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Eukaryotic cells have evolved membrane-bound organelles, including the endoplasmic
reticulum (ER), Golgi, mitochondria, peroxisomes, chloroplasts (in plants and green algae)
and lysosomes/vacuoles, for specialized functions. Organelle quality control and their proper
interactions are crucial both for normal cell homeostasis and function and for environmen-
tal adaption. Dynamic turnover of organelles is tightly controlled, with autophagy playing
an essential role. Autophagy is a programmed process for efficient clearing of unwanted
or damaged macromolecules or organelles, transporting them to vacuoles for degradation
and recycling and thereby enhancing plant environmental plasticity. The specific autophagic
engulfment of organelles requires activation of a selective autophagy pathway, recognition
of the organelle by a receptor, and selective incorporation of the organelle into autophago-
somes. While some of the autophagy machinery and mechanisms for autophagic removal
of organelles is conserved across eukaryotes, plants have also developed unique mech-
anisms and machinery for these pathways. In this review, we discuss recent progress in
understanding autophagy regulation in plants, with a focus on autophagic degradation of
membrane-bound organelles. We also raise some important outstanding questions to be
addressed in the future.

Introduction
Autophagy is a fundamental process that is unique to eukaryotes, during which cellular cargoes are tar-
geted for degradation or recycling via the vacuole (yeast and plants) or lysosome (animals) [1,2]. Two types
of autophagy are conserved across most eukaryotic species, macroautophagy and microautophagy [3].
During macroautophagy, endoplasmic reticulum (ER)-derived double membrane-bound vesicles called
autophagosomes engulf targeted substrates (e.g. dysfunctional proteins or damaged organelles) and de-
liver them to vacuoles or lysosomes via membrane fusion; while in microautophagy, vacuoles or lysosomes
can take up cytosolic substrates directly (Figure 1) [4]. A third type of autophagy has also been described
in plants, termed mega-autophagy, during which the vacuole lyses, releasing vacuolar hydrolases into the
cytoplasm, resulting in degradation of cellular components and cell death [5]. Activation and progression
of autophagy involves many core AuTophaGy (ATG) components and receptors, with multiple distinct
steps identified, and has been extensively reviewed [1,2].

Cellular homeostasis requires tight regulation and coordination of various organelles [6]. When home-
ostasis is disrupted, damaged macromolecules or organelles can be efficiently removed via autophagy
[7]. Here, unless otherwise specified, autophagy refers to macroautophagy, as in plants degradation of
membrane-bound organelles, the focus of this review, generally occurs via macroautophagy. Selective au-
tophagy of organelles in plants includes ER-phagy, mitophagy, pexophagy and chlorophagy, and requires
specific recognition between receptors and their cargo [8]. ATG8 (called LC3 in mammals) is a critical fac-
tor that is recruited to and tethered on the membrane of autophagosomes via covalent conjugation to the
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Figure 1. A simplified working model for plant autophagy

After the induction of macroautophagy, double membrane structures called phagophores are initiated from the ER with the as-

sistance of ATG9-associated vesicles. The phagophores engulf damaged or excess organelles (e.g. chloroplasts, peroxisomes,

mitochondria, ER) or protein aggregates, and transport them to the vacuole for degradation. Alternatively, cytoplasmic cargos may

be transported to the vacuole through microautophagy for degradation and recycling.

Table 1 Receptors for autophagic degradation of membrane-bound organelles

Autophagy type Receptors Stimuli References

ER-Phagy ATI1 Carbon starvation, viral infection [36,38]

ATI2 Carbon starvation, viral infection [36,38]

RTN1 ER stress [30]

RTN2 ER stress [30]

Sec62 ER stress [26]

C53 Stalled ribosomes, ER stress [34]

RHD3 ER stress [24]

Mitophagy FMT Uncoupler DNP [53]

TraB1 Uncoupler DNP [54]

Pexophagy NBR1 Cadmium stress [66,68]

PEX10 na [69,70]

ABCD1/PXA1 ROS [64]

ARP2/3 NAA and 3-MA [74]

Chlorophagy ATI1 Carbon starvation, heat stress [97,98]

na, not applicable.

