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Embolic stroke (ES) is characterized by high morbidity and mortality. Its mortality predictors
remain unclear. The present study aimed to use machine learning (ML) to identify the key
predictors of mortality for ES patients in the intensive care unit (ICU). Data were extracted
from two large ICU databases: Medical Information Mart for Intensive Care (MIMIC)-IV for
training and internal validation, and eICU Collaborative Research Database (eICU-CRD) for
external validation. We developed predictive models of ES mortality based on 15 ML al-
gorithms. We relied on the synthetic minority oversampling technique (SMOTE) to address
class imbalance. Our main performance metric was area under the receiver operating char-
acteristic (AUROC). We adopted recursive feature elimination (RFE) for feature selection. We
assessed model performance using three disease-severity scoring systems as benchmarks.
Of the 1566 and 207 ES patients enrolled in the two databases, there were 173 (15.70%), 73
(15.57%), and 36 (17.39%) hospital mortality in the training, internal validation, and external
validation cohort, respectively. The random forest (RF) model had the largest AUROC (0.806)
in the internal validation phase and was chosen as the best model. The AUROC of the RF
compact (RF-COM) model containing the top six features identified by RFE was 0.795. In the
external validation phase, the AUROC of the RF model was 0.838, and the RF-COM model
was 0.830, outperforming other models. Our findings suggest that the RF model was the
best model and the top six predictors of ES hospital mortality were Glasgow Coma Scale,
white blood cell, blood urea nitrogen, bicarbonate, age, and mechanical ventilation.

Introduction
According to the systematic analysis for the Global Burden of Disease Study 2019, stroke was the
second-leading cause of death and the third-leading cause of disability and death [1]. Ischemic stroke
(IS) accounts for ∼62.4% of all new-onset strokes [1]. Embolic stroke (ES), also called cerebral embolism,
is the most common subtype of IS and the most rapidly developing type of all strokes [2,3]. Furthermore,
compared with other stroke subtypes, ES has a higher disease severity, a poorer prognosis, and a higher
recurrence rate [4]. Therefore, ES is a huge burden on society due to reduced quality of life, lost produc-
tivity, premature mortality, and intangible costs, particularly for the critically ill patients in the intensive
care unit (ICU) [5,6].

Prediction and prognosis are central to medicine. All diagnostic and therapeutic measures aim at im-
proving prognosis outcomes [7]. Clinicians need to make predictions on the disease prognosis to support
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their decision-making. However, it is challenging for clinicians to accurately assess the disease severity and predict the
outcome in patients with various clinical data based on initial intuition. Consequently, several disease-severity scoring
systems have been developed over the last few decades, such as the Acute Physiology and Chronic Health Evaluation
III (APACHE III) [8], Sequential Organ Failure Assessment (SOFA) score [9], and Oxford Acute Severity of Illness
Score (OASIS) [10]. The scoring systems are intrinsically prediction models. They combine a variety of variables
that represent predictors of disease severity to predict the prognostic outcome. Due to their predictive validity, they
gradually became essential tools for clinical decision-making.

A notable fact is that almost all scoring systems depend on linear models to identify relevant predictors. With
the increase in clinical data on potential predictors of outcome, nonlinearity may exist. Scoring systems may fail to
capture nonlinear relationships and complex interactions among predictors. Moreover, scoring systems artificially
discretize continuous variables, which may cause the loss of predictive information [11]. Additionally, they are gen-
eralistic severity of illness scoring systems that are not targeted to specific diseases; therefore, they have shown mixed
prediction accuracy in different diseases [12], high for some diseases, such as sepsis, but low for most diseases, such
as craniocerebral diseases [13–15].

In recent years, machine learning (ML) applications have grown in popularity across a wide range of domains [16].
ML makes fewer assumptions in prediction modeling than traditional statistical approaches. It is a demonstrably pow-
erful technique because it can handle a high number of features (i.e., predictors), consider all possible permutations,
and learn nonlinear relationships and interactions without requiring a predetermined linear relationship input by the
researcher [17,18]. Feature selection is an important aspect in practical applications of ML. It reduces the dimension-
ality by choosing relevant features and eliminating irrelevant features to improve the prediction performance of the
predictors and provide cost-effective predictors [19].

ML has been successfully used to aid clinical diagnosis and improve the ability to predict patient outcomes [20],
while the feature selection strategies have often been used to identify key prognosis risk factors, genes, and proteins
for diseases [21,22]. However, as far as we know at present, there has been no ML-based study to explore the mortality
predictors for ES patients to date. Therefore, the present study attempts to apply multiple ML algorithms to the data
derived from the ES patient cohorts of two large ICU databases. Through rigorous ML modeling and feature selection
techniques, we hope to build an ML model that has a better prediction performance for critically ill ES patients than
the commonly used scoring systems and identify the key mortality predictors.

Materials and methods
Data sources
This is a retrospective cohort study with the data of ES patients derived from two public ICU databases: Medical
Information Mart for Intensive Care (MIMIC)-IV [23] and eICU Collaborative Research Database (eICU-CRD) [24].
MIMIC-IV is an updated version of the MIMIC-III database and contains comprehensive clinical data of patients
admitted to the ICU at Beth Israel Deaconess Medical Center between 2008 and 2019. eICU-CRD is a multicenter
database with de-identified health data for >200,000 admissions to ICU in the United States between 2014 and 2015.
An author (Wei Liu) of the present study was granted access to the databases (Record ID: 36180968). The present
study is reported according to the guidelines of the Transparent Reporting of a multivariable prediction model for
Individual Prognosis Or Diagnosis (TRIPOD) statement [25]. Informed consent is not required because all the health
information data are anonymous.

Selection of participants
To describe and analyze the two databases, we used PostgreSQL (version 13) and Navicat Premium (version 15). An
author (Wei Liu) extracted the data, which was then double-checked by another author (Wei Ma) of the present study.
The search terms are presented in Supplementary Material Table S1. Patients’ exclusion criteria were as follows: (i)
age <18 years, (ii) not first ICU admission, (iii) inability to obtain Acute Physiology Score III (APSIII), OASIS, SOFA,
and Glasgow Coma Scale (GCS) scores and (iv) missing outcome (death or survival).

Predictors and outcome
Most disease-severity scoring systems, such as APSIII, SOFA, and OASIS, collect data from the first 24 h after admis-
sion. We thus extracted predictors during the patient’s first 24 h in the ICU. We initially included 90 readily available
candidate predictors based on literature reviews [26,27], expert clinical opinion, and clinical availability in practice.
After removing predictors with a missing proportion of >20%, we included a total of 58 predictors in both databases
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(see Supplementary Material Table S2). In our analysis, we used the mean values for some predictors that were mea-
sured multiple times to determine the central tendency of the patients’ condition. The outcome was hospital mortality,
defined as the vital status for survival or death at hospital discharge.

Model building and tuning
ML methods were performed using R software (version 4.1.3). The ‘caret’ package (version 6.0-92) was used for model
building, tuning, and validation [28]. We build 15 ML models to improve the probability of identifying the best ML
model, including linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), partial least squares dis-
criminant analysis (PLSDA), logistic regression (LR), least absolute shrinkage and selection operator (LASSO), naive
Bayes (NB), and support vector machine (SVM) with three types of kernel: a radial basis function kernel (SVM-R),
a linear kernel (SVM-L), a polynomial kernel (SVM-P), k-nearest neighbor (KNN), C5.0 decision tree, repeated in-
cremental pruning to produce error reduction (RIPPER), random forest (RF), extreme gradient boosting machine
(XGBoost), and neural network (NNET). For models with tuning parameters that needed optimization, we adjusted
parameters via random search with tune length of 15 whenever applicable.

Data preprocessing
As most ML models cannot handle missing data [29], we performed a multiple imputation model using multiple
imputation by chained equation (MICE) in the R software [30]. Dummy variables were created for categorical pre-
dictors. Some models benefit from the predictors that are on a common scale and with reduced skewness (LDA, QDA,
PLSDA, KNN, LR, LASSO, NB, SVM, and NNET); therefore, data were scaled, centered, and BoxCox transformed
[29]. No data transformation was performed for the tree-based models (C5.0, RF, and XGBoost) and rule-based mod-
els (RIPPER).

