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Cancer metastasis often leads to death and therapeutic resistance. This process involves
the participation of a variety of cell components, especially cellular and intercellular com-
munications in the tumor microenvironment (TME). Using genetic sequencing technology to
comprehensively characterize the tumor and TME is therefore key to understanding metas-
tasis and therapeutic resistance. The use of spatial transcriptome sequencing enables the
localization of gene expressions and cell activities in tissue sections. By examining the lo-
calization change as well as gene expression of these cells, it is possible to characterize
the progress of tumor metastasis and TME formation. With improvements of this technol-
ogy, spatial transcriptome sequencing technology has been extended from local regions to
whole tissues, and from single sequencing technology to multimodal analysis combined with
a variety of datasets. This has enabled the detection of every single cell in tissue slides, with
high resolution, to provide more accurate predictive information for tumor treatments. In this
review, we summarize the results of recent studies dealing with new multimodal methods
and spatial transcriptome sequencing methods in tumors to illustrate recent developments
in the imaging resolution of micro-tissues.

Introduction
The early stage of cancer is usually considered curable using surgical resection and therapeutic agents [1].
Treatment of local cancer tissues therefore results in good survival, while metastatic cancer is difficult to
treat by surgical resection and usually results in therapeutic resistance [2]. This may be because cancer
metastasis involves multiple organs and tissues in the body and is therefore a complex and variable sys-
tem. In recent years, research on the tumor microenvironment (TME) during tumor metastasis has been
limited to solid cancer tissues, and has involved the tissue environment that affects its growth and prolif-
eration [3]. We therefore need to fully understand the inherent genetic information of tumor cells and the
TME involved in its survival to better understand the development of tumors from initiation to metastasis
and to find effective therapies.

The next-generation sequencing (NGS) has the advantages of large-scale and high-throughput gene
sequencing [4] (Figure 1). Researchers have completed the human genome project (HGP) [5], revealing
the normal genome characteristics of humans, and have promoted research on establishing a gene atlas of
human diseases and cancers [6].

However, NGS has been largely directed toward sequencing malignant genes, which has mainly ignored
important information of non-malignant samples involved in cancer cell progression in the TME [7].
Moreover, NGS has mainly been directed to sequencing the mutant genes in whole tissues [8] and has
been unable to distinguish gene mutations belonging to specific cell types. As a result, we do not know
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Figure 1. A diagram of the development of the main sequencing methods

The development of sequencing methods, from molecular hybridization to high-throughput RNA sequencing of a single cell, and

the integration of multimodal datasets of spatial maps.

whether these mutations originated from primary or metastatic cancers, or from free cancer cells during the process
of metastasis.

The subsequent use of single-cell RNA sequencing (scRNA-seq) has largely compensated for the aforementioned
deficiency [9]. NGS mainly involves detection of mutant gene expressions, biological functions, and signal pathways in
whole tissues. The above three processes can then be classified into different cell populations to reveal the evolutionary
process of cells with cancer-related mutant genes [10], from the formation of primitive cancer stem cells [11] to the
development of primary cancer lesions, and then to the diffusion of other tissues, organs or fluids [12,13]. In addition,
using mutant genes identified in previous studies, we can now determine which cells belong to cancer cells and which
cells provide help for the proliferation of tumor cells [14], and we can identify mutant genes expressed by some rare
cell subsets, for a deeper understanding of the roles of tumor cells [15].

Due to the inability to detect whole tissue sections, important information between cells and tissues may be omitted
[16]. However, combining data with subsequent spatial transcriptome sequencing technology can intuitively reflect
changes of cell types [17], the locations of cell populations in the TME, and their interactions with cancer cells during
metastasis [18]. By combining multiomics data with spatial sequencing, characterization of single cells is now possible,
with subsequent technologies to examine whole tissue components that previous methods could not detect.

In this review, we summarize studies on the use of spatial transcriptome technologies to characterize tumor metas-
tasis and the TME, and describe future multimodal analysis methods that combine multiomics and multidimensional
methods in spatial transcriptome technology.

Results
The development and limitations of scRNA-seq
The use of scRNA-seq, first used in 2009, successfully detected multiple transcriptional variants expressed in the
same cell [9]. To provide a more accurate classification and more information of rare transcriptional information in
samples, which was not possible using NGS, scRNA-seq was used for sequencing mutant genes in whole tissues.

Just as the initial DNA sequencing method of Sanger and Gilbert led to genetic sequencing [19,20], scRNA-seq led
to single-cell sequencing (SCS). Some significant SCS methods involve the following: single-nucleus RNA sequencing
[21], single-cell DNA sequencing (scDNA-seq) [22], and single-cell ATAC-seq (the accessible genome of individual
cells by assaying for transposase-accessible chromatin using sequencing, ATAC-seq) (scATAC-seq) [23], which are
combined with scDNA-seq to detect chromatin. Cellular indexing of transcriptomes and epitopes by sequencing
(CITE-seq) [24] is combined with scRNA-seq to detect proteins. Single-cell combinatorial indexing for methylation
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analysis (sci-MET) [25] has also been combined with scDNA-seq to detect methylation (Figure 1). Other technologies
and the main development of SCS are in Figure 1[118–127].