membrane lipid phosphatidylethanolamine. Binding of cargo receptors to ATG8 then recruits the receptor and cargo
into the autophagosome for transport and degradation. Multiple ATG8 isoforms (9 copies in Arabidopsis) are present
in plants, potentially allowing distinct regulatory mechanisms for autophagy during growth and stress responses
[9]. ATG8 proteins interact with receptor proteins through specific motifs, and an ATG8-interacting motif (AIM) is
present in most ATG8-interacting proteins involved in organellar autophagy [10,11] (Table 1).
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ER-phagy
ER-phagy and ER stress
The ER is a dynamic and continuous membrane system in eukaryotic cells. It is a highly expanded structure, with
multiple morphologies, including the nuclear envelope, rough ER (RER) sheets with ribosomes, and smooth ER (SER)
tubules connected by three-way junctions [12]. These different structures facilitate distinct ER functions, including
RER-mediated protein synthesis, folding and vesicle transport, SER-mediated lipid production, and communication
with other organelles. Meanwhile, the ER is continuously undergoing highly dynamic morphological remodeling
in response to different environmental stimuli, allowing stress adaptation and recovery [13]. When the process-
ing and protein folding capacity of the ER is overloaded, it will cause unfolded protein accumulation, a situation
termed ER stress [14]. Organisms have evolved strategies to deal with ER stress, including ER-associated degradation
(ERAD), the unfolded protein response (UPR), and ER-phagy, an important pathway that degrades ER fragments or
ER-associated components. ER-phagy is a selective process that involves the autophagic machinery and correspond-
ing receptors to accomplish the vacuolar degradation of ER [15].

In plants, ER stress-mediated ER-phagy is triggered by the accumulation of misfolded proteins in the ER [16]. ER
fragments were observed in autophagic bodies upon treatment with the ER stress agent tunicamycin (Tm), and the ER
stress sensor IRE1b (inositol-requiring enzyme 1b) is required for this process [17]. IRE1b has two major activities,
non-conventional splicing of the mRNA of the transcription factor bZIP60 (basic region/leucine zipper motif 60)
that in turn activates ER stress-response gene transcription, and regulated IRE1-dependent mRNA decay (RIDD),
a general mRNA degradation pathway that reduces production of ER proteins and therefore relieves ER stress. The
ribonuclease activity of IRE1b was found to be critical for IRE1b-mediated autophagy during ER stress [18,19], and
this was due to RIDD activity rather than bZIP60 splicing, demonstrating RIDD-dependent and bZIP60-independent
regulation of ER-phagy [19].

Other regulators of autophagy during ER stress have been identified. SnRK1 (SNF1-related protein kinase 1) is a
protein kinase that senses the energy status of the cell [20] and is required for activation of autophagy under many
stress conditions, including ER stress [21]. How energy status and ER stress are linked, how autophagy activation is
triggered by SnRK1, and how IRE1b and SnRK1 activities are coordinated is unknown. Sulfide has also been shown
to negatively regulate ER-phagy, via persulfidation of the autophagy core factor ATG18a [22]. While ATG18a is re-
quired for bulk autophagy under various stress conditions, its regulation by persulfidation seems to be restricted to
ER stress conditions. Persulfidation increases binding of ATG18a to phosphatidylinositol 3-phosphate, which then
controls the number and size of autophagosomes produced upon ER stress. Other Arabidopsis ER-associated proteins
are potentially involved in ER-phagy, such as NAP1 (Nck-associated protein 1). NAP1 was found to be involved in
autophagosome biogenesis by affecting actin nucleation [23]; a potential role for NAP1 in ER-phagy regulation is an
interesting topic for future investigation.

ER-phagy receptors during ER stress
ER-phagy relies on specific receptor–adaptor interactions to facilitate engulfment of ER fragments by autophago-
somes or direct delivery to the vacuole. To date, many ER-phagy receptors were identified and characterized in eu-
karyotes, including FAM134, Sec62, RTN3, CCPG1, ATL3, TEX264, CALCOCO1 and C53 in mammals [13]; Atg39,
Atg40, and Epr1 in yeast [13]; and ATI1, ATI2, ATI3, RTN1, RTN2, AtSEC62, C53 and RHD3 in plants [13,24]. Dif-
ferent receptors can perceive distinct signals to control the degradation of ER fragments (Figure 2), indicating their
functional diversification in ER-phagy.

SEC62 is a component of the translocon complex, and was initially identified in mammals as an ER-phagy recep-
tor during stress recovery [25]. Arabidopsis AtSEC62 has translocon domains but only shares 12% and 15% protein
sequence similarity with its counterparts in yeast and animals, respectively, and has a unique membrane topology,
suggesting potential functional differences. AtSEC62 is ER membrane-associated and interacts with ATG8 through its
AIM motif during ER stress triggered by Tm or dithiothreitol (DTT) [26], Interestingly, ring-like structures marked
by YFP-AtSEC62 and the autophagosome marker mCherry-ATG8e were observed upon ER stress induction. atsec62
null alleles were sensitive to Tm, whereas overexpression of AtSEC62 enhances stress tolerance [26], raising the hy-
pothesis that AtSEC62 can act as a receptor in ER stress-regulated autophagy.

Reticulons (RTNs) are ER-localized transmembrane proteins with a highly conserved reticulon homology do-
main [27]. In mammals, two reticulon domain-containing proteins, FAM134B and RTN3 were characterized as
ER-phagy receptors in mediating ER turnover [28,29]. In plants, maize RTN1 and RTN2 proteins were reported to be
ER-phagy receptors, containing four AIM motifs, and the interactions between RTN and ATG8 were enhanced upon
ER stress treatment [30]. In endosperm cells of maize rtn2 mutants, autophagy induction and up-regulation of ER

© 2023 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).

