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Prothymosin-α (PTMA), a nuclear protein, is strikingly associated with unfavorable clin-
ical outcomes in many cancers. However, no information about its clinical relevance in
glioma was available. Therefore in the present study, we evaluated the prognostic utility
of this protein in a cohort of 81 glioma patients. The PTMA expression was assessed by
immunohistochemical analysis, quantitative PCR, and Western blotting. Furthermore, the
association of PTMA with clinicopathological features and molecular alterations were as-
sessed in the patient cohort and validated in multiomics datasets, The Cancer Genome
Atlas (TCGA; n=667) and Chinese Glioma Genome Atlas (CGGA; n=1013). We observed an
increase in PTMA expression with increasing histological grades of this malignancy. PTMA
immunostaining also displayed a strong positive association with the MIB-1 index. Univari-
ate analysis revealed a superior prognostic value of PTMA to predict overall survival (OS)
as compared with the routinely used markers (p53, isocitrate dehydrogenase (IDH) 1 (IDH1),
α-thalassemia/intellectual disability syndrome X-linked (ATRX), and Ki-67). Interestingly, in
Cox regression analysis it emerged as an independent predictor of OS (hazard ratio (HR) =
13.71, 95% CI = 5.96–31.52, P<0.0001). Thus, our results demonstrate the potential prog-
nostic utility of PTMA in glioma which may prove useful in the management of this deadly
malignancy.

Introduction
Gliomas represent the vast constellation of malignant CNS tumors and a significant cause of cancer-related
deaths worldwide [1]. Depending on the cellular origin, gliomas are classified as astrocytic, oligoden-
droglial, or oligoastrocytic, whereas histopathologically, gliomas are classified by the World Health Orga-
nization (WHO) into four grades; grade I–IV [2]. Among various glial cell types, astrocytic gliomas are
the most common contributing to approximately 75% of all gliomas [3–5]. The treatment involves surgical
resection, chemotherapy, most commonly temozolomide (TMZ), followed by radiotherapy [6]. Despite
the latest interventions, only limited benefits are observed as overall survival (OS) remains dismally poor,
especially for grade IV gliomas, commonly referred to as glioblastoma (GBM) [7]. Gliomas can arise in
the brain de novo or evolve from lower grade astrocytoma. Furthermore, heterogeneity is also observed at
the molecular level. Rapid recurrence after surgical resection and resistance to the therapy are significant
challenges for current glioma treatment [8,9].
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Molecular alterations in gliomas have been widely implicated in clinical decision-making [10,11]. Numerous stud-
ies have deciphered the loss of tumor suppressors and amplifications among the proto-oncogenes, which ultimately
overwhelms apoptotic signals and accelerates multiple downstream proliferative pathways [12–15]. Mutation in the
isocitrate dehydrogenase gene (IDH) and co-deletion of chromosome 1p and 19q (1p/19q co-deletion) in low-grade
gliomas (grade I and II) are associated with favorable prognosis [16,17].

Prothymosin-α (PTMA) is a small (110–112 amino acids; 12.5 kDa), widely distributed acidic protein. It is a highly
conserved multifunctional protein having striking pro-tumorigenic traits attributed to inhibition of apoptotic events
and marked augmentation of cell division and pro-proliferative downstream signaling cascades [18–22]. Expression
of PTMA correlates positively with oncoproteins/proliferation markers like Ki67 and c-myc [23,24]. Association of
PTMA overexpression with unfavorable clinical outcomes has been observed in various cancer types, such as breast,
head and neck oral squamous cell cancer, hepatocellular carcinoma, lung cancer, gall bladder cancer, colorectal cancer
etc [20,25–30]. However, the involvement of this protein in glioma is yet to be established.

In the present study, we utilized publicly available multiomics glioma datasets and in-house clinical tissues to ana-
lyze the expression pattern of PTMA in glioma. We found that the expression of PTMA, both at mRNA and protein
levels, was strongly correlated with the advancement of malignant histologic phenotypes in gliomas. Remarkably, we
observed enhanced PTMA levels were associated with decreased survival time of glioma patients. Our data suggested
that enhanced PTMA expression is a promising prognostic feature in this malignancy.

