN4924 inhibited the NEDD8
NEDDylation to inactivate CRLs, leading to the accumulation of CRL substrates and ultimately inhibiting tumor
growth.

In conclusion, the present findings demonstrated that the NEDDylation pathway was dysregulated in AML.
NEDD8, UBA3, UBE2M and RBX1 may represent the potential prognostic biomarkers and novel therapeutic targets
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for AML. MLN4924 exerted an antitumor effect both in vivo and in vitro by activating the p53 signaling pathway.
Therefore, inhibition of the NEDDylation pathway may represent a potential treatment for AML.

Data Availability
The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Competing Interests
The authors declare that there are no competing interests associated with the manuscript.

Funding
We also thank the National Natural Science Foundation of China for the support fund.

CRediT Author Contribution
Yanli Chen: Data curation, Software, Formal analysis, Investigation, Visualization, Methodology. Ling Sun: Funding acquisition,
Investigation, Writing—original draft, Writing—review & editing.

Ethics Approval and Consent to Participate
Ethical approval was obtained from the Human Research Ethics Committee (the First Affiliated Hospital of Zhengzhou Univer-
sity, China). All patients provided written informed consent. The experiments involving mice were approved by the Institutional
Animal Care and Use committee of the First Affiliated Hospital of Zhengzhou University. Our animal experiments were carried
out in accordance with the U.K. Animals (Scientific Procedures) Act of 1986 and associated guidelines and with the EU Directive
2010/63/EU for animal experiments.

Acknowledgements
The authors would like to thank Henan Academy of Medical and Pharmacology Sciences (Zhengzhou University) for their animal
experiment support and the experimental platform provided by the Key Laboratory of Academy of Medical Sciences, Zhengzhou
University.

Abbreviations
AML, acute myeloid leukemia; APPBP1, amyloid β precursor protein-binding protein 1; CCK-8, Cell Counting Kit-8; CRL,
cullin-ring ligases; DMSO, dimethyl sulfoxide; ECL, enhanced chemiluminescence; FAB, French–American–British; FBS,
fetal bovine serum; FCM, flow cytometry; KM, Kaplan–Meier; NAE, NEDD8-activating enzyme; NEDD8, neural precursor
cell-expressed developmentally down-regulated 8; OS, overall survival; PVDF, polyvinylidene fluoride; RBX1, RING box
protein-1; ROC curve, receiver operating characteristic curve; ROC1, regulator of cullin-1; RT-qPCR, real-time fluorescent quan-
titative polymerase chain reaction; SD, standard deviation; SDS-PAGE, sodium dodecyl sulfate polyacrylamide gel electrophore-
sis; shRNA, short hairpin RNA; UBA3, ubiquitin-like modifier activating enzyme 3; UBE2M, ubiquitin-conjugating enzyme 2M;
WB, Western blotting.

References
1 Kamitani, T., Kito, K., Nguyen, H.P. and Yeh, E.T. (1997) Characterization of NEDD8, a developmentally down-regulated ubiquitin-like protein. J. Biol.

Chem. 272, 28557–28562, https://doi.org/10.1074/jbc.272.45.28557
2 Huang, D.T., Miller, D.W., Mathew, R., Cassell, R., Holton, J.M., Roussel, M.F. et al. (2004) A unique E1-E2 interaction required for optimal conjugation of

the ubiquitin-like protein NEDD8. Nat. Struct. Mol. Biol. 11, 927–935, https://doi.org/10.1038/nsmb826
3 Sarikas, A., Hartmann, T. and Pan, Z.Q. (2011) The cullin protein family. Genome Biol. 12, 220, https://doi.org/10.1186/gb-2011-12-4-220
4 Zhao, Y. and Sun, Y. (2013) Cullin-RING Ligases as attractive anti-cancer targets. Curr. Pharm. Des. 19, 3215–3225,

https://doi.org/10.2174/13816128113199990300
5 Zhao, Y., Morgan, M.A. and Sun, Y. (2014) Targeting Neddylation pathways to inactivate cullin-RING ligases for anticancer therapy. Antioxid. Redox