3

D
ow

nloaded from
 http://port.silverchair.com

/bioscirep/article-pdf/43/1/BSR
20221204/941975/bsr-2022-1204c.pdf by guest on 24 April 2024



Bioscience Reports (2023) 43 BSR20221204
https://doi.org/10.1042/BSR20221204

ER-phagy

Vacuole

ER stress/
stalled ribosomes Carbon starvation ER stress

C53
ATI AtSEC62

ER stress
RTN1, RTN2

ER stress
RHD3

DDRGK1ATG8 Receptor UFL1 UFM1

Figure 2. A working model for ER-phagy in plants

Multiple routes govern the degradation of ER fragments or its associated components during ER-phagy. As a response to certain

stressful stimuli (e.g. carbon starvation or ER stress), specific ER-phagy receptors including C53, ATI, Sec62, RTN, and RHD3, are

employed for selective degradation of ER-associated targets.

stress-responsive chaperones were detected, suggesting that ER homeostasis was disrupted, and therefore indicating
a crucial role of maize RTN1- and RTN2-controlled ER-phagy in ER homeostasis and stress [30].

Arabidopsis ROOT HAIR DEFECTIVE (RHD) 3 is an atlastin GTPase previously reported to be involved in root
development [31], and more recently identified as an ER-phagy receptor [24]. The orthologs of RHD3 in mammals,
atlastin 2 (ATL2) and 3 (ATL3), were reported to play an important role in ER-phagy [32,33]. ATL2 is required for
FAM134B-mediated ER-phagy [32] and ATL3 functions as a receptor for ER-phagy, interacting with the ATG8-related
protein GABARAP to promote tubular ER degradation upon starvation [33]. Two distinct AIM sites were identified
on RHD3, but interestingly, only AIM2 is involved in the interaction with ATG8, and ER stress treatments enhance
the interaction between RHD3 and ATG8. Sun et al. [24] further showed that an rhd3 mutant is sensitive to ER stress
and deficient in ER-phagy.

C53 is a unique ER-phagy receptor conserved in both plants and animals. First, it is a cytosolic protein, unlike most
other ER-phagy receptors, which are ER membrane-localized. Second, it interacts with ATG8 via a shuffled ATG8
interacting motif (sAIM), rather than a conventional AIM site. Third, it forms a tripartite receptor complex with the
ER-associated ufmylation ligase UFL1 and its membrane adaptor DDRGK1 to sense the proteotoxic level in the ER
lumen; the complex is activated by stalled ribosomes at the ER surface [34]. This discovery suggests that ER-phagy
receptors can have diverse cellular localizations, that the motif for interacting with ATG8 is not necessarily conserved,
and that helper proteins can be recruited to form complexes to mediate ER-phagy.

ER-phagy receptors during other types of stress
Beyond ER stress [35], dark-induced starvation [36], phosphate starvation [37] and viral infection [38] were also
reported to induce ER-phagy in plants. In many cases, the specific receptor that recognizes the ER is unknown.
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ATI1 (ATG8-interacting 1) and ATI2 are plant-specific ATG8-binding transmembrane proteins that were found
to be involved in ER-phagy [36,38]. ATI proteins contain two putative AIM sites [39], located in the long intrinsically
disordered regions (IDRs) at the N-terminus [40]. During dark-induced carbon starvation, ER-localized ATI proteins
associate with ER-derived bodies and sequester these bodies for autophagic degradation in the vacuole. In addition,
ATI proteins can interact with MSBP1 (membrane steroid-binding protein 1) and facilitate its degradation through
ER-phagy during carbon starvation [36]. The ATI proteins also interact with AGO1 (argonaute 1) protein on the ER,
leading to its vacuolar degradation, playing a critical role in plant–virus interactions [41]. ATI3 is a dicot-specific
protein that was initially isolated as an ATG8-interacting protein from a yeast-two-hybrid screen [42,43]. ATI3 in-
teracts with ER-localized UBAC2 (Ubiquitin-associated protein 2) protein, leading to its vacuolar degradation in an
autophagy-dependent manner.

Mitophagy
Mitochondria are double membrane-bound organelles within eukaryotic cells that serve as the powerhouse by gen-
erating adenosine triphosphate (ATP). Many additional biochemical activities are carried out in mitochondria, in-
cluding de novo fatty acid synthesis, amino acid biosynthesis, and iron–sulfur biosynthesis [44]. Mitochondria are
also major sources of reactive oxygen species (ROS) that can result in oxidative damage, and this ROS production
increases when mitochondria are damaged. Therefore, maintaining a healthy mitochondrial population is important
for plant cells, ensuring energy supply and multiple biochemical activities, and preventing excess ROS production
[45]. To maintain cell homeostasis, autophagic clearance of damaged or superfluous mitochondria (mitophagy) is
critical.