Materials and methods
Patients and tissues
For the present study, three cohorts of patients were used to describe the clinical significance of PTMA expression
in glioma. Two of these cohorts were sourced from publicly available multiomics datasets, The Cancer Genome
Atlas- lower grade glioma and glioblastoma (TCGA-LGG-GBM, n=667) and Chinese Glioma Genome Atlas (CGGA,
n=1013). The third cohort included in-house patient samples (n=81). For this institutional cohort, brain tissue sam-
ples were taken from histologically confirmed gliomas operated on between March 2015 and September 2016 from
adult patients below 65 years of age. These samples were collected from the Department of Neurosurgery, AIIMS (New
Delhi, India), after the approval of the institutional ethical committee (reference number: IESC/T-244/05.05.2015),
which followed guidelines recommended by the ”Declaration of Helsinki”. Preoperatively, written informed consent
was obtained from each patient or their legitimately eligible representative as a mandatory requirement from the insti-
tutional ethical committee. These tumors were histologically segregated into four subtypes based upon WHO grading
of gliomas (grade I–IV). Therapeutic interventions in these patients aimed at the maximal resection of tumor tissue
without significantly impairing neurological functions. Post-operatively cycles of radiation and TMZ chemotherapy
were utilized to counter residual malignancy. The tissue sample from each patient was fixed in liquid buffered formalin
for immunohistochemical analysis. Additionally, a portion of freshly resected tissue was snapped frozen in liquid ni-
trogen for RNA isolation and western blotting experiments, wherever possible. A total of 81 histologically confirmed
glioma samples were collected, which were formalin-fixed and paraffin-embedded along. Patient characteristics have
been given in Table 1.

Datasets used and data collection
We extracted RNA-seq data of glioma tissues from TCGA-LGG-GBM and CGGA studies. Patient characteristics of
both the datasets along with the distribution of available clinical and molecular features have been given in Table
1. Also, microarray gene expression data from REMBRANDT (REpository for Molecular BRAin Neoplasia DaTa)
(accession number: GSE108476, https://www.ncbi.nlm.nih.gov/geo/) was utilized to perform pathway analysis. The
gene expression datasets were accessed through the GlioVis web server [31–33].

Immunohistochemical analysis
The formalin-fixed and paraffin-embedded specimens were cut into 4-μm-thick sections. These sections were
deparaffinized with xylene and subsequently rehydrated with a set of alcohol gradients. This was followed by
heat-induced epitope retrieval by putting slides in Tris-EDTA buffer (0.01 M, pH 9:0) using a microwave oven. There-
after, these slides were cooled to room temperature and incubated with 3% goat serum for 30 min to inhibit nonspe-
cific binding, followed by incubation with the primary antibody in a humidified chamber at 4◦C overnight. Slides were
washed the following day with Tris-buffered saline (TBS) three times. To block endogenous peroxidase activity in the
sections, they were treated with hydrogen peroxide (0.3% v/v in ethanol) for 20 min. Immunopositivity, as evident
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Table 1 Clinicopathological and molecular characteristics of the studied cohorts

Institutional cohort (total = 81) TCGA (total = 667) CGGA (total = 1013)

Characteristic Group
Number of
patients Frequency (%)

Number of
patients Frequency (%)

Number of
patients Frequency (%)

Age ≤45 years 44 54.32 293 43.93 615 60.71

>45 years 37 45.68 316 47.37 397 39.20

Not available 58 8.70 1 0.1

Gender Male 63 77.78 355 53.22 597 58.93

Female 18 22.22 254 38.08 416 41.07

Not available 58 8.70 -

Grade I 5 6.17 - - - -

II 35 43.21 226 33.88 291 28.73

III 19 23.46 244 36.58 334 32.97

IV 22 27.16 149 22.34 388 38.30

Not available - - 48 7.20

Histology Astrocytoma (A) 194 29.09 389 38.40

Oligoastrocytoma
(OA)

130 19.50 30 2.96

Oligodendroglioma
(OD)

191 28.64 206 20.36

GBM 152 22.80 388 38.30

IDH mutation Absent 232 34.78 432 42.65

Present 428 64.17 529 52.22

Not available 7 1.05 52 5.13

1p/19q
co-deletion

Absent 492 73.76 727 71.77

Present 169 25.34 211 20.83

Not available 6 0.90 75 7.40

GBM subtypes Classical 58 38.16 106 27.32

Mesenchymal 49 32.23 89 22.94

Proneural 43 28.29 93 23.97

Not available 3 1.97 100 25.77

Radiotherapy Not given 162 15.99

Given 765 75.52

Not available 86 8.49

Chemotherapy Not given 273 26.95

Given 633 62.49

Not available 107 10.56

P53
immunostaining

Negative 56 69.14

Positive 25 30.86

IDH
immunostaining

Negative 50 61.73

Positive 31 38.27

ATRX
immunostaining

Negative 30 37.04

Positive 51 62.96

PTMA
immunostaining

Negative 50 61.73

Positive 31 38.27

MIB1 index Low (<10) 52 64.20

High (>10) 29 35.80

by positive chromogenicity with diaminobenzidine (DAB), was assessed using VECTASTAIN® Elite® ABC perox-
idase kit following the manufacturer’s instructions. After this, counterstaining of the slides was done using Mayer’s
Hematoxylin. The slides were then kept to dry overnight at room temperature, and then the next day, DPX was used
as a mountant over which 22-mm coverslips were placed, avoiding air bubbles. These processed slides were then kept
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for letting DPX dry out, after which sections were analyzed using an inverted microscope [34,35] (Olympus BX51,
U.S.A).