Signal. 21, 2383–2400, https://doi.org/10.1089/ars.2013.5795
6 Petroski, M.D. and Deshaies, R.J. (2005) Function and regulation of cullin-RING ubiquitin ligases. Nat. Rev. Mol. Cell Biol. 6, 9–20,

https://doi.org/10.1038/nrm1547
7 Nakayama, K.I. and Nakayama, K. (2006) Ubiquitin ligases: cell-cycle control and cancer. Nat. Rev. Cancer 6, 369–381,

https://doi.org/10.1038/nrc1881
8 Soucy, T.A., Smith, P.G., Milhollen, M.A., Berger, A.J., Gavin, J.M., Adhikari, S. et al. (2009) An inhibitor of NEDD8-activating enzyme as a new approach

to treat cancer. Nature 458, 732–736, https://doi.org/10.1038/nature07884
9 Deshaies, R.J. and Joazeiro, C.A. (2009) RING domain E3 ubiquitin ligases. Annu. Rev. Biochem. 78, 399–434,

https://doi.org/10.1146/annurev.biochem.78.101807.093809

14 © 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons
Attribution License 4.0 (CC BY).

D
ow

nloaded from
 http://portlandpress.com

/bioscirep/article-pdf/42/8/BSR
20220994/935998/bsr-2022-0994.pdf by guest on 19 April 2024

https://doi.org/10.1074/jbc.272.45.28557
https://doi.org/10.1038/nsmb826
https://doi.org/10.1186/gb-2011-12-4-220
https://doi.org/10.2174/13816128113199990300
https://doi.org/10.1089/ars.2013.5795
https://doi.org/10.1038/nrm1547
https://doi.org/10.1038/nrc1881
https://doi.org/10.1038/nature07884
https://doi.org/10.1146/annurev.biochem.78.101807.093809


Bioscience Reports (2022) 42 BSR20220994
https://doi.org/10.1042/BSR20220994

10 Brownell, J.E., Sintchak, M.D., Gavin, J.M., Liao, H., Bruzzese, F.J., Bump, N.J. et al. (2010) Substrate-assisted inhibition of ubiquitin-like
protein-activating enzymes: the NEDD8 E1 inhibitor MLN4924 forms a NEDD8-AMP mimetic in situ. Mol. Cell 37, 102–111,
https://doi.org/10.1016/j.molcel.2009.12.024

11 Watson, I.R., Irwin, M.S. and Ohh, M. (2011) NEDD8 pathways in cancer, Sine Quibus Non. Cancer Cell 19, 168–176,
https://doi.org/10.1016/j.ccr.2011.01.002

12 Deshaies, R.J., Emberley, E.D. and Saha, A. (2010) Control of cullin-ring ubiquitin ligase activity by nedd8. Subcell. Biochem. 54, 41–56,
https://doi.org/10.1007/978-1-4419-6676-6˙4

13 Rabut, G. and Peter, M. (2008) Function and regulation of protein neddylation. ‘Protein modifications: beyond the usual suspects’ review series. EMBO
Rep. 9, 969–976, https://doi.org/10.1038/embor.2008.183

14 Jia, L. and Sun, Y. (2011) SCF E3 ubiquitin ligases as anticancer targets. Curr. Cancer Drug Targets 11, 347–356,
https://doi.org/10.2174/156800911794519734

15 Xie, P., Zhang, M., He, S., Lu, K., Chen, Y., Xing, G. et al. (2014) The covalent modifier Nedd8 is critical for the activation of Smurf1 ubiquitin ligase in
tumorigenesis. Nat. Commun. 5, 3733, https://doi.org/10.1038/ncomms4733

16 Li, L., Wang, M., Yu, G., Chen, P., Li, H., Wei, D. et al. (2014) Overactivated neddylation pathway as a therapeutic target in lung cancer. J. Natl. Cancer
Inst. 106, dju083, https://doi.org/10.1093/jnci/dju083

17 Gao, Q., Yu, G.Y., Shi, J.Y., Li, L.H., Zhang, W.J., Wang, Z.C. et al. (2014) Neddylation pathway is up-regulated in human intrahepatic
cholangiocarcinoma and serves as a potential therapeutic target. Oncotarget 5, 7820–7832, https://doi.org/10.18632/oncotarget.2309

18 Barbier-Torres, L., Delgado, T.C., Garcia-Rodriguez, J.L., Zubiete-Franco, I., Fernandez-Ramos, D., Buque, X. et al. (2015) Stabilization of LKB1 and Akt
by neddylation regulates energy metabolism in liver cancer. Oncotarget 6, 2509–2523, https://doi.org/10.18632/oncotarget.3191

19 Hua, W., Li, C., Yang, Z., Li, L., Jiang, Y., Yu, G. et al. (2015) Suppression of glioblastoma by targeting the overactivated protein neddylation pathway.
Neuro-oncol. 17, 1333–1343, https://doi.org/10.1093/neuonc/nov066