Based on the mechanism of recognition of mitochondria for degradation, mitophagy can be classified into three
types: (1) ubiquitin-dependent, (2) receptor-dependent and (3) lipid-dependent [45]. Mitophagy is best described
in mammals, where ubiquitylation (e.g. via the E3 ubiquitin ligase PARKIN and PTEN-induced kinase 1, PINK1),
receptors [such as FUN14 domain-containing protein 1 (FUNDC1), BCL2 Interacting Protein 1 (BNIP1) and NIX]
and lipids (cardiolipin and ceramide) can be the selective signals to mark damaged mitochondria and recruit LC3 to
allow autophagic degradation [45]. In yeast, the mitophagy receptor ATG32 is activated by casein kinase 2 via phos-
phorylation, binds ATG11 and then interacts with ATG8 [46,47]. Compared with the studies in yeast and animals,
mechanisms of selective mitophagy in plants are still largely unknown (Figure 3). In addition, very few of the major
participants of mitophagy in animals and yeast mentioned above have clear orthologs in plants.

Regulation of mitophagy in plants
A variety of environmental stimuli, including senescence, carbon or nitrogen starvation, or UV-B stress, can trigger
mitophagy in plants. For instance, the number of mitochondria and amount of mitochondrial protein decreased sig-
nificantly in senescent leaves of wild-type (WT) Arabidopsis plants but were stabilized in the autophagy deficient mu-
tants atg7 and atg11. When leaves were pretreated with the vacuolar H+-ATPase inhibitor concanamycin A (ConcA),
mitophagic bodies marked by Mito-YFP and mCherry-ATG8a became visible in individually darkened leaves of WT
Arabidopsis plants, but were absent from the leaves of atg7 or atg11 mutants [48]. ATG11 is an autophagy adaptor
that can interact with ATG8 through its AIM motif and, together with ATG7, participate in senescence-induced mi-
tophagy in Arabidopsis [48]. In another study, autophagic bodies containing mitochondria were found in roots under
nitrogen starvation upon ConcA treatment, but were not seen in the autophagy deficient mutant atg4a atg4b [49]. A
high dosage UV-B stress can cause mitochondria to be inactivated and fragmented, and mitophagy was reported to
play an important role in autophagic clearance of damaged mitochondria through vacuolar degradation [50,51].

Mitophagy can also be triggered by a range of mitochondrial inhibitors, such as doxycycline (Dox, inhibits trans-
lation on mitochondrial ribosomes), MitoBlockCK-6 (MB, inhibits mitochondrial protein import), and carbonyl
cyanide-p-trifluoromethoxyphenylhydrazone (FCCP) and 2,4-dinitrophenol (DNP), uncouplers which depolarize
mitochondria [52,53]. Of note, adding those inhibitors to the growth medium leads to a more pronounced mitophagy
flux than spraying on plants. In addition, as an uncoupler, FCCP was more potent than DNP, depolarizing almost all
mitochondria at a lower concentration, making it very challenging to monitor mitophagy dynamics. For this reason,
DNP is the more widely used uncoupler because its slower action facilitates the observation of mitophagy flux via cell
biological and biochemical assays [53,54].

Kacprzak et al. [52] established a new system to monitor mitophagy levels in plants by generating a stable Ara-
bidopsis transgenic line expressing GFP fused with the mitochondrial matrix-localized isocitrate dehydrogenase 1
(IDH1) or mitochondrial outer membrane localized Translocase of Outer Membrane 20 (TOM20). With these new re-
porter lines, they found that dark-induced carbon starvation, natural senescence, and specific mitochondrial stresses
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Figure 3. A working model for mitophagy in plants

Selective degradation of mitochondria can be carried out through two main routes in plants. Targeted mitochondria can be first

tethered to the ER via interaction between TraB1 and VAP27-1 and then recognized by the autophagy adaptor ATG8; or they can

be directly recognized by ATG8 via the specific receptor Friendly (FMT), or via unknown receptors and ATG11.

(long-term exposure to uncoupling agents or inhibitors of mitochondrial protein import/translation) are key trig-
gers of mitophagy in plants, while nitrogen starvation, hydrogen peroxide, heat, UV-B and hypoxia did not appear to
trigger substantial mitophagy [52]. These findings provide new tools to detect mitophagy in plants and demonstrate
effective inducing conditions or treatments.

Recognition of mitochondria for degradation
Ma et al. [53] recently reported that Friendly (FMT), a member of the clustered mitochondria protein family, translo-
cates to damaged mitochondria to mediate uncoupler-induced mitophagy. Upon treatment with the uncoupler DNP,
fmt mutants have more depolarized mitochondria and fewer mitophagosomes, indicating that FMT is critical for mi-
tophagy [53]. Defects were also observed in mitophagy during cotyledon greening, identifying a physiological role for
FMT in development. However, how Friendly promotes autophagosome formation with its potential binding partners
require additional research.