Model improvement and evaluation
Data distribution from MIMIC-IV and eICU-CRD is unbalanced: the survival and death groups ratio are about 1:5.
The imbalance may result in a classification bias toward the majority class [31]. Therefore, we used the synthetic
minority oversampling technique (SMOTE) to tackle the imbalance [32]. All models were subjected to three repeti-
tions of 10-fold cross-validation to evaluate their performance. Receiver operating characteristic (ROC) curves were
plotted, and the area under the ROC (AUROC) was used as the performance metric because of the data imbalance
[33]. The best threshold of the AUROC (BTOA), area under the precision-recall curve (AUPRC), accuracy, positive
predictive value (PPV), negative predictive value (NPV), F1-score, and Cohen’s kappa value were also reported. LR
was used to construct models of the scoring systems as benchmarks for evaluating ML models.

Feature selection
Feature selection was performed using recursive feature elimination (RFE) algorithm with the function ‘rfe’ in R
package ‘caret’ (version 6.0-92) for the 14 ML models (LASSO was excluded because of its inherent feature selection
function) [34]. RFE begins by building a model on the entire set of features, and the importance of each feature is
calculated either using the provided ML model (e.g., some algorithms like RF offer importance scores) or by using
a statistical method (e.g., the AUROC). Then, the least important features are removed, the model is re-built, and
importance scores are computed again. This procedure is recursively repeated until the desired number of feature
subsets is eventually reached. However, considering the highly time-consuming calculation of RFE, the feature subset
sizes we ran contained ten items: 2, 3, 4, 5, 6, 10, 20, 35, 45, and 58.

Model interpretation
The feature selection models can be regarded as the global interpretability method and can help understand the pre-
dictors and their overall relationship with the outcome; however, they cannot realize individual predictions. There-
fore, we used the local interpretable model-agnostic explanation (LIME) to explain the impact of key features at the
individual level [35]. LIME explains the classifier using a local linear model to approximate key features. Its output is
an explanation list, indicating the contribution of key features to the outcome in an individual patient.

Statistical analysis
Baseline characteristics were compared between the survival and death groups to determine their baseline compara-
bility. The Kolmogorov–Smirnov test was used to determine normality. Continuous variables were expressed as the
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Figure 1. Flow chart of participants selection

mean [standard deviation (SD)] (normal) or the median [interquartile range (IQR)] (non-normal). Categorical vari-
ables were expressed as the total number (percentages). The Student’s t-test (normal) or rank-sum test for continuous
variables (non-normal) and chi-square test for categorical variables were used. All statistical analyses were performed
in R (version 4.1.3). A two-tailed P-value < 0.05 was considered statistically significant.

Results
Baseline characteristics
Figure 1 showed the flow chart of participants’ selection in the present study. A total of 1566 and 207 ES patients were
enrolled in the MIMIC-IV and eICU-CRD cohorts, respectively. The MIMIC-IV cohort was randomly split into a
training cohort (70%, n=1097) and an internal validation cohort (30%, n=469). The eICU-CRD cohort was used
as an external validation cohort. Demographics and baseline characteristics between the survival and death groups
are summarized in Table 1. In the present study, there were 173 (15.70%), 73(15.57%), and 36 (17.39%) hospital
mortality in the training cohort, internal validation cohort, and external validation cohort, respectively. There were
37 variables with statistically significant differences between the survival and death groups at the MIMIC-IV baseline,
15 variables at the eICU-CRD baseline, only 13 variables in both the databases, including APSIII, SOFA, OASIS, GCS,
heart rate, red cell volume distribution width (RDW), blood urea nitrogen (BUN), creatinine, potassium, endocarditis,
thrombocytopenia, coagulopathy, and mechanical ventilation (MV).

Model development and internal validation
The training cohort was used for model development with a 3 × 10-fold cross-validation. The RF full model (i.e., all of
the predictors) had the largest AUROC, AUPRC, accuracy, precision, and Cohen’s kappa value (see Supplementary
Figure S1). In the internal validation phase, the RF full model still had the largest AUROC (0.806) (see Figure 2
and Table 2). Within the scoring systems, SOFA had the worst performance (AUROC = 0.654) and OASIS had an
acceptable performance (AUROC = 0.731). We preferred to choose RF as the best model. The performance of RF
is primarily dictated by two parameters: ntree (the number of trees) and mtry (the number of variables randomly
sampled at each node). We performed extensive parameter tuning with a random combination of 30 mtry values, and
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Table 1 Baseline characteristics of the MIMIC-IV and eICU-CRD cohorts

Patient
characteristics MIMIC IV cohort (n=1566) eICU-CRD cohort (n=207)

Training set (n=1097) Internal validation set (n=469) External validation set (n=207)
Death, n=173 Survival, n=924 P Death, n=73 Survival, n=396 P Death, n=36 Survival, n=171 P

Demographic characteristics

Age (years) 80.00 71.00 <0.001 77.00 72.00 0.016 69.50 72.00 0.972

[67.00, 86.00] [61.00, 82.00] [67.00, 87.00] [60.00, 83.25] [56.25, 83.00] [59.00, 80.00]

Weight (kg) 74.20 76.10 0.120 75.00 77.25 0.618 75.67 79.65 0.193

[62.30, 88.30] [63.58, 91.05] [63.90, 88.25] [64.97, 90.05] [62.75, 85.12] [69.40, 92.78]

Gender (n, %) 0.424 ∼1

Women 96 (55.5) 479 (51.8) 36 (49.3) 197 (49.7) 20 (55.6) 87 (51.2) 0.769

Man 77 (44.5) 445 (48.2) 37 (50.7) 199 (50.3) 16 (44.4) 83 (48.8)

Ethnicity (%) 0.017 0.060

Caucasian 102 (59.0) 584 (63.2) 40 (54.8) 257 (64.9) 31 (86.1) 139 (81.3) 0.691

African American 10 (5.8) 94 (10.2) 6 (8.2) 43 (10.9) 1 (2.8) 14 (8.2)

Asian 6 (3.5) 20 (2.2) 2 (2.7) 12 (3.0) 0 (0.0) 3 (1.8)

Hispanic/Latino 3 (1.7) 35 (3.8) 2 (2.7) 18 (4.5) 2 (5.6) 6 (3.5)

Others/Unknown 52 (30.1) 191 (20.7) 23 (31.5) 66 (16.7) 2 (5.6) 9 (5.3)

Vital signs

SBP (mmHg) 123.50 130.00 0.001 129.00 130.00 0.560 126.33 131.74 0.267

[109.00, 142.00] [117.00, 144.00] [115.00, 146.00] [118.00, 144.75] [111.49, 141.40] [118.51, 147.52]

DBP (mmHg) 64.00 70.00 <0.001 64.00 68.00 0.004 69.58 69.96 0.868

[56.75, 74.25] [60.00, 78.00] [57.00, 74.00] [61.00, 80.00] (11.24) (12.22)

Heart Rate
(beat/min)

88.50 80.00 <0.001 87.00 80.00 0.003 92.97 81.24 0.002

[74.75, 100.00] [70.00, 91.00] [74.00, 97.00] [70.00, 91.00] [81.31, 102.44] [72.94, 93.00]

Respiratory Rate
(breaths/min)

21.00 19.00 <0.001 19.00 19.00 0.119 19.74 18.18 0.092

[18.00, 23.00] [17.00, 21.00] [18.00, 22.00] [17.00, 21.00] [17.71, 21.71] [16.39, 21.00]

Temperature (◦C) 36.90 36.80 0.338 36.90 36.90 0.175 37.17 36.80 0.010

[36.60, 37.30] [36.70, 37.10] [36.70, 37.40] [36.70, 37.10] [36.79, 37.40] [36.63, 37.14]

SpO2 (%) 97.10 96.90 0.254 97.70 97.00 0.018 97.65 97.25 0.215

[95.65, 98.70] [95.80, 98.10] [96.30, 99.30] [96.00, 98.30] [96.48, 99.18] [95.59, 98.43]

Laboratory tests

WBC(109/L) 12.25 9.90 <0.001 12.25 9.80 <0.001 3.94 4.10 0.227

[9.03, 15.79] [8.00, 12.90] [9.61, 16.85] [7.70, 12.75] (0.64) (0.69)

Continued over
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Table 1 Baseline characteristics of the MIMIC-IV and eICU-CRD cohorts (Continued)

Patient
characteristics MIMIC IV cohort (n=1566) eICU-CRD cohort (n=207)

Training set (n=1097) Internal validation set (n=469) External validation set (n=207)
Death, n=173 Survival, n=924 P Death, n=73 Survival, n=396 P Death, n=36 Survival, n=171 P