For the semiquantitative analysis of immunostaining pattern, immunoreactivity score (IRS) was calculated using
staining intensity (I) and percentage of immunostained cells (P). For staining, I scores was from 0 to 3, where 0 was for
no staining, 1 for weak or modest, 2 for moderate, and 3 for strong staining. Whereas for calculating the P score, we
used the mean value of percentage immunopositivity in five randomly selected areas of tissue sections. Accordingly
on the basis of percentage of staining, P score ranged from 0 to 4 and was categorized as: no staining or <10% of
immunostained area, P = 0; 10–30%, P = 1; 30–50%, P = 2; 50–70%, P = 3; and >80%, P = 4. The final value of IRS
was derived from adding I and P, the IRS (I + P) ranged from 0 to 7. The immunostaining analysis was assessed by
an expert pathologist and his associates, who were blinded to the study variables. Analysis was performed based on
the above criteria. To determine the association of PTMA protein levels with study variables, patients were assigned
to PTMA-low (IRS 1–3) and PTMA-high (IRS 4–7).

RNA extraction, cDNA preparation, and real-time PCR
Total cellular RNA was extracted using TRIzol reagent (Invitrogen, CA, U.S.A.) as per the manufacturer’s in-
structions from snapped frozen aliquots of brain tissues. One microgram of extracted RNA was reverse tran-
scribed to cDNA using RevertAid reverse transcriptase kit (Thermo Fisher Scientific). qPCR was carried out
using Maxima SYBR® Green (Bio-Rad Laboratories Inc., Hercules, CA, U.S.A.) in CFX96 Touch™ Real-Time
PCR Detection System (Bio-Rad, Hercules, CA, U.S.A.) using specific primers for PTMA and β-actin gene
as an internal reference gene for normalization. After the successful completion of the PCR cycle, a melt-
ing curve analysis was performed to ascertain the specificity of the PCR products. For quantitation of gene
expression relative to a reference gene, the 2−�Ct method was employed. All the experiments were per-
formed in triplicates. The following sets of primers were used for the amplification and relative quantita-
tion of PTMA transcripts: PTMA forward primer 5′-ATGTCAGACGCAGCCGTAGACACCA-3′, reverse primer
5′-CTAGTCATCCTCGTCGGTCTTCTGC-3′; β-Actin forward primer 5′-CCTCGCCTTTGCCGATCC-3′ and re-
verse primer 5′-CGCGGCGATATCATCATC-3′. β-Actin gene was used as an internal control for normalization of
the gene expression for PTMA.

Western blotting
Tissue lysates were prepared from the glial tissues collected from the patients. All tissues were subjected to homoge-
nization and sonication to obtain a clear lysate. Equal amounts (40 μg) of denatured protein lysates from tissues were
resolved on to 15% SDS/PAGE. The proteins from the gel were transferred to a 0.2-μm PVDF membrane (10600021,
GE Healthcare, IL, U.S.A.). This was followed by blocking with 3% bovine serum albumin or 5% non-fat dried milk
for an hour. Subsequently, blots were incubated with goat polyclonal anti-PTMA (SC-18205, Santa Cruz Biotech-
nology, TX, U.S.A.) and mouse monoclonal anti-β-Actin (SC47778, Santa Cruz Biotechnology, TX, U.S.A.), which
was followed by incubation with appropriate HRP-labeled secondary antibody. Lastly, ECL substrate (Pierce™ ECL
Western Blotting Substrate, Thermo Fisher, MA, U.S.A.) was used to visualize the specific bands [36].

Pathway analysis
Gene set enrichment analysis was performed for TCGA-GBM and REMBRANDT datasets, both of which were gen-
erated on the microarray gene expression platform. For this, a differential expression module of the GlioVis webserver
was used. KEGG pathway and Gene Ontology were performed using gene expression cut-off as log2 fold change of
0.5, P-value and q-value cut-off were set at 0.05.

DNA methylation analysis
Default parameters of the MEXPRESS web server (https://mexpress.be) were used to determine the Pearson cor-
relation between the DNA methylation of PTMA promoter and its mRNA expression in TCGA-LGG and GBM
datasets [37,38]. This web server uses gene expression, copy number variation, and DNA methylation data of TCGA
dataset. DNA methylation data of the TCGA-LGG-GBM study were developed on the ‘Infinium HumanMethyla-
tion450 BeadChip’ platform. The predesignated methylation probes for PTMA were used for analysis.

Survival analysis
Kaplan–Meier survival analysis for the in-house patient cohort was performed along with a log-rank test using the
KM plotter web server (https://kmplot.com) with custom data. For survival analysis, patients were grouped according
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to high or low gene expression from the median; in contrast, for Cox proportional hazard model, gene expression
was taken as a continuous variable to ensure the increased study power. The proportionality hazard assumption was
assessed by using the Schoenfeld and scaled Schoenfeld residuals, and we found that there is no violation of the
proportionality assumption. For in-house patients, all survival analyses were performed between two groups based on
PTMA IRS. Information of OS, disease-specific survival (DSS), progression-free interval (PFI), and the disease-free
interval (DFI) was available for TCGA-LGG and TCGA-GBM datasets, while for the CGGA dataset, only data for OS
were available [39].