20 Xie, P., Yang, J.P., Cao, Y., Peng, L.X., Zheng, L.S., Sun, R. et al. (2017) Promoting tumorigenesis in nasopharyngeal carcinoma, NEDD8 serves as a
potential theranostic target. Cell Death Dis. 8, e2834, https://doi.org/10.1038/cddis.2017.195

21 Chen, P., Hu, T., Liang, Y., Li, P., Chen, X., Zhang, J. et al. (2016) Neddylation inhibition activates the extrinsic apoptosis pathway through
ATF4-CHOP-DR5 axis in human esophageal cancer cells. Clin. Cancer Res.: Off. J. Am. Assoc. Cancer Res. 22, 4145–4157,
https://doi.org/10.1158/1078-0432.CCR-15-2254

22 Wang, Y., Tan, M., Li, H., Li, H. and Sun, Y. (2019) Inactivation of SAG or ROC1 E3 Ligase Inhibits Growth and Survival of Renal Cell Carcinoma Cells:
Effect of BIM. Transl Oncol. 12, 810–818, https://doi.org/10.1016/j.tranon.2019.03.002

23 Cheng, F., Chen, H., Zhang, L., Li, R.H., Liu, Y. and Sun, J.F. (2012) Inhibition of the NEDD8 conjugation pathway by shRNA to UBA3, the subunit of the
NEDD8-activating enzyme, suppresses the growth of melanoma cells. Asian Pac. J. Cancer Prev. 13, 57–62,
https://doi.org/10.7314/APJCP.2012.13.1.057

24 Cukras, S., Morffy, N., Ohn, T. and Kee, Y. (2014) Inactivating UBE2M impacts the DNA damage response and genome integrity involving multiple cullin
ligases. PLoS One 9, e101844, https://doi.org/10.1371/journal.pone.0101844

25 Jia, L., Soengas, M.S. and Sun, Y. (2009) ROC1/RBX1 E3 ubiquitin ligase silencing suppresses tumor cell growth via sequential induction of G2-M
arrest, apoptosis, and senescence. Cancer Res. 69, 4974–4982, https://doi.org/10.1158/0008-5472.CAN-08-4671

26 Klosner, J., Agelopoulos, K., Rohde, C., Gollner, S., Schliemann, C., Berdel, W.E. et al. (2021) Integrated RNAi screening identifies the NEDDylation
pathway as a synergistic partner of azacytidine in acute myeloid leukemia. Sci. Rep. 11, 23280, https://doi.org/10.1038/s41598-021-02695-0

27 Xu, J., Li, Z., Zhuo, Q., Ye, Z., Fan, G., Gao, H. et al. (2022) Pevonedistat suppresses pancreatic cancer growth via inactivation of the Neddylation
pathway. Front. Oncol. 12, 822039, https://doi.org/10.3389/fonc.2022.822039

28 Zhou, Q., Lin, W., Wang, C., Sun, F., Ju, S., Chen, Q. et al. (2022) Neddylation inhibition induces glutamine uptake and metabolism by targeting
CRL3(SPOP) E3 ligase in cancer cells. Nat. Commun. 13, 3034, https://doi.org/10.1038/s41467-022-30559-2

29 Kittai, A.S., Danilova, O.V., Lam, V., Liu, T., Bruss, N., Best, S. et al. (2021) Danilov AV: NEDD8-activating enzyme inhibition induces cell cycle arrest and
anaphase catastrophe in malignant T-cells. Oncotarget 12, 2068–2074, https://doi.org/10.18632/oncotarget.28063

30 Ganzel, C., Sun, Z., Cripe, L.D., Fernandez, H.F., Douer, D., Rowe, J.M. et al. (2018) Very poor long-term survival in past and more recent studies for
relapsed AML patients: The ECOG-ACRIN experience. Am. J. Hematol. 93, 1074–1081, https://doi.org/10.1002/ajh.25162

31 Ma, J. and Ge, Z. (2021) Recent advances of targeted therapy in relapsed/refractory acute myeloid leukemia. Bosn. J. Basic Med. Sci. 21, 409–421,
https://doi.org/10.17305/bjbms.2020.5485

32 Huang, D.T., Ayrault, O., Hunt, H.W., Taherbhoy, A.M., Duda, D.M., Scott, D.C. et al. (2009) E2-RING expansion of the NEDD8 cascade confers specificity
to cullin modification. Mol. Cell 33, 483–495, https://doi.org/10.1016/j.molcel.2009.01.011