For tumor cells with high intratumoral heterogeneities (ITHs) [26], single cell genome sequencing can analyze the
evolution process of genetic material in the tumors to identify internal factors leading to the formation of tumor cells.
However, formation and metastasis of tumors do not involve a single process, but result in interactions with other
adjacent non-malignant cells, to promote the development of tumors, in a process involving the TME [27]. Although
it is not possible to identify cell types participating in the TME and epithelial–mesenchymal transformation (EMT)
processes using scDNA-seq, it is now possible to achieve this goal during cancer metastasis and in the TME using
transcriptome sequencing of single cells.

However, a tumor is not independent of the rest of the body. Like other tissues and organs, it depends on the
overall regulation system of the body during its formation. For example, the abnormal function of the extracellular
matrix in the TME causes cancerous epithelial cells to lose polarity and adhesion, change morphology, and move to
surrounding tissues [28].

While scRNA-seq separates the whole tissue sample into individual cells by analyzing a cell suspension, it loses
the whole system of interactions with the body after in vitro dissociation, therefore, scRNA-seq studies are limited
to independent cell populations [29]. For complex and variable mechanisms of the TME and cancer metastasis, we
can only infer and verify the possible mechanisms using specific mutant genes and cell phenotypes. Regarding how
the TME and cancer metastasis proceed, we still do not have a comprehensive, systematic, and deep understanding.
Thus, scRNA-seq has limitations in reflecting the integrity of tumor tissues.

In addition, scRNA-seq itself has some technical limitations, including that freezing and dissociation experimental
steps may lead to partial cell death [30]. The variable transcription of eukaryotic cells causes noise in sequencing [31],
and corrections of batch effects and the ectopic gene expressions may lead to inaccurate identifications of cell subsets
[32]. In conclusion, to understand the mechanism of tumor metastasis and the TME more comprehensively, we need
better methods.

In situ spatial transcriptomic sequencing
In 1969, Pardue and Gall developed in situ hybridization (ISH) [33], using nucleotide probes to detect the se-
quence of mutant genes within cells. This was followed by fluorescence in situ hybridization (FISH) using fluorescent
probes to detect chromosome translocations [34] (Figure 1). In subsequent developments, more accurate and efficient
FISH-based technologies have been reported. Delong et al. used multiple probes at the same time to identify multiple
cell types in a developmental system of single microbial cells [35]. Femino et al. improved FISH and used a digital
imaging microscope to detect single RNA molecules (smFISH), to quantitate RNAs produced by a single cell [36].

However, the above techniques only selected known molecular probes for qualitative and quantitative determina-
tions, and positioning of specific transcriptome information. There are many unknown RNAs in a single cell, which
limits detection of the whole transcriptome in cells. Lubeck et al. therefore developed seqFISH [37], using bar codes
encoded by fluorescent labeled bases, to combine all possible mRNAs in a single cell, resulting in images showing
fluorescent spots marked by different bar codes. Each spot contains cDNAs produced by mRNAs hybridized with bar
codes, followed by sequencing of these cDNAs. This method is an expanded version of smFISH, involving hybridizing
all possible mRNAs in a single cell at the same time, to detect mRNA sequences of the entire transcriptome of a single
cell (Figure 1).

The better the detection of genetic material in a single cell, the higher the localized imaging resolution of a single
cell. The emergence of seqFISH has improved sequencing efficiency and cell imaging resolution. Next, Smart-seq2
continues to optimize detection of the single cell transcriptome, focusing on full-length coverage of transcripts, to
improve cDNA production and expand establishment of a cDNA library [38] (Figure 1). Except for detection of the
transcriptome in a single cell, in situ sequencing (ISS) is able to perform targeted detection of short-stranded RNA
fragments in tissues with cells, to characterize the effects of cell–cell interactions in tissues on a single cell [39].

The above methods are all directed to the detection of mRNAs. Although long-chain noncoding RNAs (LncRNAs)
in cells are not involved in protein coding, they also play an important role in regulating transcription and the activity
of proteins [40]. Lv et al. developed LncSpA to produce a spatial map of LncRNA in normal and cancer tissues of
humans [41]. Subsequently, Alon et al. developed untargeted expansion sequencing, which expanded the detection
of RNA to the entire region, whether it was the targeted or untargeted region, and was able to identify thousands of
gene sequences, including spliceosomes, to reveal the tissue localization of tumor cells and immune cells in mouse
brain neurons and human metastatic breast cancers, as well as the nano resolution of intracellular RNAs [42].
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Figure 2. A diagram shows the differences between in situ and ST spatial RNA sequencing

The difference of in situ and ST spatial RNA sequencing (A).

Imagining methods of in situ spatial transcriptomic sequencing
The fluorescence microscope has been used to image cells in tissue sections, involving laser capture microdissec-
tion (LCM) [43], digital imaging microscopy [44], and super-resolution microscopy (SRM) [45]. These methods
maintained the imaging flexibility of optical microscopy, by extending the diffraction wavelength, to observe cell
substructures.