Statistical analysis
Patients were followed-up for 3 years from the date of surgery for death. To determine the association of PTMA
expression with clinicopathological features in the in-house cohort, we categorized the patients into two groups based
on their PTMA IRSs obtained by immunohistochemistry. All patients whose IRS was up to 3 were designated as
Low-PTMA IRS group, and remaining patients whose IRS was more than that (3–7) were segregated to High-PTMA
IRS group. Pathological and clinical data were obtained from patient records of the Department of Pathology and
the Department of Neurosurgery, respectively. Data analysis was performed using GraphPad Prism (version 6) and
R-3.6.3. Fisher’s exact test was used to calculate the association between the categorical variables. For comparing
gene expression of PTMA among different groups based on clinicopathological features, Mann–Whitney U-test was
used. For all analysis, P-value <0.05 was considered as statistically significant (**P<0.001; **P<0.01; *P<0.05; ns,
P>0.05).

Results
Expression pattern of PTMA in glioma
To determine the expression pattern of PTMA in glioma tissues, we performed immunohistochemistry for PTMA
in different grades of glioma tissues from the in-house cohort, which revealed strong nuclear positivity of PTMA in
advanced grades of glioma compared with lower grades (Figure 1A,B). Of the 81 histologically confirmed cases of
glioma, the overall positivity rate for PTMA immunostaining was 47% (38/81); 40% (2/5) for grade I, 28.6% (10/35)
for grade II, 57.9% (11/19) for grade III, and 68.2% (15/22) for grade IV. Further, overexpression of PTMA was also
validated at the mRNA levels in representative tissues (Figure 1C). The receiver operating characteristic (ROC) curve
for diagnosis of GBM from other grades using PTMA immunoreactivity revealed high sensitivity and specificity of
63.64 and 79.66, respectively (Figure 1D). The specificity of observed higher PTMA expression in the immunostaining
data was also validated by Western blot in representative glioma tissues (Figure 1E). For a detailed exploration of
aberrant PTMA expression in glioma, we utilized authoritative gene expression data of TCGA and CGGA studies.
Comparison of PTMA gene expression among different glioma grades also revealed overexpression of PTMA in
higher grade glioma (Figure 2A,B) in both TCGA and CGGA datasets. Further, the up-regulation was consistent
when comparing astrocytoma (grade II) vs. anaplastic astrocytoma (grade III) (Figure 2C,D). Similarly, GBM tissues
exhibited higher PTMA expression compared with anaplastic astrocytoma (grade III) (Figure 2C,D).

Association of PTMA expression with clinicopathological and molecular
features
The association of PTMA IRSs with clinicopathological features has been provided in Table 2. This revealed a strong
association of higher PTMA level with MIB-1 index, a marker for cellular proliferation. For TCGA and CGGA
datasets, we also compared its mRNA expression among recently described molecular subtypes of glioma [40], in
which inconsistency existed between two datasets for PTMA expression pattern (Figure 2E,F). While the associa-
tion between PTMA immunoreactivity and IDH mutation detected by immunostaining was not significant (Table
2), we observed in gene expression datasets, PTMA consistently exhibited higher expression in IDH-wildtype tumors
compared with IDH-mutant tumors (Figure 2G,H). Among IDH mutant gliomas in the TCGA dataset, tumors that
harbor 1p19q co-deletion exhibited reduced expression compared with tumors without it, while no such association
was observed in the CGGA dataset (Figure 2G,H). No association of PTMA expression was observed with age or
gender (Table 2, Supplementary Figure S1). PTMA mRNA expression was not associated with EGFR mutation, TP53
mutation, and PTEN mutation in GBM tissues from the TCGA dataset (Supplementary Figure S2).

To determine associations of PTMA expression with patient survival in glioma, we performed Kaplan–Meier sur-
vival analysis for PTMA IRS in the patient data of our cohort with 36 months of follow-up for OS. Analysis of all
samples revealed a higher PTMA level is associated with poor OS (hazard ratio [HR] = 13.71, 95% CI = 5.96–31.52,
P<0.0001, Figure 3A). Further, similar results were obtained when the prognostic significance of PTMA was evalu-
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Figure 1. Expression of PTMA in glioma tissues

(A) Immunostaining patterns in different glioma grades. (B) IRS among different grades of glioma. (C) mRNA expression of PTMA in

representative glioma tissues (n=5, each grade, respectively). (D) Receiver operating characteristic curve for GBM diagnosis using

PTMA IRS. (E) Total PTMA protein levels in representative glioma tissues from different grades. *P<0.05, **P<0.01, ****P<0.0001.

6 © 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).