RBC(1012/L) 3.66 4.04 <0.001 3.76 3.93 0.035 3.89 4.12 0.205

[3.13, 4.30] [3.47, 4.51] [3.09, 4.27] [3.44, 4.42] [3.45, 4.33] [3.64, 4.60]

MCH (pg) 30.18 30.00 0.402 30.12 30.05 0.726 30.08 30.02 0.713

[28.55, 31.50] [28.60, 31.40] [28.70, 31.45] [28.60, 31.35] [28.81, 31.88] [28.71, 31.50]

MCHC (g/dL) 32.64 33.00 <0.001 32.76 32.97 0.157 32.87 33.07 0.376

[31.51, 33.50] [32.03, 34.00] [31.55, 33.81] [32.10, 33.80] (1.25) (1.20)

RDW (%) 14.72 13.97 <0.001 14.42 14.07 0.046 15.00 14.15 0.023

[13.66, 16.54] [13.20, 15.00] [13.65, 15.68] [13.20, 15.37] [13.95, 16.03] [13.40, 15.43]

Hematocrit (%) 34.50 36.42 0.001 32.73 35.60 0.015 35.72 36.83 0.334

[28.61, 38.51] [31.20, 40.40] [28.02, 38.01] [30.75, 39.60] (5.82) (6.18)

Hemoglobin (g/dL) 11.20 11.95 <0.001 10.59 11.70 0.009 11.78 12.18 0.319

[9.20, 12.74] [10.20, 13.52] [9.07, 12.53] [10.17, 13.25] (2.11) (2.16)

Platelets (109/L) 198.50 207.67 0.389 195.50 201.50 0.234 195.50 203.00 0.055

[147.50, 268.00] [160.00, 260.25] [137.50, 252.50] [162.00, 258.50] [133.58, 237.33] [168.12, 256.00]

Aniongap (mEq/L) 16.00 14.50 <0.001 15.00 14.67 0.040 9.37 9.00 0.947

[13.67, 19.00] [12.62, 16.50] [13.00, 18.00] [13.00, 17.00] [7.00, 11.50] [7.25, 12.00]

Bicarbonate
(mEq/L)

21.80 23.50 <0.001 22.50 23.00 0.011 25.50 25.00 0.876

[19.00, 24.50] [21.33, 25.50] [19.84, 23.88] [21.00, 25.00] [22.15, 27.25] [23.00, 26.63]

BUN (mg/dL) 26.84 18.33 <0.001 22.60 18.00 0.042 25.86 17.00 <0.001

[18.46, 41.00] [13.00, 26.00] [14.16, 33.66] [13.50, 26.50] [20.50, 38.50] [12.00, 23.50]

Creatinine (mg/dL) 1.19 0.95 <0.001 1.10 0.97 0.167 1.16 0.90 0.001

[0.85, 1.75] [0.75, 1.25] [0.78, 1.51] [0.78, 1.35] [0.91, 1.51] [0.70, 1.17]

Glucose (mEq/L) 148.00 119.00 <0.001 138.33 122.75 0.012 145.00 124.43 0.090

[119.00, 194.92] [102.16, 149.83] [116.25, 172.88] [105.38, 155.12] [106.92, 194.90] [106.00, 152.31]

Chloride (mEq/L) 104.00 104.00 0.873 104.60 104.00 0.546 105.10 105.16 0.942

[99.50, 108.00] [101.00, 107.00] [101.00, 107.50] [100.50, 107.00] (5.21) (4.10)

Sodium (mEq/L) 139.50 139.33 0.922 138.67 139.00 0.482 139.20 138.86 0.712

[136.10, 142.00] [137.00, 141.50] [135.88, 141.22] [136.50, 142.00] [136.25, 141.50] [137.00, 141.00]

Potassium (mEq/L) 4.25 4.10 0.002 4.17 4.10 0.378 4.30 3.94 0.001

[3.90, 4.72] [3.80, 4.40] [3.84, 4.48] [3.80, 4.45] [3.72, 4.61] [3.67, 4.15]

Calcium (mg/dL) 8.40 8.70 <0.001 8.43 8.70 0.001 8.41 8.59 0.145

[7.98, 8.95] [8.25, 9.10] [8.05, 8.72] [8.20, 9.05] (0.69) (0.66)

Comorbidities (%)

COPD 0.045 0.929 0.195

No (n, %) 129 (74.6) 753 (81.5) 59 (80.8) 325 (82.1) 32 (88.9) 164 (95.9)

Yes (n, %) 44 (25.4) 171 (18.5) 14 (19.2) 71 (17.9) 4 (11.1) 7 (4.1)

Continued over
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Table 1 Baseline characteristics of the MIMIC-IV and eICU-CRD cohorts (Continued)

Patient
characteristics MIMIC IV cohort (n=1566) eICU-CRD cohort (n=207)

Training set (n=1097) Internal validation set (n=469) External validation set (n=207)
Death, n=173 Survival, n=924 P Death, n=73 Survival, n=396 P Death, n=36 Survival, n=171 P

CHD 0.010 0.444 0.448

No (n, %) 113 (65.3) 694 (75.1) 57 (78.1) 289 (73.0) 30 (83.3) 153 (89.5)

Yes (n, %) 60 (34.7) 230 (24.9) 16 (21.9) 107 (27.0) 6 (16.7) 18 (10.5)

CHF <0.001 0.146 0.673

No (n, %) 100 (57.8) 668 (72.3) 44 (60.3) 276 (69.7) 28 (77.8) 141 (82.5)

Yes (n, %) 73 (42.2) 256 (27.7) 29 (39.7) 120 (30.3) 8 (22.2) 30 (17.5)

Hypertension 0.653 ∼1 ∼1

No (n, %) 133 (54.1) 637 (48.3) 35 (47.9) 192 (48.5) 20 (55.6) 93 (54.4)

Yes (n, %) 113 (45.9) 683 (51.7) 38 (52.1) 204 (51.5) 16 (44.4) 78 (45.6)

Hyperlipidemia 0.049 0.003 0.809

No (n, %) 98 (56.6) 445 (48.2) 51 (69.9) 198 (50.0) 30 (83.3) 148 (86.5)

Yes (n, %) 75 (43.4) 479 (51.8) 22 (30.1) 198 (50.0) 6 (16.7) 23 (13.5)

AF 0.002 0.433 0.611

No (n, %) 67 (38.7) 482 (52.2) 33 (45.2) 202 (51.0) 19 (52.8) 101 (59.1)

Yes (n, %) 106 (61.3) 442 (47.8) 40 (54.8) 194 (49.0) 17 (47.2) 70 (40.9)

Endocarditis 0.017 0.391 0.029

No (n, %) 151 (87.3) 859 (93.0) 66 (90.4) 372 (93.9) 28 (77.8) 157 (91.8)

Yes (n, %) 22 (12.7) 65 (7.0) 7 (9.6) 24 (6.1) 8 (22.2) 14 (8.2)

Cardiomyopathy 0.408 0.962 ∼1.000

No (n, %) 162 (93.6) 882 (95.5) 70 (95.9) 376 (94.9) 34 (94.4) 164 (95.9)

Yes (n, %) 11 (6.4) 42 (4.5) 3 (4.1) 20 (5.1) 2 (5.6) 7 (4.1)

Valve 0.504 0.111 0.631

No (n, %) 164 (94.8) 860 (93.1) 71 (97.3) 360 (90.9) 33 (91.7) 163 (95.3)

Yes (n, %) 9 (5.2) 64 (6.9) 2 (2.7) 36 (9.1) 3 (8.3) 8 (4.7)

PVD 0.638 0.820 0.401

No (n, %) 150 (86.7) 816 (88.3) 64 (87.7) 340 (85.9) 33 (91.7) 165 (96.5)

Yes (n, %) 23 (13.3) 108 (11.7) 9 (12.3) 56 (14.1) 3 (8.3) 6 (3.5)

Liver 0.001 0.094 ∼1.000

No (n, %) 154 (89.0) 885 (95.8) 63 (86.3) 368 (92.9) 35 (97.2) 169 (98.8)

Yes (n, %) 19 (11.0) 39 (4.2) 10 (13.7) 28 (7.1) 1 (2.8) 2 (1.2)

Renal <0.001 0.939 0.061

No (n, %) 119 (68.8) 755 (81.7) 57 (78.1) 314 (79.3) 29 (80.6) 158 (92.4)