Since then, SRM-based imaging technologies have been used in numerous studies. Chen et al. developed multiple
error robust fluorescence in situ hybridization (MERFISH) technology, which could improve sequencing efficiency
and minimize errors at the same time, to expand imaging of nearly 1000 different RNAs in hundreds of single cells,
to achieve simultaneous improvement of both the efficiency and accuracy [46]. Wang et al. developed spatially re-
solved transcription amplification readout mapping (STARmap), using a three-dimensional map to obtain in situ
sequencing of transcriptome information of a single cell, as well as to amplify the target signal [47]. For thicker tissue
slices, this technique can also show the distribution gradient of molecules. Furthermore, Jamalzadeh et al. developed
QuantISH [48] and used it to characterize high-grade serous carcinomas.

Improvements of molecular probes and imaging technologies are the main factors in improving the accuracy and
efficiency of in situ spatial transcriptome sequencing. The finer the classification of molecular probes, the more RNAs
that can be detected. The higher the imaging resolution of these detection methods of tissue sections, the less the error
between detection information and imaging, to achieve a higher degree of accuracy.

In addition, with the improvement of the number and accuracy of in situ detection of transcriptomes within a single
cell, investigators are no longer limited to studies of a single isolated cell, but can identify the influence between cells
and the tissue environment, to evaluate the process of the transcriptome of the inner cells more comprehensively.

However, the detection range of in situ sequencing methods is often targeted at selected tissue sections, and it is
difficult to detect whole tissues, especially those tissue areas that are difficult to target [49] (Figures 2 and 3).

Spatial transcriptomic sequencing in whole tissue sections
To sequence a large number of RNAs in whole tissue sections, Patrick et al. developed a spatial transchromic (ST)
[50] method, by designing a spot array glass slide with spatial bar codes and reverse transcriptase, which was placed
on a tissue section, aligned with the position of the tissue section covering the whole tissue section, then synthesized
cDNA in the tissue section could be captured in the spot on the array (Figures 2 and 3).
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Figure 3. A flow chart shows a sample explanation of seq-FISH and ST spatial RNA sequencing

The difference of in situ and ST spatial RNA sequencing (B).

ST is therefore a spatial version of in situ FISH of a whole tissue section. All mRNA information in the tissue is
collected on a slide at one time. According to the cDNA collected in the spot on the slide, it is possible to determine
what transcriptional information exists in the corresponding tissue section location, and to a large extent, the tran-
scriptional information, cell positions, cell types, and the interaction within all tissues can be determined together.

Although ST has improved the integrity of transcriptional information of tissue sections, resolution of a single
cell was also reduced [50]. This depended on the size of the spot. The larger the diameter of the spot, the more
transcriptional information it collects, and the lower the accuracy of each transcriptional information detected. The
spot diameter of ST is 100 μm, and subsequent technology continuously reduced the spot diameter to improve the
resolution of the transcriptome in a single cell. For example, Slide-seq (10 μm) [51], high-definition spatial transcrip-
tomics (2μm) [52], and the Visium platform (55μm) released by 10× Genomics (https://pages.10xgenomics.com/rs/
446-PBO-704/images/10x BR060 Inside Visium Spatial Technology.pdf) [16] are widely used platforms in cancer
research.

We have summarized some applications of spatial transcriptome sequencing methods in tumors (Table 1). It was
found that there were significant differences in gene expressions between the central region of tumors and the sur-
rounding adjacent regions. For example, the microenvironment of the central region was mainly composed of stro-
mal cells that expressed aerobic respiration and metabolic pathways, and the surrounding regions were mainly re-
lated to the expression of inflammation and immune response [53,54]. Furthermore, oxidative metabolism and lipid
metabolism localized in the tumor tissues are different from those in normal tissues, thus, the regulation of cells
involved in tumor metabolism could reflect the progress of tumors [55,56].

In addition, more studies of ST of the TME have shown that tumor-related stroma cells in the TME are mainly
cancer-associated fibroblasts (CAFs). However, myeloid cells, which are mainly tumor-associated macrophages
(TAMs), also shared the same locations with tumors. It was found that M2 macrophages, CAFs, and some T lympho-
cytes were always located in the center of the tumor, and these T lymphocytes were identified as exhausted CD8+T
cells [57] and unconventional CD4+T cells [58]. Exhausted CD8+T cells are often found in cancers, which are a type of
T cell lacking effector functions [59], and the unconventional CD4+T cells are a type of T cell subtype similar to regu-
latory T cells [60], which are related to the immunosuppressive and tissue repair systems [58,61]. These two cell types
are very close to the localization of M2 macrophages and CAFs, thus they might be regulated by these tumor-related
stromal and myeloid cells, resulting in loss of their anti-tumor functions to help tumor cells escape immune response.
These studies also revealed the localization of metabolic pathways, which were related to the formation, metastasis,
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Table 1 The applications of ST in cancer studies

Author Sample Method Main outcome

Thrane Ket et al. [53] Stage III cutaneous malignant
melanoma

ST In lymphatic cancer metastasis, the expressions of lymphocyte
related genes are different between the tissues near cancer and far
from the cancer.