33 Ferris, J., Espona-Fiedler, M., Hamilton, C., Holohan, C., Crawford, N., McIntyre, A.J. et al. (2020) Pevonedistat (MLN4924): mechanism of cell death
induction and therapeutic potential in colorectal cancer. Cell Death Discovery 6, 61, https://doi.org/10.1038/s41420-020-00296-w

34 Xie, L., Ji, X., Tu, Y., Wang, K., Zhu, L., Zeng, X. et al. (2020) MLN4924 inhibits hedgehog signaling pathway and activates autophagy to alleviate mouse
laser-induced choroidal neovascularization lesion. Biomed. Pharmacother. 130, 110654, https://doi.org/10.1016/j.biopha.2020.110654

35 Mao, H., Tang, Z., Li, H., Sun, B., Tan, M., Fan, S. et al. (2019) Neddylation inhibitor MLN4924 suppresses cilia formation by modulating AKT1. Protein
Cell 10, 726–744, https://doi.org/10.1007/s13238-019-0614-3

36 Liu, H., Bei, Q. and Luo, X. (2021) MLN4924 inhibits cell proliferation by targeting the activated neddylation pathway in endometrial carcinoma. J. Int.
Med. Res. 49, 3000605211018592, https://doi.org/10.1177/03000605211018592

37 Shi, C.S., Kuo, K.L., Lin, W.C., Chen, M.S., Liu, S.H., Liao, S.M. et al. (2020) Neddylation inhibitor, MLN4924 suppresses angiogenesis in huvecs and
solid cancers: in vitro and in vivo study. Am. J. Cancer Res. 10, 953–964

© 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons
Attribution License 4.0 (CC BY).

15

D
ow

nloaded from
 http://portlandpress.com

/bioscirep/article-pdf/42/8/BSR
20220994/935998/bsr-2022-0994.pdf by guest on 19 April 2024

https://doi.org/10.1016/j.molcel.2009.12.024
https://doi.org/10.1016/j.ccr.2011.01.002
https://doi.org/10.1007/978-1-4419-6676-6_4
https://doi.org/10.1038/embor.2008.183
https://doi.org/10.2174/156800911794519734
https://doi.org/10.1038/ncomms4733
https://doi.org/10.1093/jnci/dju083
https://doi.org/10.18632/oncotarget.2309
https://doi.org/10.18632/oncotarget.3191
https://doi.org/10.1093/neuonc/nov066
https://doi.org/10.1038/cddis.2017.195
https://doi.org/10.1158/1078-0432.CCR-15-2254
https://doi.org/10.1016/j.tranon.2019.03.002
https://doi.org/10.7314/APJCP.2012.13.1.057
https://doi.org/10.1371/journal.pone.0101844
https://doi.org/10.1158/0008-5472.CAN-08-4671
https://doi.org/10.1038/s41598-021-02695-0
https://doi.org/10.3389/fonc.2022.822039
https://doi.org/10.1038/s41467-022-30559-2
https://doi.org/10.18632/oncotarget.28063
https://doi.org/10.1002/ajh.25162
https://doi.org/10.17305/bjbms.2020.5485
https://doi.org/10.1016/j.molcel.2009.01.011
https://doi.org/10.1038/s41420-020-00296-w
https://doi.org/10.1016/j.biopha.2020.110654
https://doi.org/10.1007/s13238-019-0614-3
https://doi.org/10.1177/03000605211018592


Bioscience Reports (2022) 42 BSR20220994
https://doi.org/10.1042/BSR20220994

38 Xu, Q., Lin, G., Xu, H., Hu, L., Wang, Y., Du, S. et al. (2018) MLN4924 neddylation inhibitor promotes cell death in paclitaxel-resistant human lung
adenocarcinoma cells. Oncol. Lett. 15, 515–521

39 Wu, M.H., Lee, C.Y., Huang, T.J., Huang, K.Y., Tang, C.H., Liu, S.H. et al. (2018) MLN4924, a protein Neddylation inhibitor, suppresses the growth of
human chondrosarcoma through inhibiting cell proliferation and inducing endoplasmic reticulum stress-related apoptosis. Int. J. Mol. Sci. 20, 1–14,
https://doi.org/10.3390/ijms20010072