When mitophagy is activated in response to environmental or physiological cues, for example during pollen
tube growth [55], the mechanism for distinguishing damaged mitochondria from the functional population is cru-
cial for selective autophagic degradation. TraB1, an uncharacterized mitochondrial outer-membrane protein, was
identified as a novel ATG8-interacting component in mitophagy. Interestingly, the ER-localized protein VAP27-1
(vesicle-associated protein 27-1), can directly interact with TraB1 and regulate its ER-mitochondrial tethering and
turnover through mitophagy [54], indicating that distinct mechanisms exist for control of mitophagy in plants.
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Imbalance of ROS homeostasis (cadmium or other stress treatments) or a genetic defect (LON2 mutation) in peroxisomes causes

pexophagy-mediated vacuolar degradation via various specific receptors including NBR1, PXA1, PEX10 or DSK2.

Pexophagy
Peroxisomes are small, single membrane organelles with diameters of approximately 0.1–1 μm. Despite their simple
structure and small size, peroxisomes contain over 200 proteins, involved in diverse metabolic functions [56]. In seeds,
glyoxysomes, a specialized form of peroxisomes, function in β-oxidation and the glyoxylate cycle, converting lipids
into sucrose to support post-germination growth of seedlings. In leaves, peroxisomes are involved in photorespiration,
ROS catabolism, and production of hormones, including auxin, jasmonic acid and salicylic acid, which are essential
phytohormones for plant growth and stress responses. Autophagic degradation of peroxisomes, termed pexophagy
(Figure 4), is required for the conversion of the population of peroxisomes from seed glyoxysomes to leaf peroxisomes,
and for their quality control to remove damaged peroxisomes [57].

Pexophagy in development and stress responses
Glyoxysomes are directly transformed into leaf peroxisomes during the greening of etiolated cotyledons for seedling
peroxisome remodeling [58], along with the degradation of obsolete glyoxysomal proteins such as isocitrate lyase
(ICL) and malate synthase (MLS), two marker enzymes of the glyoxylate cycle [59]. In the autophagy-deficient mu-
tants atg5 and atg7, more peroxisomes and endogenous glyoxysomal proteins (such as ICL and MLS) accumulate
in the hypocotyls of developing seedlings. Furthermore, when the seedlings were treated with ConcA, peroxisomes
were found in the vacuole of WT hypocotyls but not in that of the atg7 mutant, indicating that pexophagy partici-
pates in the degradation of glyoxysomal proteins [60]. During this functional transition of peroxisomes, unnecessary
proteins are degraded by both LON2 (LON protease 2)- and autophagy-dependent pathways. LON2 belongs to the
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AAA+ (ATPases associated with various cellular activities) superfamily, and can act as both an ATP-dependent pro-
tease and a chaperone. lon2 mutants have defects in peroxisomal number and metabolism and in protein import, and
these defects are suppressed by atg mutants, indicating that pexophagy and LON2 cooperate in peroxisome quality
control [61,62].

Under normal growth conditions, plants maintain a basal level of pexophagy, as autophagy-deficient mutants have
increased numbers of peroxisomes compared to WT plants [57,60]. Treatment of tobacco BY2 cells with the au-
tophagy inhibitor 3-methyladenine (3-MA) led to accumulation of peroxisomes and peroxisomal proteins [63]. Pex-
ophagy is also involved in plant responses to various stressful conditions. In BY2 cells, the number of peroxisomes
dropped substantially during sucrose starvation, and 3-MA delayed peroxisome degradation, indicating that carbon
starvation effectively triggers autophagic degradation of peroxisomes [63]. Under high glucose treatment (3%), the
autophagy-deficient mutants atg5 and atg7 accumulate more peroxisomes in root cells than do WT plants, indicating
that high glucose-promoted peroxisome degradation in roots requires a functional autophagy pathway [64].

Peroxisomes generate ROS, which need to be removed by antioxidant enzymes such as catalase. When ROS ac-
cumulation in peroxisomes causes oxidative damage of peroxisomal proteins or other peroxisomal components, the
resulting dysfunctional peroxisomes need to be removed. Although the signals that trigger plant pexophagy have not
yet been well characterized, oxidative changes seem to be a key factor. Using unusual positioning of peroxisomes as
a criterion, Shibata et al [65] identified several peroxisome unusual positioning (peup) Arabidopsis mutants, which
were found to be mutated in ATG2, ATG18a and ATG7 genes. In peup/atg mutants, oxidized peroxisomes accu-
mulated in large aggregates and contained inactive catalase; these aggregates were also found in a catalase mutant.
Damaged and aggregated peroxisomes are therefore degraded by autophagy as a quality control mechanism [65].
Even under normal growth conditions, peroxisomes in leaf cells of autophagy mutants contained increased levels of
catalase in an insoluble and inactive aggregate form, and these accumulated abnormal peroxisomes were selectively
recognized and delivered to vacuoles for degradation upon restoration of autophagy function [57]. Similarly, exposure
of Arabidopsis plants to cadmium induces oxidative stress, and oxidation of peroxisomal proteins such as catalase is
likely a trigger for pexophagy [66].