Yes (n, %) 54 (31.2) 169 (18.3) 16 (21.9) 82 (20.7) 7 (19.4) 13 (7.6)

Diabetes 0.007 0.966 0.921

No (n, %) 97 (56.1) 620 (67.1) 50 (68.5) 267 (67.4) 27 (75.0) 124 (72.5)

Yes (n, %) 76 (43.9) 304 (32.9) 23 (31.5) 129 (32.6) 9 (25.0) 47 (27.5)
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Table 1 Baseline characteristics of the MIMIC-IV and eICU-CRD cohorts (Continued)

Patient
characteristics MIMIC IV cohort (n=1566) eICU-CRD cohort (n=207)

Training set (n=1097) Internal validation set (n=469) External validation set (n=207)
Death, n=173 Survival, n=924 P Death, n=73 Survival, n=396 P Death, n=36 Survival, n=171 P

Malignancy 0.004 0.062 0.268

No (n, %) 149 (86.1) 859 (93.0) 63 (86.3) 370 (93.4) 32 (88.9) 163 (95.3)

Yes (n, %) 24 (13.9) 65 (7.0) 10 (13.7) 26 (6.6) 4 (11.1) 8 (4.7)

Anemia 0.009 0.776 0.202

No (n, %) 109 (63.0) 676 (73.2) 50 (68.5) 281 (71.0) 25 (69.4) 138 (80.7)

Yes (n, %) 64 (37.0) 248 (26.8) 23 (31.5) 115 (29.0) 11 (30.6) 33 (19.3)

Thrombocytopenia 0.009 0.002 <0.001

No (n, %) 142 (82.1) 826 (89.4) 56 (76.7) 358 (90.4) 30 (83.3) 168 (98.2)

Yes (n, %) 31 (17.9) 98 (10.6) 17 (23.3) 38 (9.6) 6 (16.7) 3 (1.8)

Coagulopathy <0.001 0.014 0.022

No (n, %) 144 (83.2) 856 (92.6) 59 (80.8) 361 (91.2) 36 (100.0) 144 (84.2)

Yes (n, %) 29 (16.8) 68 (7.4) 14 (19.2) 35 (8.8) 0 (0.0) 27 (15.8)

Delirium 0.535 0.892 ∼1

No (n, %) 164 (94.8) 861 (93.2) 70 (95.9) 375 (94.7) 35 (97.2) 168 (98.2)

Yes (n, %) 9 (5.2) 63 (6.8) 3 (4.1) 21 (5.3) 1 (2.8) 3 (1.8)

Dementia 0.808 0.645 0.794

No (n, %) 162 (93.6) 882 (95.5) 70 (95.9) 371 (93.7) 36 (100.0) 167 (97.7)

Yes (n, %) 11 (6.4) 42 (4.5) 3 (4.1) 25 (6.3) 0 (0.0) 4 (2.3)

Treatments and drugs (%)

Aspirin 0.178 0.867 0.562

No (n, %) 121 (69.9) 594 (64.3) 44 (60.3) 246 (62.1) 28 (77.8) 122 (71.3)

Yes (n, %) 52 (30.1) 330 (35.7) 29 (39.7) 150 (37.9) 8 (22.2) 49 (28.7)

Alteplase 0.749 0.767 0.775

No (n, %) 169 (97.7) 909 (98.4) 72 (98.6) 385 (97.2) 35 (97.2) 170 (99.4)

Yes (n, %) 4 (2.3) 15 (1.6) 1 (1.4) 11 (2.8) 1 (2.8) 1 (0.6)

Warfarin 0.195 0.487 0.289

No (n, %) 170 (98.3) 886 (95.9) 72 (98.6) 381 (96.2) 36 (100.0) 161 (94.2)

Yes (n, %) 3 (1.7) 38 (4.1) 1 (1.4) 15 (3.8) 0 (0.0) 10 (5.8)

Albumin ∼1 0.278 0.133

No (n, %) 162 (93.6) 866 (93.7) 65 (89.0) 370 (93.4) 34 (94.4) 170 (99.4)

Yes (n, %) 11 (6.4) 58 (6.3) 8 (11.0) 26 (6.6) 2 (5.6) 1 (0.6)

Epinephrine 0.965 ∼1 0.001

No (n, %) 168 (97.1) 901 (97.5) 71 (97.3) 383 (96.7) 30 (83.3) 167 (97.7)

Yes (n, %) 5 (2.9) 23 (2.5) 2 (2.7) 13 (3.3) 6 (16.7) 4 (2.3)

Vasopressin <0.001 0.001 0.381

No (n, %) 161 (93.1) 907 (98.2) 65 (89.0) 387 (97.7) 30 (83.3) 154 (90.1)

Yes (n, %) 12 (6.9) 17 (1.8) 8 (11.0) 9 (2.3) 6 (16.7) 17 (9.9)

RRT 0.001 0.643 0.618

No (n, %) 160 (92.5) 905 (97.9) 69 (94.5) 382 (96.5) 34 (94.4) 167 (97.7)

Yes (n, %) 13 (7.5) 19 (2.1) 4 (5.5) 14 (3.5) 2 (5.6) 4 (2.3)

MV <0.001 <0.001 0.004

No (n, %) 80 (46.2) 656 (71.0) 29 (39.7) 274 (69.2) 18 (50.0) 129 (75.4)

Yes (n, %) 93 (53.8) 268 (29.0) 44 (60.3) 122 (30.8) 18 (50.0) 42 (24.6)

Continued over
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Table 1 Baseline characteristics of the MIMIC-IV and eICU-CRD cohorts (Continued)

Patient
characteristics MIMIC IV cohort (n=1566) eICU-CRD cohort (n=207)

Training set (n=1097) Internal validation set (n=469) External validation set (n=207)
Death, n=173 Survival, n=924 P Death, n=73 Survival, n=396 P Death, n=36 Survival, n=171 P

Scores (median [IQR])

APSIII 65.00 39.00 <0.001 62.00 42.50 <0.001 66.50 36.00 <0.001

[48.00, 86.00] [29.00, 54.00] [46.00, 83.00] [31.00, 57.00] [44.00, 91.75] [26.00, 49.00]

OASIS 40.00 31.00 <0.001 40.00 32.00 <0.001 33.00 23.00 <0.001

[34.00, 45.00] [25.00, 37.00] [33.00, 46.00] [26.00, 38.00] [26.00, 40.25] [18.00, 30.00]

SOFA 6.00 3.00 <0.001 6.00 4.00 <0.001 6.00 2.00 <0.001

[4.00, 10.00] [2.00, 6.00] [4.00, 7.00] [2.00, 6.00] [4.00, 8.00] [1.00, 4.00]

GCS 8.00 13.00 <0.001 9.00 12.00 0.001 8.00 13.00 <0.001

[5.00, 13.00] [9.00, 14.00] [6.00, 13.00] [8.00, 14.00] [3.75, 12.00] [10.00, 15.00]

Continuous variables were expressed as the mean (standard deviation) (normal) or the median [interquartile range] (non-normal). Categorical variables were expressed as the total num-
ber(percentages).
Abbreviations: AF, atrial fibrillation; APSIII, Acute Physiology and Chronic Health Evaluation III; BUN, blood urea nitrogen; CHD, coronary heart disease; CHF, congestive heart failure; COPD,
chronic obstructive pulmonary disease; DBP, diastolic blood pressure; eICU-CRD, eICU Collaborative Research Database; GCS, Glasgow Coma Scale; HR, heart rate; MCH, mean corpuscular
hemoglobin; MCHC, mean corpuscular hemoglobin contentration; MIMIC, Medical Information Mart for Intensive Care; MV, mechanical ventilation; OASIS, Oxford Acute Severity of Illness
Score; PVD, peripheral vascular disease; RBC, red blood cell count; RDW, red cell volume distribution width; RR, respiratory rate; RRT, renal replacement therapy; SBP, systolic blood pressure;
SOFA, Sequential Organ Failure Assessment; SpO2, peripheral oxygen saturation; WBC, white blood cell count.
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Table 2 Model performance in the internal and external validation cohorts

Internal validation External validation

AUROC BTOA AUPRC Accuracy PPV NPV F1 Kappa AUROC BTOA AUPRC Accuracy PPV NPV F1 Kappa