40 Sarkaria, I., O-charoenrat, P., Talbot, S.G., Reddy, P.G., Ngai, I., Maghami, E. et al. (2006) Squamous cell carcinoma related oncogene/DCUN1D1 is
highly conserved and activated by amplification in squamous cell carcinomas. Cancer Res. 66, 9437–9444,
https://doi.org/10.1158/0008-5472.CAN-06-2074

41 Wang, W., Qiu, J., Liu, Z., Zeng, Y., Fan, J., Liu, Y. et al. (2013) Overexpression of RING box protein-1 (RBX1) associated with poor prognosis of
non-muscle-invasive bladder transitional cell carcinoma. J. Surg. Oncol. 107, 758–761, https://doi.org/10.1002/jso.23317

42 Li, J.A., Rong, Y., Mao, W., Zhang, L., Kuang, T. and Lou, W. (2022) Gene expression profiling reveals the genomic changes caused by MLN4924 and the
sensitizing effects of NAPEPLD knockdown in pancreatic cancer. Cell Cycle 21, 152–171, https://doi.org/10.1080/15384101.2021.2014254

43 Xiong, S., Huang, W., Liu, X., Chen, Q., Ding, Y., Huang, H. et al. (2022) Celecoxib synergistically enhances MLN4924-induced cytotoxicity and EMT
inhibition via AKT and ERK pathways in human urothelial carcinoma. Cell Transplant. 31, 9636897221077921,
https://doi.org/10.1177/09636897221077921

44 Lan, C., Ni, B., Zhao, T., Li, Z., Wang, J., Ma, Y. et al. (2022) An integrative pan-cancer analysis revealing MLN4924 (Pevonedistat) as a potential
therapeutic agent targeting Skp2 in YAP-driven cancers. Front. Genet. 13, 866702, https://doi.org/10.3389/fgene.2022.866702

45 Calandrini, C., van Hooff, S.R., Paassen, I., Ayyildiz, D., Derakhshan, S., Dolman, M.E.M. et al. (2021) Organoid-based drug screening reveals
neddylation as therapeutic target for malignant rhabdoid tumors. Cell Rep. 36, 109568, https://doi.org/10.1016/j.celrep.2021.109568

46 Zhou, L. and Jia, L. (2020) Targeting protein neddylation for cancer therapy. Adv. Exp. Med. Biol. 1217, 297–315,
https://doi.org/10.1007/978-981-15-1025-0˙18

47 Nawrocki, S.T., Kelly, K.R., Smith, P.G., Keaton, M., Carraway, H., Sekeres, M.A. et al. (2015) The NEDD8-activating enzyme inhibitor MLN4924 disrupts
nucleotide metabolism and augments the efficacy of cytarabine. Clin. Cancer Res.: Off. J. Am. Assoc. Cancer Res. 21, 439–447,
https://doi.org/10.1158/1078-0432.CCR-14-1960

48 Guo, N., Azadniv, M., Coppage, M., Nemer, M., Mendler, J., Becker, M. et al. (2019) Effects of Neddylation and mTOR inhibition in acute myelogenous
leukemia. Transl. Oncol. 12, 602–613, https://doi.org/10.1016/j.tranon.2019.01.001

49 Swords, R.T., Kelly, K.R., Smith, P.G., Garnsey, J.J., Mahalingam, D., Medina, E. et al. (2010) Inhibition of NEDD8-activating enzyme: a novel approach
for the treatment of acute myeloid leukemia. Blood 115, 3796–3800, https://doi.org/10.1182/blood-2009-11-254862

50 Knorr, K.L., Schneider, P.A., Meng, X.W., Dai, H., Smith, B.D., Hess, A.D. et al. (2015) MLN4924 induces Noxa upregulation in acute myelogenous
leukemia and synergizes with Bcl-2 inhibitors. Cell Death Differ. 22, 2133–2142, https://doi.org/10.1038/cdd.2015.74

51 Cojocari, D., Smith, B.N., Purkal, J.J., Arrate, M.P., Huska, J.D., Xiao, Y. et al. (2022) Pevonedistat and azacitidine upregulate NOXA (PMAIP1) to increase
sensitivity to venetoclax in preclinical models of acute myeloid leukemia. Haematologica 107, 825–835,
https://doi.org/10.3324/haematol.2020.272609

52 Khalife, J., Radomska, H.S., Santhanam, R., Huang, X., Neviani, P., Saultz, J. et al. (2015) Pharmacological targeting of miR-155 via the
NEDD8-activating enzyme inhibitor MLN4924 (Pevonedistat) in FLT3-ITD acute myeloid leukemia. Leukemia 29, 1981–1992,
https://doi.org/10.1038/leu.2015.106