Identification of pexophagy machinery
The mechanistic understanding of pexophagy has been increasing over the last few years. In yeast, the major players
for recognition of peroxisomes for degradation are Atg36 and Atg30, while mammals use p62/SQSTM1 or NBR1 as
pexophagy receptors [67]. Plants have no clear counterparts of Atg36 or Atg30 but may use the conserved compo-
nent NBR1 as a peroxisome receptor. In cadmium-induced pexophagy in Arabidopsis, NBR1 co-localizes with ATG8
and catalase, suggesting that NBR1 may function as a pexophagy receptor [66]. However, Young et al. [68] showed
that NBR1 is not required for pexophagy in the lon2 mutant, and overexpression of NBR1 is not sufficient to trigger
pexophagy, suggesting that an NBR1-independent mechanism for pexophagy also exists in Arabidopsis. Through
bioinformatics approaches, Xie et al. [69] identified nine peroxisomal PEX proteins in Arabidopsis that contain high
fidelity AIMs (hfAIMs), among which AtPEX6 and AtPEX10 interact with ATG8 in vivo as validated by bimolecular
fluorescence complementation (BiFC). Moreover, mutations occurring within or near hfAIMs in PEX6 and PEX10
cause defects in the growth and development of various organisms, indicating that the conserved hfAIMs are im-
portant for their functions [69]. In addition, an independent yeast two-hybrid screen also identified PEX10 as an
ATG8-interacting protein [70], suggesting that PEX10 is a promising candidate for a pexophagy receptor.

ABCD1/PXA1 (ATP-binding cassette D1; Formerly PXA1/peroxisomal ABC transporter 1) is a peroxisomal trans-
membrane protein, and plays multiple roles in plant lipid metabolism and signaling, including the transport of
indole-3-butyric acid (IBA) for subsequent conversion via β-oxidation into the active auxin indole-3-acetic acid
(IAA) [56]. The Walker B motif of ABCD1/PXA1 physically interacts with ATG8e in vitro and in vivo, as veri-
fied by yeast two-hybrid and coimmunoprecipitation assays [64]. In addition, overexpression of ABCD1 partially
rescues the glucose-associated phenotypes of the atg mutants. Therefore, ABCD1/PXA1 is another possible recep-
tor for pexophagy. The ubiquitin-binding protein DSK2 (dominant suppressor of KAR2) was proposed as another
pexophagy receptor/adaptor candidate in plants [71–73]. DSK2 functions in autophagy by interacting with ATG8
through its AIM sites [72]. DSK2 also interacts with the RING (really interesting new gene) finger domain of two
peroxisomal membrane proteins, PEX2 and PEX12 [71]. However, DSK2 is not a peroxisome-associated protein,
and there is no clear evidence that PEX2 or PEX12 recruit DSK2 to peroxisomes. Thus, the role of DSK2 in plant
pexophagy needs to be verified. Finally, ARP2/3 (Actin Related Protein 2/3 complex) is a heteroheptameric protein
that participates in actin reorganization at the plasma membrane (PM) and at PM-ER contact sites. Martinek et al.
[74] recently found that ARP2/3 complex-containing dots associate exclusively with peroxisomes in plant cells, and
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co-localize with the autophagosome marker ATG8f under autophagy-inducing conditions. Moreover, ARP2/3 sub-
units co-immunoprecipitate with ATG8f, and mutants lacking functional ARP2/3 complex have more peroxisomes
than do WT plants. ARP2/3 may therefore function as a receptor or adaptor in pexophagy [74].

Chlorophagy
Chloroplasts are specialized plastids found in plants and algae in which photosynthesis converts light and CO2 into
chemical energy and carbohydrates to support their photoautotrophic lifecycle. Mature chloroplasts contain two en-
velope membranes (outer and inner), a soluble stroma and a thylakoid membrane system. Starch granules are often
present in the stroma as a product of photosynthesis, and chloroplasts also contain numerous proteins and metabolites
[75].