Full set Size

RF 58 0.806 0.183 0.402 0.832 0.438 0.876 0.350 0.260 0.838 0.161 0.472 0.849 0.563 0.849 0.275 0.192

C5.0 58 0.765 0.279 0.314 0.821 0.366 0.864 0.263 0.170 0.810 0.246 0.458 0.826 0.500 0.846 0.250 0.179

XGBoost 58 0.756 0.096 0.304 0.817 0.341 0.862 0.246 0.151 0.826 0.112 0.500 0.821 0.474 0.856 0.327 0.235

KNN 58 0.751 0.635 0.310 0.550 0.243 0.960 0.381 0.181 0.775 0.441 0.392 0.744 0.379 0.928 0.481 0.328

LASSO 28 0.749 0.454 0.318 0.706 0.290 0.911 0.395 0.232 0.821 0.268 0.485 0.821 0.487 0.899 0.507 0.398

SVM-P 58 0.749 0.460 0.327 0.721 0.307 0.915 0.413 0.257 0.817 0.199 0.443 0.807 0.447 0.888 0.459 0.342

SVM-R 58 0.742 0.275 0.377 0.800 0.360 0.883 0.365 0.246 0.801 0.123 0.356 0.792 0.267 0.833 0.157 0.061

PLSDA 58 0.741 0.512 0.320 0.706 0.293 0.913 0.400 0.238 0.814 0.389 0.456 0.816 0.475 0.898 0.500 0.388

LDA 58 0.737 0.623 0.319 0.706 0.293 0.913 0.400 0.238 0.817 0.395 0.483 0.811 0.465 0.902 0.506 0.391

SVM-L 58 0.735 0.426 0.323 0.719 0.294 0.905 0.389 0.230 0.808 0.204 0.463 0.840 0.541 0.906 0.548 0.451

LR 58 0.735 0.349 0.323 0.723 0.303 0.910 0.404 0.248 0.801 0.308 0.472 0.816 0.474 0.893 0.486 0.375

OASIS 10 0.731 0.393 0.301 0.653 0.263 0.918 0.380 0.200 0.754 0.202 0.369 0.783 0.395 0.884 0.430 0.297

NNET 58 0.715 0.522 0.293 0.761 0.303 0.884 0.348 0.207 0.731 0.246 0.357 0.802 0.414 0.865 0.369 0.253

NB 58 0.708 0.006 0.273 0.778 0.293 0.871 0.297 0.166 0.765 0.007 0.373 0.826 0.500 0.865 0.379 0.285

APSIII 16 0.702 0.456 0.303 0.702 0.287 0.910 0.391 0.227 0.805 0.328 0.493 0.763 0.373 0.891 0.437 0.293

RIPPER 58 0.693 0.021 0.241 0.725 0.245 0.872 0.295 0.133 0.699 0.021 0.339 0.797 0.417 0.877 0.417 0.294

SOFA 12 0.654 0.399 0.235 0.667 0.236 0.885 0.322 0.139 0.791 0.507 0.459 0.816 0.477 0.908 0.525 0.413

QDA 58 0.636 0.011 0.281 0.823 0.375 0.865 0.266 0.175 0.535 0.010 0.797 0.198 0.250 0.831 0.125 0.042

RFE set Size

RF-COM 6 0.795 0.315 0.352 0.793 0.364 0.892 0.397 0.274 0.830 0.169 0.417 0.816 0.450 0.856 0.321 0.225

RF 35 0.774 0.178 0.312 0.834 0.353 0.852 0.133 0.079 0.832 0.119 0.539 0.850 1.000 0.847 0.244 0.210

SVM-R 45 0.751 0.084 0.283 0.812 0.241 0.850 0.137 0.054 0.764 0.088 0.419 0.831 0.571 0.840 0.186 0.137

LR 45 0.743 0.235 0.321 0.825 0.395 0.869 0.293 0.201 0.757 0.064 0.456 0.831 0.538 0.851 0.286 0.213

SVM-L 35 0.736 0.316 0.337 0.710 0.291 0.908 0.393 0.232 0.811 0.186 0.481 0.845 0.559 0.902 0.543 0.450

PLSDA 45 0.731 0.520 0.310 0.710 0.294 0.911 0.398 0.238 0.817 0.465 0.501 0.816 0.477 0.908 0.525 0.413

QDA 10 0.720 0.023 0.256 0.785 0.281 0.864 0.263 0.137 0.796 0.201 0.449 0.836 0.545 0.870 0.414 0.325

LDA 20 0.718 0.093 0.276 0.819 0.350 0.862 0.248 0.155 0.785 0.107 0.465 0.826 0.500 0.843 0.217 0.153

XGBoost 35 0.709 0.083 0.269 0.817 0.324 0.859 0.218 0.817 0.815 0.088 0.472 0.831 0.533 0.854 0.314 0.236

NB 58 0.708 0.006 0.273 0.778 0.293 0.871 0.297 0.166 0.765 0.007 0.373 0.826 0.500 0.865 0.379 0.285

SVM-P 35 0.704 0.160 0.295 0.815 0.267 0.852 0.156 0.071 0.819 0.128 0.477 0.841 1.000 0.838 0.154 0.131

C5.0 45 0.701 0.097 0.269 0.821 0.333 0.858 0.208 0.122 0.773 0.102 0.473 0.855 0.800 0.858 0.348 0.295

RIPPER 45 0.689 0.127 0.255 0.744 0.280 0.881 0.333 0.182 0.661 0.085 0.266 0.759 0.306 0.854 0.306 0.159

KNN 20 0.637 0.218 0.277 0.838 0.385 0.851 0.116 0.073 0.772 0.211 0.296 0.831 0.600 0.837 0.146 0.109

NNET 10 0.572 0.615 0.190 0.567 0.165 0.851 0.240 0.018 0.687 0.580 0.306 0.289 0.916 0.826 0.413 0.219

Models are ordered according to their area under the receiver operating characteristic curve (AUROC) in the internal validation set. The bold values indicate the largest value in the internal or
external validation.
Abbreviations: APSIII, acute physiology and chronic health evaluation III; AUPRC, area under the precision-recall curve; AUROC, area under the receiver operating characteristic curve; BTOA,
best threshold of AUROC; COM, compact; KNN, k-nearest neighbor; LASSO, least absolute shrinkage and selection operator; LDA, linear discriminant analysis; LR, logistic regression; NB,
naive bayes; NNET, neural network; NPV, negative predictive value; OASIS, oxford acute severity of illness score; PLSDA, partial least squares discriminant analysis; PPV, positive predictive
value; QDA, quadratic discriminant analysis; RF, random forest; RFE, recursive feature elimination; RIPPER, repeated incremental pruning to produce error reduction; SOFA, sequential organ
failure assessment; SVM, support vector machine; SVM-L, SVM with linear kernel; SVM-P, SVM with a polynomial kernel; SVM-R, SVM with radial basis function kernel; XGBoost, extreme
gradient boosting machine.
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Figure 2. Comparison of model performance in the internal validation cohort

manually set ntree to four values (500, 1000, 2000, 3000, and 5000). The configuration with the largest AUROC was
mtry = 23 and ntree = 500.

Feature selection and the subset model
Supplementary Figure S2 showed results for each ML model generated by the RFE process in the training set. Of the
evaluated models, the RF model (labeled as RF-RFE) performed best (AUROC = 0.859), and the screened feature
subset counted 35 features. Figure 3 showed the top 15 key features. Despite some minor inconsistencies, the internal
validation results showed trends that were comparable to those associated with the training results. The RF-RFE
model retained largest AUROC (=0.774) among all RFE models (see Table 2). Generally, an AUROC of 0.9–1.0 is
considered outstanding, 0.8–0.9 is considered good, 0.7–0.8 is considered fair, and 0.6–0.7 is considered poor [36].
Therefore, based on the clinical availability, we selected the minimum feature subset of AUROC > 0.840 to develop
an RF compact model (labeled as RF-COM) with the top six features (GCS, WBC, BUN, bicarbonate, age, and MV).

© 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).
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Figure 3. The top 15 key features identified by recursive feature elimination coupled with random forest

In the internal validation phase, the AUROC of the RF-COM model was 0.795, only second to the RF full model
(AUROC = 0.806) (see Figure 2 and Table 2).