D
ow

nloaded from
 http://port.silverchair.com

/bioscirep/article-pdf/42/4/BSR
20212685/931952/bsr-2021-2685.pdf by guest on 17 April 2024



Bioscience Reports (2022) 42 BSR20212685
https://doi.org/10.1042/BSR20212685

Figure 2. Expression of PTMA in CGGA dataset (left panel) and TCGA dataset (right panel)

(A,B) Different grades of glioma; (C,D) histological subtypes; (E,F) molecular subtypes of GBM; (G,H) IDH mutation and 1p19q

co-deletion. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001.

ated in LGG (HR = 20.62, 95% CI = 5.84–72.85, P<0.0001, Figure 3B), and GBM (HR = 4.08, 95% CI = 1.52–10.92,
P<0.001, Figure 3C), separately.

Additionally, we assessed survival data of larger cohorts from CGGA and TCGA studies. For CGGA study data,
Kaplan–Meier survival analysis in pan glioma analysis revealed that higher PTMA mRNA expression is associated
with poor OS in CGGA dataset (HR = 2.29, 95% CI = 1.94–0.46, P<0.0001, Figure 3D). Similar association of
higher expression of PTMA with poor prognosis was observed for primary glioma (HR = 2.67, 95% CI = 2.14–3.34,
P<0.0001, Figure 3E), recurrent glioma (HR = 1.47, 95% CI = 1.12–1.91, P=0.0044, Figure 3F) but not with sec-
ondary glioma (HR = 1.4, 95% CI = 0.66–2.98, P=0.38, Figure 3G). Further, higher PTMA mRNA expression was
associated with poor OS in LGG (HR = 1.92, 95% CI = 1.51–2.44, P<0.0001, Figure 3H) but not in GBM (HR = 1.22,
95% CI = 0.97–1.52, P=0.084, Figure 3I). We also performed subgroup-specific analysis of prognostic association of
PTMA in CGGA dataset. In histology centered analysis, higher PTMA expression was associated with poor patient
prognosis in astrocytoma (HR = 1.58, 95% CI = 1.21–2.07, P<0.001, Figure 4A) and oligodendroglioma (HR = 2.69,
95% CI = 1.47–4.9, P<0.0001, Figure 4B), but not in oligoastrocytoma (HR = 1.08, 95% CI = 0.33–3.56, P=0.89,

© 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).

7

D
ow

nloaded from
 http://port.silverchair.com

/bioscirep/article-pdf/42/4/BSR
20212685/931952/bsr-2021-2685.pdf by guest on 17 April 2024



Bioscience Reports (2022) 42 BSR20212685
https://doi.org/10.1042/BSR20212685

Table 2 Association of PTMA immunostaining pattern with clinicopathological variables in the in-house cohort

Parameter PTMA low PTMA high Fisher’s exact P-value
Gender Male 37 26 0.412

Female 13 5

Age <45 30 14 0.252

>45 20 17

Grade I 5 0 0.018

II 26 9

III 10 9

IV 9 13

p53 mutation Absent 38 18 0.137

Present 12 13

IDH1 mutation Absent 28 22 0.241

Present 22 9

ATRX mutation Absent 17 13 0.488

Present 33 18

MIB-I index Low (<10) 39 13 0.002

High (>10) 11 18

Prognostic significance of PTMA in glioma. Abbreviation: ATRX, α-thalassemia/intellectual disability syndrome X-linked.

Figure 4C). Further, among LGG, which includes grades II and III, similar association of higher PTMA expression
was observed among IDH wildtype (HR = 1.61, 95% CI = 1.06–2.44, P=0.023, Figure 4D) and IDH mutant glioma
(HR = 1.47, 95% CI = 1.09–1.98, P=0.011, Figure 4E), respectively. In context of therapy, the prognostic association
of higher PTMA was observed with either presence or absence of chemotherapy (HR = 1.63, 95% CI = 1.22–2.2,
P=0.001, Figure 4F; HR = 3.6, 95% CI = 2.15–6.01, P<0.0001, Figure 4G, respectively). Similarly, higher PTMA was
also associated with poor OS in either with radiotherapy (HR = 1.89, 95% CI = 1.44–2.47, P<0.0001, Figure 4H) or
without radiotherapy (HR = 1.95, 95% CI = 1.03–3.68, P=0.036, Figure 4I).