Berglund E et al. [54] Prostate cancer ST Different inflammation related genes were expressed in the central
region, peripheral region, and adjacent region of the tumor to show
different immune microenvironment regions.

Sun H et al. [55] Pancreatic ductal
adenocarcinomas

ST (Visium) By limiting the oxygen content in the TME region, to predicted the
change of gene expressions in tumor tissues.

Lv J et al. [56] Invasive micropapillary
carcinoma of the breast

ST (Visium) Different regions of the TME exist in different metabolic pathways
of tumor related mutant genes.

Yue-Fan Wang et al. [61] Hepatocellular carcinoma ST (Visium) M2 macrophages expressing CCL15 related to the
immunosuppressive microenvironment of the core regions of
cancer tissues.

Hiroki Murai et al. [57] Nonviral hepatocellular
carcinoma

ST (Visium) M2 macrophages and CAF were very close to the exhausted
CD8+T cells in cancer tissues.

Miranda V Hunter et al. [64] Melanoma ST (Visium) Found the “interface” between tumor and the TME, which
consisted of tumors and cells in the TME. Ciliated proteins
produced by cells in the TME were enriched in this interface.

Lee-Ann Van de Velde et al.
[58]

Neuroblastoma ST (Visium) Myeloid cells with metabolizing arginase-1 and CD4+T cells related
to tumors were found in the parenchymal region of the tumor.

Juntaro Yamasaki et al. [62] Gastric cancer ST (Visium) Found a group of stromal cells before tumor invasion, which
expressed genes related to hypoxia signaling, angiogenesis, and
cell migration.

Jingjing Qi et al. [63] Colorectal cancer ST (Visium) Found FAP+ fibroblast and SPP1+ macrophage co-localization, to
promote immune repulsive connective tissue hyperplasia and
limitation of the infiltration of T cells.

and inhibitory immune system of tumors, and between tumors and these tumor-related stromal cells and myeloid
cells [62,63].

Metastatic tumor cells are therefore often accompanied by changes of cells in the TME, so there is a close relation-
ship between tumors and the TME. A study of melanomas and the ST has also shown an interface between tumor
cells and cells within the TME [64]. These results indicate that although the cells within the TME are close together
with tumor cells, they are not malignant cells, but the two cell types are independent and interdependent, and cell-cell
communication links the two groups into a whole system.

The limitations of spatial transcriptome sequencing methods
High resolution, but lack of tissue localization, are the characteristics of in situ spatial sequencing. In contrast, ST
with a large-scale sequencing advantage has reduced accuracy of single cell resolution. Hence, how to improve the
single cell resolution of ST is the next goal of high-throughput spatial sequencing technologies. There are many ways
to improve the resolution. One method involves continuously reducing the diameter of the spot from the above-
mentioned sequencing methods, and another is to improve the clarity of the imaging technology. Deconvolution is
a mathematical algorithm that eliminates previous filtering, and reflects the original clarity of the image using imag-
ing technology. Many imaging technologies therefore design the deconvolution algorithm to achieve high-definition
imaging and restore the original image in tissue slices as much as possible.

We have summarized some research methods used to improve ST imaging during the past 2 years, basically involv-
ing deconvolution software designed to evaluate the localization of transcriptome expression in ST data through cal-
culations, including SpaGCN [65], MULTILAYER [66], STARCH [67], SPARK-X [68], DeepSpaCE [69], spatialGE
[70], MISTy [71], and SpotClean [72]. These methods are mainly aimed at rare cell types existing in complex and
multi-level tissue regions that may not be detected by ST, which is equivalent to deep in situ sequencing of some key
areas in the whole tissue section.

These techniques first detect the transcriptional information in cells, and then determine cell types using other
information. Most cell types can be determined using this approach. However, some cell subtypes may share the
same transcriptional information with other subtypes, but they are in different functional states.

For example, the previously mentioned CAFs, which are normal fibroblasts in the overactivated TME, are con-
stantly inducing remodeling of the structure and function of the extracellular matrix, followed by promotion of tu-
mor metastasis [28]. For CAFs, we can only identify this cell type by detecting its metabolites and the location in
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tissue using ST. To a certain extent, this may limit the accuracy of cell type identification. However, by combing the
scRNA-seq with spatial transcriptomics sequencing, it is possible to directly map the high resolution of single cell
data in tissue sections.

In situ spatial RNA sequencing has already shown higher resolution of a single cell than does ST, so when combined
with scRNA-seq, it may facilitate characterization of rare cell types. For example, by combining the data of smFISH
and scRNA-seq, Massalha et al. [73], in cholangiocarcinoma liver metastases, developed a cellular map of the liver
TME, which included different expressions of cell subsets and genes between malignant and non-malignant regions,
as well as a stromal cell type related to recurrent tumors, by constructing ligand-receptor interactions.

However, this approach is still limited to specific parts of tissues. We focus next on methods of combining
scRNA-seq and ST, to directly map the data of cell types in whole tissue sections.