External validation
The external validation results of full models and RFE models are presented in Figure 4 and Table 2. Almost all
models had larger AUROC than the internal validation. The RF full model still performed the best (AUROC =
0.838), followed by the RF-RFE model (AUROC = 0.832) and RF-COM model (AUROC = 0.830). Among the scoring
systems, OASIS performed the worst (AUROC = 0.754), with smaller AUROC than APSIII (AUROC = 0.805) and
SOFA (AUROC = 0.791).

Explanation of the model at the individual level
LIME plots were used to illustrate the impact of key features on individual patients. We presented four cases whose
mortality had been correctly predicted using the RF-COM model in the internal validation cohort (see Figure 5). Case
44 from the ‘true positive’ group was correctly predicted for death, and the other three cases from the ‘true negative’

12 © 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).
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Figure 4. Comparison of model performance in the external validation cohort

group were correctly predicted for survival. Taking case 44 as an example, the death probability was 0.548 owing to
the influence of the support conditions, including the required MV, WBC > 14.4 × 109/L (= 19.24 × 109/L), and age
> 77 years (= 83 years).

Discussion
By developing ML models, the present study identified the mortality predictors for ES patients in ICU. We combined
ML with feature selection methods to determine the best ML model and the key predictors for predicting mortality
of the critically ill patients with ES. Our result showed that the RF model exhibited the best prediction accuracy,
stability, and generalization. RF is a powerful ensemble learning algorithm. It has several advantages, including high
accuracy, robustness to overfitting, estimation of important features, and handling unbalanced and missing data [37].
Compared with hundreds of other ML algorithms applied to many datasets, RF has emerged as the best performer

© 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).
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Figure 5. LIME plots of four representative instances

Results of LIME with RF-COM model applied to one positive (case 44) and three negative instances (case 51, case53, and case

55). The blue indicates a condition that supports death, and the red indicates a condition that does not support death. mv = 1

represents the use of mechanical ventilation, mv = 0 represents no use of mechanical ventilation

overall [38]. RF has also shown a high degree of accuracy in mortality prediction for a plethora of diseases in ICU,
such as acute kidney injury [39], acute respiratory distress syndrome [40], and cerebral hemorrhage [41].

The RF full model comprises 58 features and the RF-RFE model comprises 35 features. Evaluating more than 30
variables at once is time-consuming and may not be feasible in conventional clinical practice. As reported in a previous
study, 37.3 min on average were required to perform a complete APACHE III assessment with several tens of variables
[42]. There is no doubt that this is a heavy clinical workload for a clinician. A model with lesser features could be more
clinically applicable and less expensive from a practical standpoint. Therefore, we constructed an RF-COM model
with the top six features and discovered that the RF-COM model has approximately the same predictive power as the
RF full model.

We then compared the features in the RF-COM model with those in the three scoring systems (see Supplementary
Table S3). There are 16 features in APSIII, 12 in SOFA, and 10 in OASIS. GCS, mean arterial pressure (MAP), and
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urine output (24 h) are common recognition features among the scoring systems. Of the six features of RF-COM
model, three features were included in APSIII (GCS, WBC, and BUN), three features in OASIS (GCS, age, and MV),
and two features in SOFA (GCS and MV). GCS is not only the feature commonly identified by RF-COM model
and scoring systems but also the most important feature identified by RF-COM model. GCS is used as a measure of
consciousness and has the advantages of speed and ease of evaluation. A large number of studies have found that GCS
is a strong predictor of hospital mortality and poor neurological outcome [26,27,43], which might be the reason that
most of the scoring systems use GCS as the neurological assessment tool rather than other neurological scales, such
as the National Institute of Health Stroke Scale (NIHSS).

When we tested the predictive performance of GCS as a univariate predictor, we discovered that GCS has com-
parable performance with the three scoring systems. The AUROC is 0.626 in the internal validation cohort, slightly
lower than SOFA (= 0.654), and the AUROC is 0.757 in the external validation cohort, slightly higher than OASIS (=
0.754). Interestingly, similar findings have been found in some other studies. Bhagwanjee et al. evaluated APACHE
II and GCS for mortality prediction in 105 cases of severe eclampsia and concluded that the prediction performance
were very similar with both methods [14]. Cho et al. used APACHE II, APACHE III, and GCS to predict the mor-
tality of 200 patients with acute craniocerebral injury and found that GCS had almost the same predictive ability as
the other two scoring systems [13]. Raj et al. found that a simple model based on GCS and age was comparable to
APACHE II, SAPS II, and SOFA in predicting 6-month mortality in patients with traumatic brain injury [15].

We then investigated the five other features and found that they had all been reported as the predictors of mortality
for stroke and other diseases. For example, several studies have shown that acute stroke patients requiring MV have
high in-hospital mortality and survival patients remain deeply disabled [44,45]. BUN is usually considered a less
specific marker of renal function. It is independently associated with mortality in many diseases [46,47]. Bicarbonate
has been reported to be associated with mortality from various diseases, which can be attributed to numerous factors
in most cases [48–50]. An increasing number of studies have focused on discovering the association between high
WBC and the poor outcome of IS [47,51]. Inflammation and stress responses caused by IS have been proposed as
plausible explanations for the association [45]. Age was found to be a strong predictor of death after IS [52,53].

Subsequently, we compared the prediction power of the top six features by univariable analysis. Surprisingly, the
AUROC of GCS was not the largest in either internal or external validation phrases (see Supplementary Figure S3).
This result reminds us that (i) the predictive power of a feature is different in univariate and multivariate analyses, (ii)
the predictive power of a feature is limited, and the combination of multiple features using an appropriate algorithm is
better than that of any single feature. In the present study, although the AUROC of GCS is not dissimilar to that of the
three scoring systems, it is significantly lower than the RF-COM model with six features. Therefore, the most critical
step is finding the appropriate algorithm and combination of appropriate feature subsets. According to the ‘no free
lunch’ theorem, no algorithm can always perform better than others [54]. Researchers need to put more effort into
systematically exploring a wide variety of algorithms and testing their performance of different subsets of features.
The present study attempted to realize such an approach. By combining multiple features, the RF model improved
the predictive power of hospital mortality for ES patients significantly better than a single feature and the scoring
systems.

Furthermore, there are several other advantages of the study. First, the MIMIC-IV and eICU-CRD databases are
publicly available, high-quality, and large-scale. To the best of our knowledge, a total of 1763 (1556 + 207) ES samples
is a considerable sample size in the population-based study of ES. Second, this is the first study on the prediction of
ES mortality using ML models. We compared a representative set of 15 ML models and three scoring systems and
optimized their performances using different preprocessing methods for different models, thus allowing a more ob-
jective selection of the best model. Third, the top six features identified by RFE are easily obtained and assessed in
clinical practice. We modeled them and performed rigorous internal and external validation. The good predictive
performance of the RF-COM model confirmed the six features’ reliability as key mortality predictors for ES patients.
Fourth, to provide clinicians with reliable insight into the key predictors, we used LIME to show each feature’s con-
tribution to individual predictions.

At the same time, we must acknowledge that our study has some limitations. First, although the two databases are of
high quality, they still have a substantial amount of missing data. Thus we had to drop many variables, which may lead
to losing some important predictors for predicting ES mortality. Second, the two databases are non-neurospecialty
ICU databases; therefore, some variables that may be useful for assessing the condition of ES patients are not avail-
able, such as NIHSS, infarct volume, and infarct location. Third, internal validation typically outperforms external
validation. However, in this study, the AUROC of external validation exceeded that of internal validation in almost all
ML models. In our view, the main reason may be that the AUROC of top two features (BUN = 0.771, GCS = 0.757)
in the external validation set was significantly larger than the top two features (WBC = 0.660, MV = 0.647)) in the
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internal validation set (P<0.05). And the larger AUROC of the top two features may result from the more significant
statistical differences between the death and survival groups in the external validation set than in the internal vali-
dation set (see Table 1). Fourth, the results were based on a standard ML prediction modeling in the present study.
We did not intensively investigate the detailed mechanism of the six features associated with ES mortality. Future
studies are needed to explore the underlying mechanism. Finally, although AUROC is currently regarded as the best
and most commonly used evaluation metrics for binary classification models, it is only an index of comprehensive
evaluation of sensitivity and specificity, and cannot reflect the degree of clinical harm caused by missed diagnosis
(false negative) or misdiagnosis (false positive). Future clinical confirmatory research may need to select appropriate
cutoff points based on individual characteristics of specific patients, the clinical impact of predicted results, economic
cost and other factors. For example, in order to reduce the waste and disarray of medical resources caused by misdi-
agnosis, a cutoff point associated with higher specificity may represent a more effective choice. In order to mitigate
delayed diagnosis caused by initially missed diagnosis, a cutoff point associated with higher sensitivity may repre-
sent a more appropriate choice. Only in specific patients and under specific conditions can the applicability of the
predictive model be engaged to its full extent.