In the TCGA-LGG dataset also, the association of higher PTMA expression was observed with poor OS (Supple-
mentary Figure S3A), DSS (Supplementary Figure S3B), PFI (Supplementary Figure S3C), but not with DFI (Sup-
plementary Figure S3D). Stratifying patients based on IDH mutation suggested no association of PTMA expression
with patient survival in either IDH wildtype (Supplementary Figure S3E–H) or IDH mutant glioma (Supplementary
Figure S3I–L), suggesting that prognostic association of PTMA with patient survival is likely to be dependent upon
the IDH mutation status. In astrocytoma tissues from the TCGA-LGG dataset, PTMA expression was associated with
poor OS, DSS, and PFI, but not with DFI (Supplementary Figure S4A–D). Furthermore, in oligodendroglioma, higher
PTMA was associated with poor OS, DFI, and PFI, but not with DSS (Supplementary Figure S4E–H). No association
of PTMA expression was observed with the analyzed four survival parameters in oligoastrocytoma (Supplementary
Figure S4I–L). In TCGA-GBM tissues, PTMA expression was not associated with OS, DSS, or PFI. Results of detailed
prognostic parameters of PTMA expression in institutional and CGGA cohorts are given in Table 3. Intrestingly, mul-
tivariate analysis also suggested that higher PTMA expression is independently associated with poor patient prognosis
in both institutional cohort (HR = 34.481, 95% CI = 10.231–116.206, P<0.001) and CGGA datasets (HR = 1.65,
95% CI = 1.37–1.99, P<0.001).

PTMA associated molecular pathways in glioma
To determine the molecular pathways associated with PTMA expression, we performed pathways analysis using Gene
ontology and KEGG pathway analysis methods. KEGG pathway analysis revealed the association of PTMA expression
with cell cycle, DNA replication, p53 signaling pathway, extracellular matrix to receptor interaction (Figure 5A). Gene
ontology analysis also suggested the association of PTMA expression with cell cycle-related processes, chromatin
binding, cell adhesion, and pathways occurring in the nucleus (Figure 5B–D). Furthermore, in light of its established
roles in immunomodulation, we also determined the correlation of PTMA expression with infiltration of six different
immune cells in the glioma microenvironment, separately for LGG and GBM in the TCGA datasets using TIMER
webtool. This revealed that in LGG, higher PTMA expression is positively correlated with infiltration of all six immune
cells (Figure 5E), while in GBM, it exhibited a positive correlation only with dendritic cells (P<0.001, Figure 5E).

8 © 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).

D
ow

nloaded from
 http://port.silverchair.com

/bioscirep/article-pdf/42/4/BSR
20212685/931952/bsr-2021-2685.pdf by guest on 17 April 2024



B
ioscience

R
ep

orts
(2022)4

2
B

S
R

20212685
http

s://d
oi.org/10.1042/B

S
R

20212685

Table 3 Association of PTMA expression with OS in institutional and CGGA cohorts

AIIMS cohort CGGA dataset

Univariate Multivariate Univariate Multivariate

Characteristics HR (95% CI) P-value HR (95% CI) P-value Variable Category HR P-value HR P-value

Age 1.024 (0.999–
1.050)

0.057 1.004
(0.976–1.034)

0.761 Age 1.03 (1.02–1.04) <0.001 1.01 (1.00–1.02) <0.001

Gender Male Reference Gender Male Reference

Female 0.669
(0.277–1.615)

0.371 1.492
(0.550–4.046)

0.431 Female 1.02 (0.87–1.21) 0.787 0.90 (0.75–1.08) 0.285

WHO Grade I Ref to WHO Grade Grade II Reference

II 3.67e+08 to 9.03e+07 to Grade III 2.82 (2.18–3.64) <0.001 2.67 (1.98–3.60) <0.001

III 9.94e+08
(3.83e+08 to
2.58e+09)

<0.001 3.36e+08
(1.14e+08 to
9.91e+08)

<0.001 Grade IV 7.92
(6.171–10.16)

< 0.001 4.55 (3.28–6.32) < 0.001

IV 2.14e+09
(9.19e+08 to
5.00e+09)

<0.001 1.34e+09
(3.46e+08 to
5.15e+09)

<0.001

P53 IHC Absent Reference Tumor status Primary Reference

Present 1.867
(0.941–3.699)

0.074 0.870
(0.390–1.941)

0.735 Recurrent 2.10 (1.77–2.45) 06 2.33 (1.92
–2.83)

<0.001

IDH1 IHC Absent Reference Secondary 4.70 (3.20–6.89) <0.001 2.80 (1.77
–4.42)

<0.001

Present 0.662
(0.322–1.360)

0.261 1.550
(0.687–3.497)

0.291 Histology Astrocytoma/
oligoastrocytoma
(Ref)

Reference

ATRX IHC Absent Reference Oligodendroglioma 0.28 (0.21–0.39) <0.001 0.65 (0.39–1.07) 0.096

Present 0.960
(0.481–1.919)

0.90 1.545
(0.617–3.869)

0.353 GBM 3.05 (2.55–3.63) <0.001 4.55 (3.28–6.32) <0.001

MIB to 1 IHC
score

1.031
(1.018–1.044)

<0.001 0.986
(0.962–1.010)

0.259 IDH/1p19q
co-deletion

IDH wildtype, 1p/19q
noncodel/codel (Ref)

Reference

PTMA Low Reference IDH mutant, 1p/19q
noncodel

0.48 (0.40–0.58) <0.001 0.75 (0.59–0.94) 0.014

High 15.683
(6.535–37.638)