The combination of ST and scRNA-seq
The third way to improve resolution is to combine scRNA-seq with ST. The objective of scRNA-seq is to identify cell
types, which also provides high resolution of single cells. The combination of these two methods could directly iden-
tify cell phenotypes in tissue sections, rather than first detecting transcriptional information in cells, then identifying
the cell types; after identifying the cell type, we should be able to locate them in the tissue.

In addition, using scRNA-seq, it may be possible to identify different transcriptional information in the same cell
type, for example, distinguishing initial tumor stem cells, progeny tumor cells, and metastatic tumor cells, and then
determining the different stages of tumor progression. It may be possible to identify similar transcripts in different cell
types, for example, the tumor cells could transform to free mesenchymal cells during the EMT. It may also be possible
to show that a cell may interact with adjacent cells to produce mixed transcriptional information; for example, tumor
cells may promote their own development by encoding specific metabolites that can induce abnormal functions of
stromal and immune cells [74].

Like the difference between NGS and scRNA-seq, ST using NGS can be used to identify and locate the main cell
types in tissue sections, but it cannot identify the specific subtypes without using further technology. The combination
of ST and scRNA-seq can therefore ensure the high resolution of single cells and show their spatial localizations
(Figures 2 and 3).

Integrating methods
We will review the development of integrating methods. Several deconvolution methods have been used for bulk
RNA-seq data to analyze the signals of cell types [75]. Subsequently, Baron et al. for the first time developed BSEQ-sc
by using scRNA-seq data [76].

However, these deconvolution methods were based on pre-selected cell marker genes, which were common char-
acteristics of most cell types, but which might omit some rare specific gene expressions, differential gene expressions
between individuals, and random gene expressions of the inner cells [77], so analyses of cell types were limited.

Investigators have developed deconvolution methods by using datasets of scRNA-seq to replace marker gene
screening. For example, Wang et al. developed multidisciplinary single cell deconvolution, using scRNA-seq datasets
instead of marker gene screening to evaluate cell types and proportions in bulk RNA-seq [77]. Butler et al. developed
an R package [78] using Seurat software-a computational strategy to identify the cellular localization by integrating
scRNA-seq data with in situ spatial RNA sequencing [79], by analyzing the overlapping degree of common gene
expressions in data from different sources. The higher the degree, the more accurate the determination of a certain
cell type. Jew et al. developed Bisque and expanded scRNA-seq datasets, resulting in more refined and diverse cell
types identified [80]. Giladi et al. developed PIC-seq by combining physically interacting cells (PIC) with scRNA-seq,
which identified the types of these cells, and also evaluated the interaction relationship between them [81] (Figure 1).

Subsequently, investigators have used scRNA-seq datasets to visualize the deconvolution calculation method of cell
types in bulk RNA-seq sequencing data with ST. ST itself provides the location of bulk RNA sequencing information
in tissue, then the data of bulk RNA sequencing is replaced by scRNA-seq datasets.

We have listed some cancer studies using ST-scRNA-seq, and found that most deconvolution algorithms of
ST-scRNA-seq were able to select the gene expressions with high degrees of overlaps, to identify cell types and po-
sitions on tissue sections by comparing transcriptomic sequencing information between ST and scRNA-seq datasets
(Table 2).

Using the previously mentioned Seurat R package, Andrew et al. [82] identified a subgroup of tumors near vascular
endothelial cells, which co-localized with CAFs and inhibitory immune cell populations, during a study of cutaneous
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Table 2 The applications of the integration methods between ST and scRNA-seq in cancers

Author Sample
Integrating
method Main outcome

Dylan et al. [89] High-grade serous ovarian
carcinoma

RCTD [90] Predicting the effect of NACT treatment using cell types and their
locations that were involved in EMT pathways.

Andersson et al. [86] HER2-positive breast tumors Stereoscope [85] A tertiary lymphoid structure was found co-localized with tumor
tissues, which produced a type I interferon response signal
pathway.

Andrew et al. [82] Cutaneous squamous cell
carcinoma

The Seurat R
package [78]

Found a subgroup of tumors near the vascular endothelial cells,
co-localized with CAFs and inhibitory immune cell populations.

Wu et al. [87] Colorectal Cancer Liver
Metastasis

SCDC [88] Predicting the effect of NACT treatment using subtypes of
macrophages and their metabolic signal pathways of metastatic
cancer tissues.

Moncada et al. [49] Pancreatic ductal
adenocarcinomas

MIA [49] Inflammatory fibroblast populations were found co-localized within
tumor regions, and where they expressed genes coding for
inhibitory immune responses.

Gouin et al. [83] Muscle-invasive bladder cancer The seurat R
package

Predicting anti-PD-1 therapy in epithelial cells with CDH12, which
were related to the production of exhausted T cells.

Vidhya et al. [93] Glioblastoma Spotlight [94] Found the HMOX1+ myeloid cells localized in the mesenchymal
tumor area, which released IL-10 to drive T cell exhaustion.

Wenqin et al. [84] Medulloblastoma The seurat R
package

Found that differentiation of transformed granular neural progenitor
cells in medulloblastomas was significantly inhibited, which was
different from normal developing cells.