Conclusion
The RF model outperformed other ML models and scoring systems in terms of accuracy, stability, and generalization.
GCS, WBC, BUN, bicarbonate, age, and MV are the key mortality predictors for critically ill ES patients. The findings
of this study provide clinicians with insights; however, further validation in prospective cohorts is required before they
can be considered clinically acceptable.

Data Availability
Publicly available datasets were analyzed in this study. These data can be found here: https://mimic.mit.edu/iv/; https://eicu-crd.
mit.edu/.

Competing Interests
The authors declare that there are no competing interests associated with the manuscript.

Funding
This work was supported by the National Natural Science Foundation of China, China [grant number 82160263 (to Liyan Li)]; Re-
search Innovation Team of Yunnan Province, China [grant number 2019HC022 (to Liyan Li)]; Ten Thousand Person Plan for Fa-
mous Doctors of Yunnan Province [grant number YNWR-MY-2018-015]; Yunnan Applied Basic Research Projects [grant number
202101AY070001-253 and 2019FE001(-175) (to Jinwei Yang)]; and the Foundation of Yunnan Provincial Education Department
[grant number 2019J1257 (to Chunyan Li)].

CRediT Author Contribution
Wei Liu: Conceptualization, Resources, Formal analysis, Validation, Investigation, Writing—original draft. Wei Ma: Data curation,
Formal analysis, Writing—original draft. Na Bai: Software. Chunyan Li: Software. Kuangpin Liu: Software, Methodology. Jinwei
Yang: Data curation, Funding acquisition. Sijia Zhang: Methodology. Kewei Zhu: Validation. Qiang Zhou: Validation. Hua Liu:
Supervision, Writing—review & editing. Jianhui Guo: Supervision, Project administration, Writing—review & editing. Liyan Li:
Conceptualization, Funding acquisition, Writing—review & editing.

Ethics Approval and Consent to Participate
The study was an analysis of two third-party anonymized publicly available databases with pre-existing institutional review board
(IRB) approval.

Acknowledgements
We would like to thank Dr Yingchuan Zhu (West China Medical School, Sichuan University) for her kindly help with the paper.

Abbreviations
APACHE III, Acute Physiology and Chronic Health Evaluation III; APSIII, Acute Physiology Score III; AUPRC, area under the
precision-recall curve; AUROC, area under the receiver operating characteristic curve; eICU-CRD, eICU Collaborative Research
Database; ES, embolic stroke; GCS, Glasgow Coma Scale; ICU, intensive care units; IQR, interquartile range; IS, ischemic
stroke; KNN, k-nearest neighbor; LASSO, least absolute shrinkage and selection operator; LDA, linear discriminant analysis;

16 © 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons
Attribution License 4.0 (CC BY).

D
ow

nloaded from
 http://port.silverchair.com

/bioscirep/article-pdf/42/9/BSR
20220995/937121/bsr-2022-0995.pdf by guest on 11 April 2024

https://mimic.mit.edu/iv/
https://eicu-crd.mit.edu/


Bioscience Reports (2022) 42 BSR20220995
https://doi.org/10.1042/BSR20220995

LIME, local interpretable model-agnostic explanations; LR, logistic regression; MIMIC, Medical Information Mart for Intensive
Care; ML, machine learning; MV, mechanical ventilation; NB, naive bayes; NIHSS, National Institute of Health Stroke Scale;
NNET, neural network; NPV, negative predictive value; OASIS, Oxford Acute Severity of Illness Score; PLSDA, partial least
squares discriminant analysis; PPV, positive predictive value; QDA, (quadratic discriminant analysis); RF, random forest; RFE,
recursive feature elimination; RIPPER, repeated incremental pruning to produce error reduction; SD, standard deviation; SMOTE,
synthetic minority oversampling technology; SOFA, Sequential Organ Failure Assessment; SVM, support vector machine; TRI-
POD, Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis; XGBoost, extreme gradi-
ent boosting machine.

References
1 (2021) Global, Regional, and National Burden of Stroke and Its Risk Factors, 1990-2019: A Systematic Analysis for the Global Burden of Disease Study

2019. Lancet Neurol. 20, 795–820, https://doi.org/10.1016/S1474-4422(21)00252-0
2 Hart, R.G., Diener, H.C., Coutts, S.B., Easton, J.D., Granger, C.B., O’Donnell, M.J. et al. (2014) Embolic strokes of undetermined source: the case for a

new clinical construct. Lancet Neurol. 13, 429–438, https://doi.org/10.1016/S1474-4422(13)70310-7
3 Ntaios, G. and Hart, R.G. (2017) Embolic stroke. Circulation 136, 2403–2405, https://doi.org/10.1161/CIRCULATIONAHA.117.030509
4 Bjerkreim, A.T., Khanevski, A.N., Thomassen, L., Selvik, H.A., Waje-Andreassen, U., Naess, H. et al. (2019) Five-year readmission and mortality differ by

ischemic stroke subtype. J. Neurol. Sci. 403, 31–37, https://doi.org/10.1016/j.jns.2019.06.007
5 Yiin, G.S., Howard, D.P., Paul, N.L., Li, L., Luengo-Fernandez, R., Bull, L.M. et al. (2014) Age-specific incidence, outcome, cost, and projected future

burden of atrial fibrillation-related embolic vascular events: a population-based study. Circulation 130, 1236–1244,
https://doi.org/10.1161/CIRCULATIONAHA.114.010942

6 Bogiatzi, C., Hackam, D.G., McLeod, A.I. and Spence, J.D. (2014) Secular trends in ischemic stroke subtypes and stroke risk factors. Stroke 45,
3208–3213, https://doi.org/10.1161/STROKEAHA.114.006536

7 Steyerberg, E.W. (2019) Clinical Prediction Models, Springer
8 Knaus, W.A., Wagner, D.P., Draper, E.A., Zimmerman, J.E., Bergner, M., Bastos, P.G. et al. (1991) The Apache Iii Prognostic System. Risk Prediction of

Hospital Mortality for Critically Ill Hospitalized Adults. Chest 100, 1619–1636, https://doi.org/10.1378/chest.100.6.1619
9 Vincent, J.L., Moreno, R., Takala, J., Willatts, S., De Mendonça, A., Bruining, H. et al. (1996) The Sofa (Sepsis-Related Organ Failure Assessment) score

to describe organ dysfunction/failure. On behalf of the working group on sepsis-related problems of the European Society of Intensive Care Medicine.
Intensive Care Med. 22, 707–710, https://doi.org/10.1007/BF01709751

10 Johnson, A.E., Kramer, A.A. and Clifford, G.D. (2013) A new severity of illness scale using a subset of acute physiology and chronic health evaluation
data elements shows comparable predictive accuracy. Crit. Care Med. 41, 1711–1718, https://doi.org/10.1097/CCM.0b013e31828a24fe

11 Austin, P.C. and Brunner, L.J. (2004) Inflation of the type I error rate when a continuous confounding variable is categorized in logistic regression
analyses. Stat. Med. 23, 1159–1178, https://doi.org/10.1002/sim.1687

12 Nistal-Nuño, B. (2022) Developing machine learning models for prediction of mortality in the medical intensive care unit. Comput. Methods Programs
Biomed. 216, 106663, https://doi.org/10.1016/j.cmpb.2022.106663

13 Cho, D.Y. and Wang, Y.C. (1997) Comparison of the Apache Iii, Apache Ii and Glasgow Coma Scale in acute head injury for prediction of mortality and
functional outcome. Intensive Care Med. 23, 77–84, https://doi.org/10.1007/s001340050294

14 Bhagwanjee, S., Paruk, F., Moodley, J. and Muckart, D.J. (2000) Intensive Care Unit morbidity and mortality from eclampsia: an evaluation of the acute
physiology and chronic health evaluation Ii Score and the Glasgow Coma Scale Score. Crit. Care Med. 28, 120–124,
https://doi.org/10.1097/00003246-200001000-00020

15 Raj, R., Skrifvars, M., Bendel, S., Selander, T., Kivisaari, R., Siironen, J. et al. (2014) Predicting six-month mortality of patients with traumatic brain
injury: usefulness of common intensive care severity scores. Crit. Care 18, R60, https://doi.org/10.1186/cc13814

16 Obermeyer, Z. and Emanuel, E.J. (2016) Predicting the future - big data, machine learning, and clinical medicine. N. Engl. J. Med. 375, 1216–1219,
https://doi.org/10.1056/NEJMp1606181

17 Deo, R.C. (2015) Machine learning in medicine. Circulation 132, 1920–1930, https://doi.org/10.1161/CIRCULATIONAHA.115.001593
18 Kourou, K., Exarchos, T.P., Exarchos, K.P., Karamouzis, M.V. and Fotiadis, D.I. (2015) Machine learning applications in cancer prognosis and prediction.