<0.001 34.481
(10.231–116.206)

<0.001 IDH mutant, 1p/19q
codel

0.14 (0.10–0.19) <0.001 0.35 (0.21–0.59) <0.001

Radiation
status

Negative Reference

Positive 1.04 (0.82–1.31) 0.736 0.84 (0.65–1.08) 0.181

Chemotherapy
status

Negative Reference

Positive 1.54 (1.27–1.87) <0.001 0.67 (0.53–0.85) 0.001

PTMA
expression

1.49 (1.34–1.67) <0.001 1.65 (1.37–1.99) <0.001

Abbreviation: ATRX, α-thalassemia/intellectual disability syndrome X-linked.
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Figure 3. Association of PTMA expression with patient survival

A-C and D-I represent the AIIMS cohort and CGGA dataset cohort, respectively. (A) All grades combined, (B) LGG, (C) GBM, (D)

pan glioma analysis, (E) primary glioma tissues, (F) secondary glioma tissues, (G) recurrent glioma tissues, (H) LGG in CGGA, (I)

GBM in CGGA. Abbreviation: GBM, glioblastoma multiforme. In all the panels, the low and high variable refers to low and high

PTMA expression, respectively.

Discussion
PTMA is a nuclear oncoprotein transcription factor that has been known to harbor several pro-tumorigenic traits
[41]. This is well evidenced by its elevated expression in robustly dividing cells while reduced in quiescent cells [42].
Functionally, PTMA is known to be highly pleiotropic. In the nucleus, PTMA affects the transcription of several
genes like estrogen receptors by binding to histone H1 [43,44]. In the cytoplasmic compartment, PTMA mediates
anti-apoptotic functions by blocking the caspase-9 activation which in turn inhibits apoptosome formation [22].
Interestingly, PTMA is also secreted extracellularly, where it acts as a damage-associated molecular pattern (DAMP)

10 © 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 4. Association of PTMA expression and patient survival in lower-grade glioma (grade II + III) from CGGA dataset

(A) Astrocytoma, (B) oligoastrocytoma, (C) oligodendroglioma, (D) IDH wildtype glioma, (E) IDH mutant glioma, (F) patients treated

with chemotherapy, (G) patients treated without chemotherapy, (H) patients treated with radiotherapy, (I) patients treated without

radiotherapy. Abbreviation: GBM, glioblastoma multiforme. In all the panels, the low and high variable refers to low and high PTMA

expression, respectively.

during cellular stress and infections. In these scenarios, it is known to exhibit several immunomodulatory functions,
which also include antitumor immunity [45].

The diagnostic and prognostic role of PTMA has been well documented in a variety of human cancers like hepa-
tocellular carcinoma [20,27], breast cancer [25], esophageal cancer [46], lung cancer [28], melanoma [47], colorectal
cancer [30], urinary bladder cancer [48] etc. In one of our past study involving oral cancer, a strong association of
PTMA with the aggressiveness of the malignancy was observed [26]. All these studies suggest PTMA as a key onco-
genic player, prominently associated with worsening histological subtype and poor prognosis. Contrary to these, it

© 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).
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Figure 5. Pathway analysis of PTMA-correlated genes in glioma

(A) KEGG pathway analysis, (B) Gene ontology: biological process, (C) Gene ontology: molecular functions, (D) Gene ontology:

Cellular component, (E) TIMER analysis for the association between PTMA expression and immune cell composition in glioma.

was recently reported that PTMA can also act as a tumor suppressor in bladder cancer [49]. Therefore, this protein
may act differently in various cancers. However, there is no study as per the best of our knowledge that demonstrates
its involvement in glial tumors.

Herein, we investigated the role of PTMA in the progression and prognosis of glioma using institutional patient co-
horts and online multiomics datasets. In agreement with previous reports, our immunostaining analysis also revealed
discrete nuclear staining of PTMA in neoplastic astrocytes among various grades of gliomas [26,30]. Additionally, the
nuclear PTMA staining intensity and percentage of immunostained cells increased significantly in a grade-wise man-
ner to peak in GBM. In ovarian tissues, its expression has been shown to exhibit a positive correlation with cellular
proliferation as measured by expression of Ki67 nuclear antigen [50] and proliferating cell nuclear antigen (PCNA)
[51]. Intriguingly, we also observed a strong association between PTMA and Ki67 immunostaining. This trend of
increased PTMA with the advancement of disease was observed both at the protein and mRNA levels. This finding is
consistent with other cancers where PTMA expression increased progressively with histological advancement of the
disease [27,46,52,53].