Youjin et al. [91] colon adenocarcinoma XYZeq [91] Found different cell types of tumor-associated mesenchymal stem
cells (MSCs), and some expressions of tumor suppressor genes in
the local region of the tumor.

Sunny et al. [92] Recurrent breast cancer SCSubtype [92] Found PD-L1/PD-L2+ macrophages and three different
mesenchymal cells in recurrent tumors. Constructed nine types of
breast cancer atlases.

squamous cell carcinomas. Gouin et al. [83], in a study of muscle-invasive bladder cancers, reported that epithe-
lial cells, with CDH12 expressing PD-L1/2, co-localized with exhausted T cells, with the use of anti-PD-1 immune
therapy, showing a good effect. In a study of medulloblastomas, Luo et al. [84] reported that compared with normal
developing cells, the differentiation trend of transformed granular neural progenitor cells was significantly weakened.

Similar to the Seurat R package, from the study of HER2-positive breast tumors, there was also a probabilistic
model-based method developed called stereoscopy [85]. Andersson et al. [86] found a tertiary lymphoid structure
co-localized with tumor tissues, which produced a type I interferon response signal. Wu et al. [87], using the SCDC
[88] method in a study of colorectal cancer liver metastasis, found different macrophage subsets and their metabolic
signal pathways existed in the TME regions of primary and metastatic cancer tissues.

On the basis of expanding the scRNA-seq dataset, other methods have focused on a more thorough analysis of
cell subtypes, to get better consistency and matching degrees of cell types, using multiple platforms and an interdis-
ciplinary approach (Table 2).

Cable et al. [89] used the Robust Cell Type Decomposition method [90], which is a kind of integration method,
used to show that the cell types and localizations involved in EMT pathways were changed before/after neoadjuvant
chemotherapy (NACT) treatment in high-grade serous ovarian carcinomas. Moncada et al., using a method called
multimodal intersection analysis (MIA) [49], reported that inflammatory fibroblast populations were co-localized
within tumor regions, and expressed stress response genes in pancreatic ductal adenocarcinomas. Lee et al. devel-
oped XYZeq [91], a workflow procedure that encoded spatial metadata into scRNA-seq libraries, and used it in the
study of colon adenocarcinomas. It was found that there existed different tumor-associated mesenchymal stem cells
during tumor formation, and during this process, there also existed different suppressor genes. Wu et al. developed
SCSubtype [92], which was used in the study of recurrent tumors in breast cancers. They identified a new type of
macrophage that expressed PD-L1/PD-L2. Furthermore, the mesenchymal cells showed different functions and cell
surface protein expressions during differentiation in three major lineages and the whole transcript map of breast can-
cers. In a study of glioblastomas by Ravi et al. [93], using Spotlight [94], they reported that HMOX1+ myeloid cells
releasing IL-10 were spatially located in the mesenchymal tumor area, which could induce exhausted T cells, thereby
promoting an immunosuppressive TME. In addition, there is another method called spatialDWLS [95], which is
mainly focused on the identity of the cell types in the coexistence boundary. Although it has not been reported to be
used for cancer studies, it may be a good method to distinguish tumor cells and the cells in the TME (Table 2).
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Table 3 Some new deconvolution integrating methods in cancers during 2022

Author Sample
Integrating
method Main outcome

Ying et al. [74] Pancreatic cancer CARD A variety of cell types and molecular markers were identified, which
had clear spatial localizations and which defined the progression,
heterogeneity, and regionalization of pancreatic cancer.

Runmin et al. [98] Ductal carcinoma CellTrek Identified tumor subclones and the specific T cell status near the
tumor area.

Jerby-Arnon et al. [100] Lung cancer DIALOGUE Found the multicellular programs (MCPs) that were involved in
immune activation, tissue remodeling, and cancer
immunotherapeutic resistance.

Qianqian et al. [97] Pancreatic cancer DSTG Achieved high level segmentation and revealed the spatial
structure of cell heterogeneities in tissues.

Edward et al. [102] Melanoma, invasive ductal
carcinoma and ovarian
adenocarcinoma

BayesSpace Identified tissue structure at the original resolution and
transcriptional heterogeneity, and restored, to a large extent, the
neighborhood structure of cell types.

Yi et al. [103] Colorectal cancer SC-MEB Compared with BayesSpace, SC-MEB showed a better ability to
separate clusters.

Yusong et al. [106] Pancreatic ductal
adenocarcinoma and high-grade
serous ovarian cancer

SPCS Evaluation of combing two factors (ST and scRNA seq) facilitated
smoothing the noise and preventing the loss of some important
events.

The combination of ST and scRNA-seq has shown promise in the high resolution of a single cell. However, there are
still limitations. ST and scRNA-seq are two independent sequencing methods, so differences in data of the different
cell types may exist. Noise is also an inevitable problem of sequencing technologies. Thus, the mismatch between
them may lead to wrong mapping regions, and provide false location signals [96].