53 Barbosa, K., Li, S., Adams, P.D. and Deshpande, A.J. (2019) The role of TP53 in acute myeloid leukemia: challenges and opportunities. Genes
Chromosomes Cancer 58, 875–888, https://doi.org/10.1002/gcc.22796

54 Bailly, A., Perrin, A., Bou Malhab, L.J., Pion, E., Larance, M., Nagala, M. et al. (2016) The NEDD8 inhibitor MLN4924 increases the size of the nucleolus
and activates p53 through the ribosomal-Mdm2 pathway. Oncogene 35, 415–426, https://doi.org/10.1038/onc.2015.104

55 Xirodimas, D.P., Saville, M.K., Bourdon, J.C., Hay, R.T. and Lane, D.P. (2004) Mdm2-mediated NEDD8 conjugation of p53 inhibits its transcriptional
activity. Cell 118, 83–97, https://doi.org/10.1016/j.cell.2004.06.016

56 el-Deiry, W.S., Tokino, T., Velculescu, V.E., Levy, D.B., Parsons, R., Trent, J.M. et al. (1993) WAF1, a potential mediator of p53 tumor suppression. Cell
75, 817–825, https://doi.org/10.1016/0092-8674(93)90500-P

57 Abbas, T. and Dutta, A. (2009) p21 in cancer: intricate networks and multiple activities. Nat. Rev. Cancer 9, 400–414, https://doi.org/10.1038/nrc2657
58 Qian, Y. and Chen, X. (2010) Tumor suppression by p53: making cells senescent. Histol. Histopathol. 25, 515–526
59 Jia, L., Li, H. and Sun, Y. (2011) Induction of p21-dependent senescence by an NAE inhibitor, MLN4924, as a mechanism of growth suppression.

Neoplasia 13, 561–569, https://doi.org/10.1593/neo.11420
60 Abbas, T., Sivaprasad, U., Terai, K., Amador, V., Pagano, M. and Dutta, A. (2008) PCNA-dependent regulation of p21 ubiquitylation and degradation via

the CRL4Cdt2 ubiquitin ligase complex. Genes Dev. 22, 2496–2506, https://doi.org/10.1101/gad.1676108
61 Kim, Y., Starostina, N.G. and Kipreos, E.T. (2008) The CRL4Cdt2 ubiquitin ligase targets the degradation of p21Cip1 to control replication licensing.

Genes Dev. 22, 2507–2519, https://doi.org/10.1101/gad.1703708
62 Swords, R.T., Coutre, S., Maris, M.B., Zeidner, J.F., Foran, J.M., Cruz, J. et al. (2018) Pevonedistat, a first-in-class NEDD8-activating enzyme inhibitor,

combined with azacitidine in patients with AML. Blood 131, 1415–1424, https://doi.org/10.1182/blood-2017-09-805895

16 © 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).

D
ow

nloaded from
 http://portlandpress.com

/bioscirep/article-pdf/42/8/BSR
20220994/935998/bsr-2022-0994.pdf by guest on 19 April 2024

https://doi.org/10.3390/ijms20010072
https://doi.org/10.1158/0008-5472.CAN-06-2074
https://doi.org/10.1002/jso.23317
https://doi.org/10.1080/15384101.2021.2014254
https://doi.org/10.1177/09636897221077921
https://doi.org/10.3389/fgene.2022.866702
https://doi.org/10.1016/j.celrep.2021.109568
https://doi.org/10.1007/978-981-15-1025-0_18
https://doi.org/10.1158/1078-0432.CCR-14-1960
https://doi.org/10.1016/j.tranon.2019.01.001
https://doi.org/10.1182/blood-2009-11-254862
https://doi.org/10.1038/cdd.2015.74
https://doi.org/10.3324/haematol.2020.272609
https://doi.org/10.1038/leu.2015.106
https://doi.org/10.1002/gcc.22796
https://doi.org/10.1038/onc.2015.104
https://doi.org/10.1016/j.cell.2004.06.016
https://doi.org/10.1016/0092-8674(93)90500-P
https://doi.org/10.1038/nrc2657
https://doi.org/10.1593/neo.11420
https://doi.org/10.1101/gad.1676108
https://doi.org/10.1101/gad.1703708
https://doi.org/10.1182/blood-2017-09-805895