Comput. Struct. Biotechnol. J. 13, 8–17, https://doi.org/10.1016/j.csbj.2014.11.005
19 Aksoy, S. and Haralick, R.M. (2001) Feature normalization and likelihood-based similarity measures for image retrieval. Pattern Recognit. Lett. 22,

563–582, https://doi.org/10.1016/S0167-8655(00)00112-4
20 Motwani, M., Dey, D., Berman, D.S., Germano, G., Achenbach, S., Al-Mallah, M.H. et al. (2017) Machine learning for prediction of all-cause mortality in

patients with suspected coronary artery disease: a 5-year multicentre prospective registry analysis. Eur. Heart J. 38, 500–507
21 Fang, G., Liu, W. and Wang, L. (2020) A machine learning approach to select features important to stroke prognosis. Comput. Biol. Chem. 88, 107316,

https://doi.org/10.1016/j.compbiolchem.2020.107316
22 Degenhardt, F., Seifert, S. and Szymczak, S. (2019) Evaluation of variable selection methods for random forests and omics data sets. Brief. Bioinform.

20, 492–503, https://doi.org/10.1093/bib/bbx124
23 Goldberger, A.L., Amaral, L.A., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark, R.G. et al. (2000) Physiobank, physiotoolkit, and physionet: components of

a new research resource for complex physiologic signals. Circulation 101, E215–E220, https://doi.org/10.1161/01.CIR.101.23.e215
24 Pollard, T.J., Johnson, A.E.W., Raffa, J.D., Celi, L.A., Mark, R.G. and Badawi, O. (2018) The Eicu Collaborative Research Database, a freely available

multi-center database for critical care research. Sci. Data 5, 180178, https://doi.org/10.1038/sdata.2018.178

© 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons
Attribution License 4.0 (CC BY).

17

D
ow

nloaded from
 http://port.silverchair.com

/bioscirep/article-pdf/42/9/BSR
20220995/937121/bsr-2022-0995.pdf by guest on 11 April 2024

https://doi.org/10.1016/S1474-4422(21)00252-0
https://doi.org/10.1016/S1474-4422(13)70310-7
https://doi.org/10.1161/CIRCULATIONAHA.117.030509
https://doi.org/10.1016/j.jns.2019.06.007
https://doi.org/10.1161/CIRCULATIONAHA.114.010942
https://doi.org/10.1161/STROKEAHA.114.006536
https://doi.org/10.1378/chest.100.6.1619
https://doi.org/10.1007/BF01709751
https://doi.org/10.1097/CCM.0b013e31828a24fe
https://doi.org/10.1002/sim.1687
https://doi.org/10.1016/j.cmpb.2022.106663
https://doi.org/10.1007/s001340050294
https://doi.org/10.1097/00003246-200001000-00020
https://doi.org/10.1186/cc13814
https://doi.org/10.1056/NEJMp1606181
https://doi.org/10.1161/CIRCULATIONAHA.115.001593
https://doi.org/10.1016/j.csbj.2014.11.005
https://doi.org/10.1016/S0167-8655(00)00112-4
https://doi.org/10.1016/j.compbiolchem.2020.107316
https://doi.org/10.1093/bib/bbx124
https://doi.org/10.1161/01.CIR.101.23.e215
https://doi.org/10.1038/sdata.2018.178


Bioscience Reports (2022) 42 BSR20220995
https://doi.org/10.1042/BSR20220995

25 Collins, G.S., Reitsma, J.B., Altman, D.G. and Moons, K.G. (2015) Transparent reporting of a multivariable prediction model for individual prognosis or
diagnosis (tripod): the tripod statement. BMJ 350, g7594, https://doi.org/10.1136/bmj.g7594

26 Arboix, A., Garcı́a-Eroles, L., Massons, J. and Oliveres, M. (1998) Predictive clinical factors of in-hospital mortality in 231 consecutive patients with
cardioembolic cerebral infarction. Cerebrovasc. Dis. 8, 8–13, https://doi.org/10.1159/000015809

27 Huang, Z.X., Gu, H.Q., Yang, X., Wang, C.J., Wang, Y.J. and Li, Z.X. (2021) Risk factors for in-hospital mortality among acute ischemic stroke patients in
China: a nationwide prospective study. Neurol. Res. 43, 387–395, https://doi.org/10.1080/01616412.2020.1866356

28 Kuhn, M. (2008) Building predictive models in R using the Caret Package. J. Statistical Software 28, 1–26, https://doi.org/10.18637/jss.v028.i05
29 Kuhn, M. and Johnson, K. (2013) Applied Predictive Modeling, Springer
30 van Buuren, S. and Groothuis-Oudshoorn, K. (2011) Mice: multivariate imputation by chained equations in R. J. Statistical Software 45, 1–67,

https://doi.org/10.18637/jss.v045.i03
31 Li, D.C., Liu, C.W. and Hu, S.C. (2010) A learning method for the class imbalance problem with medical data sets. Comput. Biol. Med. 40, 509–518,

https://doi.org/10.1016/j.compbiomed.2010.03.005
32 Chawla, N.V., Bowyer, K.W. and Hall, L.O. (2002) Kegelmeyer WPJJoair. Smote: Synthetic Minority over-Sampling Technique. 16, 321–357
33 Liu, C.L., Soong, R.S., Lee, W.C., Jiang, G.W. and Lin, Y.C. (2020) Predicting short-term survival after liver transplantation using machine learning. Sci.

Rep. 10, 5654, https://doi.org/10.1038/s41598-020-62387-z
34 Guyon, I., Weston, J., Barnhill, S. and Vapnik, V. (2002) Gene selection for cancer classification using support vector machines. Machine Learning 46,

389–422, https://doi.org/10.1023/A:1012487302797
35 Ribeiro, M.T., Singh, S. and Guestrin, C. (2016) “Why Should I Trust You?”: Explaining the Predictions of Any Classifier. Proceedings of the 22nd ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144, Association for Computing Machinery, San Francisco,
California, USA, https://doi.org/10.18653/v1/N16-3020

36 Muller, M.P., Tomlinson, G., Marrie, T.J., Tang, P., McGeer, A., Low, D.E. et al. (2005) Can Routine Laboratory Tests Discriminate between Severe Acute
Respiratory Syndrome and Other Causes of Community-Acquired Pneumonia? Clin. Infect. Dis. 40, 1079–1086, https://doi.org/10.1086/428577

37 Franklin, J. (2005) The elements of statistical learning: data mining, inference and prediction. Math. Intell. 27, 83–85,
https://doi.org/10.1007/BF02985802

38 Fernández-Delgado, M., Cernadas, E., Barro, S. and Amorim, D. (2014) Do we need hundreds of classifiers to solve real world classification problems?
J. Mach. Learn. Res. 15, 3133–3181

39 Lin, K., Hu, Y. and Kong, G. (2019) Predicting in-hospital mortality of patients with acute kidney injury in the icu using random forest model. Int. J. Med.
Inform. 125, 55–61, https://doi.org/10.1016/j.ijmedinf.2019.02.002

40 Huang, B., Liang, D., Zou, R., Yu, X., Dan, G., Huang, H. et al. (2021) Mortality prediction for patients with acute respiratory distress syndrome based on
machine learning: a population-based study. Ann. Transl. Med. 9, 794, https://doi.org/10.21037/atm-20-6624

41 Nie, X., Cai, Y., Liu, J., Liu, X., Zhao, J., Yang, Z. et al. (2020) Mortality prediction in cerebral hemorrhage patients using machine learning algorithms in
intensive care units. Front. Neurol. 11, 610531, https://doi.org/10.3389/fneur.2020.610531
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