Therefore, the matching degree of different sequencing platforms is a key factor of integration. The subsequent
deconvolution methods basically focus on constantly updating and expanding the sequencing datasets of scRNA-seq,
so that it can provide more matching cell types.

New deconvolution integrating methods in 2022
We next summarize new deconvolution integrating methods reported in 2022. Some methods continued and opti-
mized previous technologies, and improved the detection of cell subtypes in more detail. For example, deconvoluting
spatial transcriptomics data using graph-based convolutional networks (DSTG) [97] used CellTrek, a method that de-
tects the topological patterns of different cell types and cell states [98]. CellDART, a method mainly devoted to neural
networks [90], and DIALOGUE, a method mainly devoted to identifying multicellular programs among cell–cell
interactions [99], and conditional autoregressive-based deconvolution (CARD) [100], have also been used (Table 3).

Other methods are based on Bayesian theory, which is a mathematical framework that models reasoning and
decision-making under uncertain conditions [101]. These probability model algorithms include BayesSpace [102],
SC-MEB [103], and Cell2location [104]. Most of them are used to detect complex cellular components such as brain
nerve cells and tumor cells. Because of the continuous expansion of scRNA-seq datasets, these technologies can sim-
ulate and predict the localization of different cell types in tissues without the need for experiments on solid tissue
components. Therefore, these methods can integrate ST and scRNA-seq data.

Among them, CARD developed by Ying et al. [74] is an interesting method. One of its main features is the clear
display of each segregation between different cells, which is the best resolution using this method. These segrega-
tions could be presented from malignant and non-malignant regions, to subregions of malignant regions, and even
regions that are different between the early and late stages of tumor cell types. The second feature involves finding
cell subpopulations that may not be detected by other methods with extremely high resolution. As the authors men-
tioned, acinar cells were mainly enriched in the areas of normal pancreatic tissues in the study of pancreatic ductal
carcinomas, while other methods were unable to adequately localize the main enrichment sites of such cells. The
third feature involves locating cell types in different subregions at the same time. These advantages of CARD may
provide additional and more accurate information among cellular interactions during the dynamic process of tumor
metastasis.

Compared with the above methods, which mainly depend on a large cell population to select high matching degrees
of cell types, Missarova et al. developed geneBasis to filter-out the generally expressed genes, and then identified cell
types with high specificity and sensitivity. The method mainly focuses on the characterization of rare cell types [105].
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Table 4 The methods of combining the multimodal datasets and spatial transcriptomics sequencing

Authors Sample
Integrating
method Main outcome

Combined with ST

Mika et al. [108] Human thymus dataset MultiMAP Revealed transcription factor expression and binding site
accessibility of T-cell differentiation.

Britta et al. [109] Mouse gastrula MEFISTO By considering the spatio-temporal dependencies of samples, the
method combined the continuous covariate among different
samples, and continuously and dynamically detected the
differentiation trajectory of organisms.

Vickovic et al. [111] Mouse brain, spleen and
colorectal cancer model

SM-Omics An automated sequencing method mainly for spatial
antibody-based multiplex protein detection.

Biancalani et al. [107] Mouse brain Tangram A method combining all RNA datasets with anatomical atlases.

Combined with in situ spatial
sequencing

Chee-Huat Linus Eng et al.
[112]

Mouse brain seqFISH+ Revealed the mRNA localizations of subcellular structures and the
ligand-receptor pairs across neighboring cells.

Vu et al. [113] Colorectal cancer and melanoma MOSAICA A multiomics method for mRNA and protein sequencing, which
showed the ability of multiplexing scalability.

Park et al. [114] Mouse brain SSAM A robust cell segmentation-free computational framework for
identifying cell-types and tissue domains in two- and
three-dimension.

In addition to the above methods, which involve expansions of scRNA seq datasets and optimization of integrating
algorithms, to improve the imaging resolution, Liu et al. proposed a two-factor smoothing technique involving ST.
This method improved the previous one-factor smoothing technique, added spatial sequencing as another factor, so
it also used spatial and pattern combined smoothing, which aimed to decrease the noise and dropout events caused
by multiple path sequencing [106] (Table 3).

In general, the integration of ST and scRNA-seq datasets to improve resolution of single cells in tissue sections is
the main direction of development of spatial transcriptome sequencing methods.

Future prospects of spatial transcriptome sequencing methodology
involving multimodal data analysis, including multi-dimension,
multiomics, and interdisciplinary approaches
As the integrating methods of scRNA-seq data on ST become more accurate, investigators are no longer limited in
using transcriptomics datasets, but can integrate the multimodal datasets into spatial sequencing, such as genomics,
epigenetics, chromatin omics, and proteomics. Thus, more comprehensive cell information in tissues can be displayed
using spatial sequencing technology.

These multimodal data methods include the following. Biancalani et al. developed Tangram [107], which integrated
many kinds of RNA-seq datasets, like MERFISH, STARmap, smFISH, and sc/snRNA-seq. Jain et al. developed an algo-
rithm for the dimensionality reduction and integration of multiple datasets, called MultiMAP [108], and Veltenjiang
et al. developed MEFISTO [109], a multimodal calculation framework based on factor analysis [110]. Vickovic et al.
developed spatial multiomics (SM-Omics), as a fully automated, high-throughput platform [111]. These three ap-
proaches are major methods for analyzing the combination of multiomics datasets, such as scRNA-seq, scATAC-seq,
sci-MET, CITE-seq, and ST datasets (Table 4).