Turnover of chloroplasts must be tightly controlled to maintain photosynthetic function and alleviate cell damage.
Chloroplasts are degraded during leaf senescence to remobilize their contents, and also upon environmental stress,
as removing damaged chloroplasts is critical in maintaining cell viability [76]. Photo-oxidative damage of chloro-
plasts is frequently encountered, caused by photosynthesis-related superoxide (O2−), hydrogen peroxide (H2O2) and
singlet oxygen (1O2) or ROS produced upon exposure to UV-B or high light (HL) [76]. Chloroplasts are highly sen-
sitive to different stresses, including carbon starvation, salt stress and the combination of abnormal light with low
or high temperature. Senescence or stress often causes changes to chloroplast morphology along with the decrease
in photosynthetic efficiency. Chloroplasts in senescing leaves often have more and bigger plastoglobules (lipopro-
tein particles), collapsed thylakoid membranes and disrupted envelope [77]. Upon strong UV-B exposure for a short
period, chloroplasts become smaller but have larger plastoglobules, and the number of chloroplasts decreases signif-
icantly [78]. The structure of the thylakoid system in particular is dynamic in response to different light intensities
[75]. These features indicate that quality control of chloroplasts is essential to maintain normal plant growth and
development.

Pathways for chloroplast turnover
Chloroplast components, or even entire chloroplasts, can be degraded by both plastidic and extraplastidic path-
ways. The extraplastidic degradation of chloroplasts includes autophagy-dependent mechanisms, including entire
chloroplast degradation and piecemeal degradation (Figure 5), and autophagy-independent mechanisms, including
senescence-associated vacuoles (SAVs) and CHLOROPLAST VESICULATION (CV)-containing vesicles [79]. Using
electron microscopy, entire chloroplasts were found in the vacuoles of senescing leaves [80], and accumulation of
chloroplast-associated components (stroma, chlorophyll pigments, and Rubisco-containing bodies (RCBs)) was also
observed in the vacuoles of WT Arabidopsis cells, but not in atg mutants, suggesting that the autophagy machinery
is involved in chloroplast degradation [81]. A distinct pathway was seen upon disrupting microtubules via silencing
tubulin genes or treating with microtubule-depolymerizing agents; autophagosome formation was suppressed, and
plastidic starch degradation was impaired. An autophagy-related pathway for clearing these disorganized chloroplasts
was observed, in which selective transport of chloroplasts into the vacuole occurred, independent of ATG6, ATG5
and ATG7 [82]. The details of this mechanism are still unclear.

Upon extensive photodamage, entire chloroplasts can be surrounded by autophagosomal structures in the cyto-
plasm and transported into the central vacuole, which was directly observed using GFP-ATG8a as a marker to label
autophagosomal membranes [78]. This degradation of chloroplasts under UV-B or high light intensities is dependent
on core ATG proteins (ATG2, ATG5, ATG7), indicating an essential role of chlorophagy in whole chloroplast clear-
ance. Interestingly, in the presence of ConcA to block vacuolar degradation, the GFP-ATG8a fluorescence was more
intense on one side of the autophagosomes, suggesting that additional unknown structures are associated with the se-
questration of the entire chloroplast [78]. Entire chloroplasts can also be degraded by microautophagy. In high visible
light, autophagy-deficient mutants accumulated abnormal swollen chloroplasts [83]. These swollen chloroplasts were
partially encapsulated by GFP-ATG8a-marked membrane and then directly engulfed by the vacuole [83]. Intriguingly,
this kind of chlorophagy can be suppressed by applying exogenous mannitol to increase the osmolarity outside the
chloroplast, or by improving the integrity of the chloroplast envelope via overexpressing VESICLE INDUCING PRO-
TEIN IN PLASTID1 (VIPP1) [83], a protein essential for envelope and thylakoid membrane maintenance [84–86].
The underlying basis for this regulation warrants further investigation.
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Microchlorophagy mediates whole chloroplast degradation upon carbon starvation and senescence. Macrochlorophagy mediates

degradation of whole chloroplasts or chloroplast fragments via several mechanisms, including: Rubisco-containing bodies (RCBs)

that are induced by carbon or nitrogen starvation; ATI-PS bodies that are induced by starvation or salt stress; small starch gran-

ule-like (SSGL) bodies that are induced during dark-induced senescence or starvation.

Role of ubiquitination in chlorophagy
How chloroplasts are recognized for degradation is still unclear. Chloroplast membrane integrity is affected by vari-
ous stresses, during which starch levels and granule structure is also changed, and the structure and shapes of chloro-
plasts are significantly altered, forming excessive stromules or plastoglobules [78,81–83]. How those ultrastructural
changes can be recognized by autophagy for subsequent degradation is in most cases unknown. In yeast cells, se-
lective autophagic degradation of mitochondria involves ubiquitination, but whether a similar mechanism can lead
to chlorophagy in plants is not clear [78,83]. Genetic screening identified an E3 ubiquitin ligase, PLANT U-BOX4
(PUB4), as required for ubiquitination of chloroplasts, thus mediating their selective degradation [87]. However,
several recent studies have in contrast suggested that chlorophagy does not require PUB4-mediated ubiquitination
[88,89], and the relevant component(s) for ubiquitination-mediated chlorophagy is therefore yet to be confirmed.