12 © 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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In the context of regulation of PTMA expression, we did not observe the association between mutation of EGFR,
p53, and PTEN in GBM tissues. Interestingly we observed higher PTMA expression in IDH wildtype gliomas. There-
fore, we examined whether promoter DNA methylation is associated with PTMA expression (Supplementary Figure
S5). A significant negative correlation between DNA methylation levels of some CpG sites with PTMA expression was
observed in both LGG and GBM. This suggests that PTMA expression is at least partly regulated by DNA methylation
in glioma. Further studies are required to ascertain the role of epigenetic alterations in PTMA regulation. Moreover,
recently it was demonstrated that a circular RNA, Hsa circ 0004277 acts as an miR-512-5p sponge in colorectal cancer
cells, leading to up-regulation of PTMA expression and, thereby cell proliferation [54].

Astrocytic gliomas, particularly GBM, represent the prototype of cancers that invariably exhibit poor prognosis
and dismal OS. Timely follow-up coupled with prompt medical, surgical, and radiological interventions can prolong
the life and delay the inevitable to some extent. Therefore, it becomes rational and critically important to explore
molecules that could be linked with survival and predict the prognosis. In this respect, we demonstrated a strong
association of PTMA with poor prognosis evidenced by alarmingly reduced survival in higher PTMA-expressing pa-
tients. This finding is in-line with malignancies like hepatocellular cancer [27], esophageal cancer [46], gall bladder
carcinoma [29], colorectal cancer [30], and oral cancer [26], where elevated PTMA was strongly associated with un-
favorable therapeutic outcomes. The encouraging results of survival analysis revealed an extremely high HRs make
us contemplate PTMA as a potential glioma biomarker. Interestingly its immunostaining exhibited a remarkable pos-
itive correlation with Ki67 (MIB-1 index). Therefore, depending upon PTMA immunopositivity, patients could be
conveniently classified into two distinct groups for monitoring treatment outcomes. Importantly, the association of
PTMA with poor OS was independent of other clinical markers, including the immunohistochemistry-based assess-
ment of IDH mutation, α-thalassemia/intellectual disability syndrome X-linked (ATRX). This indeed mandates its
consideration as a worthful prognosticator in clinical settings. In our study, immunohistochemistry was performed
to check PTMA protein expression, while for quantifying mRNA expression, we only picked 5 representative samples
of each grade. Nevertheless, for validating the association of PTMA expression with poor disease outcomes, we used
both, immunohistochemistry and gene expression datasets.

It is highly pertinent to identify underlying molecular features of glioma, which independently or in combina-
tion with established markers, can guide therapy and biomarker research. The recent emergence of high throughput
sequencing and proteomics analysis has enhanced the understanding of glioma biology and also aided in the identi-
fication of novel biomarkers [55]. Numerous studies have utilized gene expression datasets from TCGA, CGGA etc.,
to identify potential prognostic biomarkers in glioma such as GINS4 [56], SOCS3 [57], PTPRN [58], PLAT, IGFBP2,
BCAT1, SERPINH1 [59], MAGEH1 [55] etc. Some of these markers have also been validated further in the patient
cohort and also by functional analysis [56,57]. The same datasets have been used in the present study to establish the
utility of PTMA as an independent predictor of patient survival. Immunohistochemistry is widely preferred over gene
expression analysis to determine molecular alterations and protein expression of biomarkers like IDH, p53, MIB-1,
ATRX etc [60]. Therefore PTMA immunostaining holds promise for its integration into the clinical settings for the
better overall management of gliomas. However, a further study in a larger cohort of glioma patients is warranted to
validate the comparative prognostic utility of PTMA immunostaining and other such identified markers.

The utilization of highly characterized glioma datasets enabled us to determine a wide variety of clinically rele-
vant associations of PTMA. However, further studies are required to determine the detailed molecular functions of
this protein in glioma. In this regard, we performed pathway analysis using the list of genes with significant correla-
tion to PTMA, which revealed enrichment of cell proliferation-associated pathways, in agreement with its observed
association with the proliferative index. Additionally, some other enriched pathways, including p53 signaling and
cell adhesion, are consistent with previous reports regarding molecular functions of PTMA in different malignan-
cies [30,61,62]. In the context of immunity, extracellular PTMA acts as a pleiotropic biologic response modifier, as
it regulates the activities of various immune cells, including neutrophils and T cells [45]. PTMA has been shown
to regulate cell proliferation and induction of type I interferon immunomodulatory activity in human macrophages
[63,64]. PTMA has also been reported to be expressed by a subclass of neutrophils N2, present in lung tissue with
unknown functions [65].

Analysis of CGGA data revealed a strong association between PTMA mRNA expression and patient survival in-
dependent of tumor recurrence status. However, it could not be validated in our patients due to the unavailability of
recurrent tumor specimens. It will also be worthwhile to determine the association between PTMA immunostaining
with time to recurrence and response to therapy [66]. Furthermore, efforts in our lab are going on to determine the
effect of genetic ablation of PTMA on oncological features in this malignancy, which will complement these results in
a better way. Future studies exploring the clinical significance and molecular functions, including the immunomod-
ulatory potential of PTMA, are therefore highly warranted.
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