Except for the combination of ST, there are many methods integrating multimodal data with in situ spatial tran-
scriptomics sequencing. For example, in the early years, Eng et al. developed sequential fluorescence in situ hybridiza-
tion, which was able to identify cell subtypes and receptor ligand pairs between adjacent cells by detecting multimodal
signals of chromatin and gene expressions [112]. Vu et al. developed the Multi Omic Single-scan Assay with Integrated
Combinatorial Analysis, to detect mRNA and proteins at the same time, and it has been verified in colorectal cancers
and melanoma datasets [113]. Park et al. developed Spot-based Spatial cell-type Analysis by Multidimensional mRNA
density estimation (SSAM), which is a robust cell free segmentation computing framework, presenting cell types and
tissue structures from two- and three-dimensional perspectives [114] (Table 4).

It can be seen that whether it is in situ transcriptomic sequencing or ST, or the combination of the two with other
datasets, the imaging algorithms are similar, which aim to restore the original spatial location of different cell types,
tissue morphologies, and structures in tissue sections as accurately as possible. Although there are few studies using
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multimodal data analysis methods, they can result in original information of tumor tissues, to provide a reliable basis
for the implementation of effective therapies.

Discussion
In general, sequencing methods have experienced an unprecedented era of rapid development, from sequencing of
gene fragments to sequencing of all genetic materials in the whole cell and even whole tissues. Current sequencing
technology has been extended to an interdisciplinary analysis model that integrates multiple omics, multiple data,
and multiple dimensions.

This has provided many advantages. It greatly improves all cellular and non-cellular information in tissues, and
visually displays as much microscopic information as possible. Using a tissue slide, it is possible to identify a certain
cell type from multiple perspectives, and collect relevant information about this type of cell. The resolution of cells
has been improved from multiple perspectives, and many rare cell phenotypes that were missed by single sequencing
technology were found. This expanded cell datasets and increased the number of targets that can be used for new
therapies.

However, there are still limitations. Due to the IHT of tumors, more unknown tumor phenotypes may appear in the
future, whereas current multimodal datasets are based on the statistics of known experimental research structures.
Therefore, while studying new methods, we need to constantly update the information of clinical tumor specimens
to keep up with changes of tumor evolution.

The main purpose of spatial sequencing is to visualize the original data in tissue slices. Although multimodal spatial
sequencing methods can analyze the information of tissue slides from various angles, these data also depend on tissue
samples. Without tissue slides as the main body, these datasets merely comprise data that cannot be used. For tumor
metastasis and the complex TME, this is a dynamic process. A tissue slide can only analyze limited information, but
cannot track and record a dynamic process. In addition, a mouse model can reflect the evolution of tumors but may
differ from human tumors.

The production of sequencing technology ultimately provides information for the transition to clinical medicine.
So how do we combine experimental methods with clinical applications? By identifying changes of cell types in tissue
sections, we can predict tumor stages and the therapeutic effect for patients. Then, tissue samples at different stages
can be selected before and after treatment, and spatial sequencing could be conducted to identify changes of tumor
cells and cell types in the TME. It is also necessary to conduct long-term and continuous studies on the same patient
or a class of patients with similar diseases. Previous studies have also used single sequencing techniques such as NGS
and scRNA-seq to evaluate the therapeutic effect and resistance of patients [115,116].

However, these studies can only predict the treatment effect involving changes of certain gene expressions and cell
types, and these predictions only reflect the data from the heat map, but spatial sequencing technology can directly
map the data into tissue samples, which is equivalent to indicating the expression information of the tumor related
genome, transcriptome, chromatin, protein, and DNA methylation in tissue samples at one time, so that we can
intuitively observe these microscopic molecular changes when looking at the patient’s pathological sections. Thus,
the accuracy of evaluation is improved to a certain extent. However, this method is more suitable for tissues and
organs with obvious solid tumors. For tumor cells with systemic metastasis through the blood, SCS is still best for
liquid biopsies [117].

Overall, the use of spatial sequencing technology will promote the development of a personalized and accurate
targeted treatment system for patients, to improve the survival of patients with tumor metastasis.
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48 Jamalzadeh, S., Häkkinen, A., Andersson, N. et al. (2022) QuantISH: RNA in situ hybridization image analysis framework for quantifying cell
type-specific target RNA expression and variability. Lab. Invest. 102, 753–761, https://doi.org/10.1038/s41374-022-00743-5

49 Moncada, R., Barkley, D., Wagner, F. et al. (2020) Integrating microarray-based spatial transcriptomics and single-cell RNA-seq reveals tissue
architecture in pancreatic ductal adenocarcinomas. Nat. Biotechnol. 38, 333–342, https://doi.org/10.1038/s41587-019-0392-8
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