Rubisco-containing body (RCB)-mediated chlorophagy
Chloroplasts are large and complex organelles, and in addition to degradation of entire chloroplasts, chlorophagy
pathways often function in degradation of parts of chloroplasts via the transfer of bodies containing chloroplast com-
ponents into the vacuole. RCBs were first identified via immunoelectron microscopy in naturally senescing leaves
of wheat (Triticum aestivum L.) labeled with antibodies against the large subunit (LSU) of Rubisco. Small spherical
bodies containing Rubisco were observed with double membranes [90], and were named RCBs. RCBs contain pro-
teins derived from the chloroplast envelope and stroma, but not from the thylakoid [90]. They usually accumulate
in senescent leaves [90–92] or plants under carbon starvation [93] or salt stress [94]. ATG8 co-localized with RCBs
upon formation of autophagosomes, indicating that RCBs are delivered to the vacuole by macroautophagy [91]. RCB
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production is very sensitive to sugar levels [93], and starch content and C/N balance probably affects RCB produc-
tion in vivo. A recent study [95] showed that RCB-mediated chlorophagy is involved in tolerance of Pi starvation,
and autophagy-deficient mutants which are unable to form RCBs are extremely sensitive to Pi starvation.

CHARGED MULTIVESICULAR BODY PROTEIN1 (CHMP1A and B), a component of Endosomal Sorting Com-
plex Required for Transport (ESCRT)-III [96], plays an important role in phagophore maturation and efficient de-
livery of RCBs to the vacuole during chlorophagy. In a chmp1 mutant, abundant abnormal phagophores, RCB-like
bodies and stromal proteins over accumulate [96]. The chloroplasts in chmp1 contained large starch granules, long
extended stromules and interconnecting bridges, which were also found in atg5 and atg7 mutants [96]. chmp1 mu-
tants also over-accumulate peroxisomal and mitochondrial proteins, suggesting that ESCRT mediates autophagic
routes for multiple organelles in plants.

ATI1-plastid associated body (ATI1-PS)-mediated chlorophagy
ATI1 functions in ER-phagy via interaction with the ER, as described above, but also localizes to distinct
plastid-associated autophagic structures, termed ATI1-plastid associated bodies (ATI1-PS), of ∼50 to 100 nm diam-
eter [97], containing chloroplast stroma, envelope, and thylakoid membranes. Similar to its role in ER-phagy, ATI1
interacts with ATG8 [38,98] and the core autophagy machinery to mediate partial chloroplast degradation in the
vacuole. Under carbon starvation, two distinct bodies, ATI1-ER bodies and ATI1-PS bodies are thus formed, both of
which end up in the central vacuole, playing a crucial role in selective turnover of ER and chloroplast proteins, re-
spectively. ATI1-PS bodies also form during heat stress, and plants with reduced ATI1 expression are hypersensitive
to salt stress, indicating a role for ATI1 in salt tolerance [97].

Small starch granule-like structure (SSGL)-mediated chlorophagy
Finally, an autophagy-related pathway for degradation of plastid starch has been demonstrated. In leaves, plastid tran-
sitory starch is the main photosynthetic carbon reservoir, reaching high levels at the end of the day and hydrolyzed into
sugars to support plant growth at night [99]. Mutants with abnormal chlorophagy typically also have altered starch
levels [93,96,100]. Besides the well-documented plastidic degradation pathway [99], extraplastidic starch degradation
can also occur through formation of small starch granule-like structures (SSGLs) in the cytoplasm [100]. SSGLs were
found outside of the chloroplast, and localized to CFP-ATG8f-labeled autophagosomes in the cytoplasm and the cen-
tral vacuole [100]. Moreover, autophagy-deficient mutants have excess starch and a reduction in vacuole-localized
SSGLs, indicating that autophagic turnover is an independent and parallel route for degradation of leaf starch [100].

Future perspectives
It is now becoming clear that plant cell organelles can be selectively degraded by autophagy and autophagy-related
processes. These pathways typically require recognition of the organelle, or components of the organelle, to allow
selective packaging into autophagosomes for delivery to the vacuole for degradation. Organelle degradation must be
tightly regulated to allow disposal of damaged and unneeded organelles, while restraining the pathway from complete
organelle degradation, which would lead to cell death. Many unanswered questions remain that will be interesting
topics for future research. Why does such a diversity of receptors exist for recognition of some organelles such as
the ER? Is this linked to different types of cargo or different stress conditions? Are there as yet unidentified selec-
tive autophagy receptors that recognize organelles? Does nucleophagy occur in plants, and if so, what receptor and
mechanism is involved? How is the extent of organelle degradation controlled to prevent death of the cell? Answering
these questions will provide further insight into the mechanisms of organelle quality control during normal growth
and development, and in response to environmental stresses.
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